DOI QR코드

DOI QR Code

Evolution pathway of CZTSe nanoparticles synthesized by microwave-assisted chemical synthesis

  • Reyes, Odin (Instituto de Energias Renovables-UNAM) ;
  • Sanchez, Monica F. (Instituto de Energias Renovables-UNAM) ;
  • Pal, Mou (Instituto de Fisica, BUAP) ;
  • Llorca, Jordi (Institute of Energy Technologies and Barcelona Research Center, in Multiscale Science and Engineering, Universitat Politecnica de Catalunya, EEBE) ;
  • Sebastian, P.J. (Instituto de Energias Renovables-UNAM)
  • 투고 : 2016.12.04
  • 심사 : 2017.08.01
  • 발행 : 2017.09.25

초록

In this study we present the reaction mechanism of $Cu_2ZnSnSe_4$ (CZTSe) nanoparticles synthesized by microwave-assisted chemical synthesis. We performed reactions every 10 minutes in order to identify different phases during quaternary CZTSe formation. The powder samples were analyzed by x-ray diffraction (XRD), Raman spectroscopy, energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that in the first minutes copper phases are predominant, then copper and tin secondary phases react to form ternary phase. The quaternary phase is formed at 50 minutes while ternary and secondary phases are consumed. At 60 minutes pure quaternary CZTSe phase is present. After 60 minutes the quaternary phase decomposes in the previous ternary and secondary phases, which indicates that 60 minutes is ideal reaction time. The EDS analysis of pure quaternary nanocrystals (CZTSe) showed stoichiometric relations similar to the reported research in the literature, which falls in the range of Cu/(Zn+Sn): 0.8-1.0, Zn/Sn: 1.0-1.20. In conclusion, the evolution pathway of CZTSe synthesized by this novel method is similar to other synthesis methods reported before. Nanoparticles synthesized in this study present desirable properties in order to use them in solar cell and photoelectrochemical cell applications.

키워드

참고문헌

  1. Ahmadi, M., Pramana, S.S., Xi, L., Boothroyd, C., Lam, Y.M. and Mhaisalkar, S. (2012), Evolution pathway of CIGSe nanocrystals for solar cell applications", J. Phys. Chem. C, 116(14), 8202-8209. https://doi.org/10.1021/jp300187r
  2. Bhattacharya, R.N., Batchelor, W., Granata, J.E., Hasoon, F., Wiesner, H., Ramanathan, K. and Noufi, R.N. (1998), "CuIn 1- x Ga x Se 2-based photovoltaic cells from electrodeposited and chemical bath deposited precursors", Solar Energy Mater. Solar Cells, 55(1), 83-94. https://doi.org/10.1016/S0927-0248(98)00049-X
  3. Brammertz, G., Buffiere, M., Oueslati, S., ElAnzeery, H., Messaoud, K.B., Sahayaraj, S. and Poortmans, J. (2013), "Characterization of defects in 9.7% efficient $Cu_2ZnSnSe_4$-CdS-ZnO solar cells", Appl. Phys. Lett., 103(16), 163904. https://doi.org/10.1063/1.4826448
  4. Du, Y.F., Zhou, W.H., Zhou, Y.L., Li, P.W., Fan, J.Q., He, J.J. and Wu, S.X. (2012), "Solvothermal synthesis and characterization of quaternary $Cu_2ZnSnSe_4$ particles", Mater. Sci. Semicon. Process., 15(2), 214-217. https://doi.org/10.1016/j.mssp.2011.09.005
  5. Flynn, B., Wang, W., Chang, C.H. and Herman, G.S. (2012), "Microwave assisted synthesis of $Cu_2ZnSnS_4$ colloidal nanoparticle inks", Physica Status Solidi (a), 209(11), 2186-2194. https://doi.org/10.1002/pssa.201127734
  6. Ganchev, M., Iljina, J., Kaupmees, L., Raadik, T., Volobujeva, O., Mere, A. and Mellikov, E. (2011), "Phase composition of selenized $Cu_2ZnSnSe_4$ thin films determined by X-ray diffraction and Raman spectroscopy", Thin Solid Films, 519(21), 7394-7398. https://doi.org/10.1016/j.tsf.2011.01.388
  7. Gardner, J.S., Shurdha, E., Wang, C., Lau, L.D., Rodriguez, R.G. and Pak, J.J. (2008), "Rapid synthesis and size control of $CuInS_2$ semi-conductor nanoparticles using microwave irradiation", J. Nanopart. Res., 10(4), 633-641. https://doi.org/10.1007/s11051-007-9294-7
  8. Grisaru, H., Palchik, O., Gedanken, A., Palchik, V., Slifkin, M.A. and Weiss, A.M. (2003), "Microwaveassisted polyol synthesis of $CuInTe_2$ and $CuInSe_2$ nanoparticles", Inorganic Chem., 42(22), 7148-7155. https://doi.org/10.1021/ic0342853
  9. Holubova, J., Cernosek, Z. and Cernoskova, E. (2009), "The selenium based chalcogenide glasses with low content of As and Sb: DSC, StepScan DSC and Raman spectroscopy study", J. Non-Crystal. Solids, 355(37), 2050-2053. https://doi.org/10.1016/j.jnoncrysol.2009.05.067
  10. Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W. and Powalla, M. (2016), "Effects of heavy alkali elements in Cu (In, Ga) Se2 solar cells with efficiencies up to 22.6%", Physica Status Solidi (RRL)-Rapid Res. Lett., 10(8), 583-586. https://doi.org/10.1002/pssr.201600199
  11. Jeon, M., Tanaka, Y., Shimizu, T. and Shingubara, S. (2011), "Formation and characterization of single-step electrodeposited $Cu_2ZnSnS_4$ thin films: Effect of complexing agent volume", Energy Procedia, 10, 255-260. https://doi.org/10.1016/j.egypro.2011.10.187
  12. Lee, P.Y., Shei, S.C. and Chang, S.J. (2013), "Evolution pathways for the formation of Nano-$Cu_2ZnSnSe_4$ absorber materials via elemental sources and isophorondiamine chelation", J. Alloys Compounds, 574, 27-32. https://doi.org/10.1016/j.jallcom.2013.03.254
  13. Lee, P.Y., Chang, S.P., Hsu, E.H. and Chang, S.J. (2014), "Synthesis of CZTSe nanoink via a facile one-pot heating route based on polyetheramine chelation", Solar Energy Mater. Solar Cells, 128, 156-165. https://doi.org/10.1016/j.solmat.2014.05.005
  14. Li, Z.Q., Shi, J.H., Liu, Q.Q., Chen, Y.W., Sun, Z., Yang, Z. and Huang, S.M. (2011), "Large-scale growth of $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_4$/$Cu_2ZnSnS_4$ core/shell nanowires", Nanotechnology, 22(26), 265615. https://doi.org/10.1088/0957-4484/22/26/265615
  15. Liu, W., Wu, M., Yan, L., Zhou, R., Si, S., Zhang, S. and Zhang, Q. (2011), "Noninjection synthesis and characterization of $Cu_2ZnSnSe_4$ nanocrystals in triethanolamine reaction media", Mater. Lett., 65(17), 2554-2557. https://doi.org/10.1016/j.matlet.2011.04.106
  16. Liu, T., Jin, Z., Li, J., Wang, J., Wang, D., Lai, J. and Du, H. (2013), "Monodispersed octahedral-shaped pyrite CuSe 2 particles by polyol solution chemical synthesis", CrystEngComm, 15(44), 8903-8906. https://doi.org/10.1039/c3ce41500g
  17. Lu, J., Xie, Y., Xu, F. and Zhu, L. (2002), "Study of the dissolution behavior of selenium and tellurium in different solvents-a novel route to Se, Te tubular bulk single crystals", J. Mater. Chem., 12(9), 2755-2761. https://doi.org/10.1039/B204092A
  18. Mitzi, D.B., Gunawan, O., Todorov, T.K., Wang, K. and Guha, S. (2011), "The path towards a highperformance solution-processed kesterite solar cell", Solar Energy Mater. Solar Cells, 95(6), 1421-1436. https://doi.org/10.1016/j.solmat.2010.11.028
  19. Panda, A.B., Glaspell, G. and El-Shall, M.S. (2006), "Microwave synthesis of highly aligned ultra-narrow semiconductor rods and wires", J. Am. Chem. Soc., 128(9), 2790-2791. https://doi.org/10.1021/ja058148b
  20. Qian, H., Qiu, X., Li, L. and Ren, J. (2006), "Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe (S) alloyed quantum dots", J. Phys. Chem. B, 110(18), 9034-9040. https://doi.org/10.1021/jp0539324
  21. Qin-Miao, C., Zhen-Qing, L., Yi, N., Shu-Yi, C. and Xiao-Ming, D. (2012), "Doctor-bladed $Cu_2ZnSnS_4$ light absorption layer for low-cost solar cell application", Chinese Physics B, 21(3), 038401. https://doi.org/10.1088/1674-1056/21/3/038401
  22. Quiroz, H.P., Sena, N.J. and Dussan, A. (2014), "Microstructural and morphological properties of nanocrystalline $Cu_2ZnSnSe_4$ thin films: Identification new phase on structure", J. Phys.: Conference Series, 480(1), p. 012002. https://doi.org/10.1088/1742-6596/480/1/012002
  23. Rath, T., Haas, W., Pein, A., Saf, R., Maier, E., Kunert, B. and Trimmel, G. (2012), "Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: influence of reactants on the chemical composition", Solar Energy Materials and Solar Cells, 101, 87-94. https://doi.org/10.1016/j.solmat.2012.02.025
  24. Roe, F.J.C., Grant, G.A. and Millican, D.M. (1967), "Carcinogenicity of hydrazine and 1, 1-dimethylhydrazine for mouse lung", Nature, 216(5113), 375-376. https://doi.org/10.1038/216375a0
  25. Salome, P.M., Fernandes, P.A., Leitao, J.P., Sousa, M.G., Teixeira, J.P. and da Cunha, A.F. (2014), "Secondary crystalline phases identification in $Cu_2ZnSnSe_4$ thin films: Contributions from Raman scattering and photoluminescence", J. Mater. Sci., 49(21), 7425-7436. https://doi.org/10.1007/s10853-014-8446-2
  26. Shao, L., Zhang, J., Zou, C. and Xie, W. (2012), "$Cu_2ZnSnSe_4$ thin films by selenization of simultaneously evaporated Sn-Zn-Cu metallic lays for photovoltaic applications", Phys. Procedia, 32, 640-644. https://doi.org/10.1016/j.phpro.2012.03.612
  27. Shei, S.C. and Lee, P.Y. (2013), "Synthesis of CZTSe nanocrystal prepared by a facile route in coordinating solvent from elemental sources", Nanotechnology, IEEE Transactions on, 12(4), 532-538. https://doi.org/10.1109/TNANO.2013.2255623
  28. Shockley, W. and Queisser, H.J. (1961), "Detailed balance limit of efficiency of p-n junction solar cells", J. Appl. Phys., 32(3), 510-519. https://doi.org/10.1063/1.1736034
  29. Shyju, T.S., Anandhi, S., Suriakarthick, R., Gopalakrishnan, R. and Kuppusami, P. (2015), "Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications", J. Solid State Chem., 227, 165-177. https://doi.org/10.1016/j.jssc.2015.03.033
  30. Todorov, T.K., Reuter, K.B. and Mitzi, D.B. (2010), "High-efficiency solar cell with earth-abundant liquid processed absorber", Adv. Mater., 22(20), 156-159. https://doi.org/10.1002/adma.200904155
  31. Vallejo, O.R., Sanchez, M., Pal, M., Espinal, R., Llorca, J. and Sebastian, P.J. (2016), "Synthesis and characterization of nanoparticles of CZTSe by microwave-assited chemical synthesis", Mater. Res. Express, 3(12), 125017. https://doi.org/10.1088/2053-1591/3/12/125017
  32. Wang, Y., Ai, X., Miller, D., Rice, P., Topuria, T., Krupp, L. and Song, Q. (2012), "Two-phase microwaveassisted synthesis of Cu 2 S nanocrystals", CrystEngComm, 14(22), 7560-7562. https://doi.org/10.1039/c2ce25809a
  33. Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y. and Mitzi, D.B. (2014), "Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency", Adv. Energy Mater., 4(7), 1301465. https://doi.org/10.1002/aenm.201301465
  34. Wangperawong, A., King, J.S., Herron, S.M., Tran, B.P., Pangan-Okimoto, K. and Bent, S.F. (2011), "Aqueous bath process for deposition of $Cu_2ZnSnS_4$ photovoltaic absorbers", Thin Solid Films, 519(8), 2488-2492. https://doi.org/10.1016/j.tsf.2010.11.040
  35. Washington Ii, A.L. and Strouse, G.F. (2008), "Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes", J. Am. Chem. Soc., 130(28), 8916-8922. https://doi.org/10.1021/ja711115r
  36. Wibowo, R.A., Jung, W.H. and Kim, K.H. (2010), "Synthesis of $Cu_2ZnSnSe_4$ compound powders by solid state reaction using elemental powders", J. Phys. Chem. Solids, 71(12), 1702-1706. https://doi.org/10.1016/j.jpcs.2010.08.012
  37. Zhou, J., You, L., Yi, Q. and Ye, Z. (2013), "One-step synthesis of $Cu_2ZnSnSe_4$ microparticles via a facile solution route in triethylenetetramine reaction media and its characterization", Mater. Lett., 107, 225-227. https://doi.org/10.1016/j.matlet.2013.05.109
  38. Zhou, B., Xia, D. and Wang, Y. (2015), "Phase-selective synthesis and formation mechanism of CZTS nanocrystals", RSC Advances, 5(86), 70117-70126. https://doi.org/10.1039/C5RA11890E
  39. Zoppi, G., Forbes, I., Miles, R.W., Dale, P.J., Scragg, J.J. and Peter, L.M. (2009), "$Cu_2ZnSnSe_4$ thin film solar cells produced by selenisation of magnetron sputtered precursors", Prog. Photovoltaics: Res. Appl., 17(5), 315-319. https://doi.org/10.1002/pip.886

피인용 문헌

  1. Nanoscale quantitative mechanical mapping of poly dimethylsiloxane in a time dependent fashion vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.253