DOI QR코드

DOI QR Code

Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells

  • 투고 : 2016.12.12
  • 심사 : 2017.08.01
  • 발행 : 2017.09.25

초록

Graphene oxide (GO) was prepared by modified Hummer's method to produce reduced graphene oxide (RGO) following standard thermal and chemical reduction processes. Prepared RGO colloids were utilized to fabricate RGO films over glass and FTO coated glass substrates through drop-coating. A systematic study was performed to evaluate the effect of reduction degree on the optical and electrical properties of the RGO film. We demonstrate that both the reduction process (thermal and chemical) produce RGO films of similar optical and electrical behaviors. However, the RGO films fabricated using chemically reduced GO colloid render better performance in dye sensitized solar cells (DSSCs), when they are used as counter electrodes (CEs). It has been demonstrated that RGO films of optimum thicknesses fabricated using RGO colloids prepared using lower concentration of hydrazine reducer have better catalytic performance in DSSCs due to a better catalytic interaction with redox couple. The better catalytic performance of the RGO films fabricated at optimal hydrazine concentration is associated to their higher available surface area and lower grain boundaries.

키워드

과제정보

연구 과제 주관 기관 : VIEP-BUAP, PRODEP-SEP

참고문헌

  1. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H. and Iijima, S. (2010), "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nat. Nano, 5(8), 574-578. https://doi.org/10.1038/nnano.2010.132
  2. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I. and Kim, Y.J. Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z. and Chen, Y. (2008), "Evaluation of solutionprocessed reduced graphene oxide films as transparent conductors", ACS Nano, 2(3), 463-470. https://doi.org/10.1021/nn700375n
  3. Boehm, H.P., Eckel, M. and Scholz, W. (1967), "Untersuchungen am Graphitoxid V. Uber den Bildungsmechanismus des Graphitoxids", Zeitschrift fur anorganische und allgemeine Chemie, 353(5-6), 236-242. https://doi.org/10.1002/zaac.19673530503
  4. Brodie, B.C. (1859), "On the atomic weight of graphite", Philos. Transact. Royal Soc. London, 149, 249-259. https://doi.org/10.1098/rstl.1859.0013
  5. Casiraghi, C., Pisana, S., Novoselov, K.S., Geim, A.K. and Ferrari, A.C. (2007), "Raman fingerprint of charged impurities in graphene", Appl. Phys. Lett., 91(23), 233108. https://doi.org/10.1063/1.2818692
  6. Das, S., Sudhagar, P., Ito, E., Lee, D.-y., Nagarajan, S., Lee, S.Y., Kang, Y.S. and Choi, W. (2012), "Effect of $HNO_3$ functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells", J. Mater. Chem., 22(38), 20490-20497. https://doi.org/10.1039/c2jm32481d
  7. Dreyer, D.R., Murali, S., Zhu, Y., Ruoff, R.S. and Bielawski, C.W. (2011), "Reduction of graphite oxide using alcohols", J. Mater. Chem., 21(10), 3443-3447. https://doi.org/10.1039/C0JM02704A
  8. Eigler, S., Enzelberger-Heim, M., Grimm, S., Hofmann, P., Kroener, W., Geworski, A., Dotzer, C., Rockert, M., Xiao, J., Papp, C., Lytken, O., Steinruck, H.-P., Muller, P. and Hirsch, A. (2013), "Wet chemical synthesis of graphene", Adv. Mater., 25(26), 3583-3587. https://doi.org/10.1002/adma.201300155
  9. Fernandez-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A. and Tascon, J.M.D. (2010), "Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions", J. Phys. Chem. C, 114(14), 6426-6432. https://doi.org/10.1021/jp100603h
  10. Geng, J., Liu, L., Yang, S.B., Youn, S.-C., Kim, D.W., Lee, J.-S., Choi, J.-K. and Jung, H.-T. (2010), "A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension", J. Phys. Chem. C, 114(34), 14433-14440. https://doi.org/10.1021/jp105029m
  11. Gierz, I., Riedl, C., Starke, U., Ast, C.R. and Kern, K. (2008), "Atomic hole doping of graphene", Nano Lett., 8(12), 4603-4607. https://doi.org/10.1021/nl802996s
  12. Hummers, W.S. and Offeman, R.E. (1958), "Preparation of graphitic oxide", J. Am. Chem. Soc., 80(6), 1339-1339. https://doi.org/10.1021/ja01539a017
  13. Ito, S., Chen, P., Comte, P., Nazeeruddin, M.K., Liska, P., Pechy, P. and Gratzel, M. (2007), "Fabrication of screen-printing pastes from $TiO_2$ powders for dye-sensitised solar cells", Prog. Photovoltaics, 15(7), 603-612. https://doi.org/10.1002/pip.768
  14. Li, D., Muller, M.B., Gilje, S., Kaner, R.B. and Wallace, G.G. (2008), "Processable aqueous dispersions of graphene nanosheets", Nature Nanotech., 3(2), 101-105. https://doi.org/10.1038/nnano.2007.451
  15. Long, D.H., Li, W., Ling, L.C., Miyawaki, J., Mochida, I. and Yoon, S.H. (2010), "Preparation of nitrogendoped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide", Langmuir, 26(20), 16096-16102. https://doi.org/10.1021/la102425a
  16. Paredes, J.I., Villar-Rodil, S., Martinez-Alonso, A. and Tascon, J.M.D. (2008), "Graphene oxide dispersions in organic solvents", Langmuir, 24(19), 10560-10564. https://doi.org/10.1021/la801744a
  17. Park, S. and Ruoff, R.S. (2009), "Chemical methods for the production of graphenes", Nat. Nano, 4(4), 217-224. https://doi.org/10.1038/nnano.2009.58
  18. Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A. and Ruoff, R.S. (2009), "Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents", Nano Lett., 9(4), 1593-1597. https://doi.org/10.1021/nl803798y
  19. Park, H., Rowehl, J.A., Kim, K.K., Bulovic, V. and Kong, J. (2010), "Doped graphene electrodes for organic solar cells", Nanotechnology, 21(50), 505204. https://doi.org/10.1088/0957-4484/21/50/505204
  20. Park, S., Hu, Y., Hwang, J.O., Lee, E.-S., Casabianca, L.B., Cai, W., Potts, J.R., Ha, H.-W., Chen, S., Oh, J., Kim, S.O., Kim, Y.-H., Ishii, Y. and Ruoff, R.S. (2012), "Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping", Nature Commun., 3, 638. https://doi.org/10.1038/ncomms1643
  21. Qiu, L., Zhang, H., Wang, W., Chen, Y. and Wang, R. (2014), "Effects of hydrazine hydrate treatment on the performance of reduced graphene oxide film as counter electrode in dye-sensitized solar cells", Appl. Surf. Sci., 319, 339-343. https://doi.org/10.1016/j.apsusc.2014.07.133
  22. Rath, T. and Kundu, P.P. (2015), "Reduced graphene oxide paper based nanocomposite materials for flexible supercapacitors", Rsc Advances, 5(34), 26666-26674. https://doi.org/10.1039/C5RA00563A
  23. Roy-Mayhew, J.D. and Aksay, I.A. (2014), "Graphene materials and their use in dye-sensitized solar cells", Chemical Reviews, 114(12), 6323-6348. https://doi.org/10.1021/cr400412a
  24. Shin, H.-J., Kim, K.K., Benayad, A., Yoon, S.-M., Park, H.K., Jung, I.-S., Jin, M.H., Jeong, H.-K., Kim, J.M., Choi, J.-Y. and Lee, Y.H. (2009), "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance", Adv. Function. Mater., 19(12), 1987-1992. https://doi.org/10.1002/adfm.200900167
  25. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. and Ruoff, R.S. (2007), "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", Carbon, 45(7), 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034
  26. Staudenmaier, L. (1898), "Verfahren zur Darstellung der Graphitsaure", Berichte der deutschen chemischen Gesellschaft, 31(2), 1481-1487. https://doi.org/10.1002/cber.18980310237
  27. Titelman, G.I., Gelman, V., Bron, S., Khalfin, R.L., Cohen, Y. and Bianco-Peled, H. (2005), "Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide", Carbon, 43(3), 641-649. https://doi.org/10.1016/j.carbon.2004.10.035
  28. Wang, X., Zhi, L. and Mullen, K. (2008), "Transparent, conductive graphene electrodes for dye-sensitized solar cells", Nano Lett., 8(1), 323-327. https://doi.org/10.1021/nl072838r
  29. Wu, Z.-S., Ren, W., Gao, L., Liu, B., Jiang, C. and Cheng, H.-M. (2009), "Synthesis of high-quality graphene with a pre-determined number of layers", Carbon, 47(2), 493-499. https://doi.org/10.1016/j.carbon.2008.10.031
  30. Xu, Y.X., Sheng, K.X., Li, C. and Shi, G.Q. (2011), "Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide", J. Mater. Chem., 21(20), 7376-7380. https://doi.org/10.1039/c1jm10768b
  31. Xu, X.B., Huang, D.K., Cao, K., Wang, M.K., Zakeeruddin, S.M. and Gratzel, M. (2013), "Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells", Sci. Rep., 3.
  32. Yang, Y.K., He, C.E., He, W.J., Yu, L.J., Peng, R.G., Xie, X.L., Wang, X.B. and Mai, Y.W. (2011), "Reduction of silver nanoparticles onto graphene oxide nanosheets with N,N-dimethylformamide and SERS activities of GO/Ag composites", J. Nanopart. Res., 13(10), 5571-5581. https://doi.org/10.1007/s11051-011-0550-5
  33. Yin, Z., Sun, S., Salim, T., Wu, S., Huang, X., He, Q., Lam, Y.M. and Zhang, H. (2010), "Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes", ACS Nano, 4(9), 5263-5268. https://doi.org/10.1021/nn1015874
  34. Zhou, Y., Bao, Q., Tang, L.A.L., Zhong, Y. and Loh, K.P. (2009), "Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties", Chem. Mater., 21(13), 2950-2956. https://doi.org/10.1021/cm9006603

피인용 문헌

  1. Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures vol.7, pp.3, 2017, https://doi.org/10.12989/anr.2019.7.3.209
  2. Nitrogen-Doped Carbon Dots Induced Enhancement in CO 2 Sensing Response From ZnO–Porous Silicon Hybrid Structure vol.8, pp.None, 2017, https://doi.org/10.3389/fchem.2020.00291
  3. Nanoscale quantitative mechanical mapping of poly dimethylsiloxane in a time dependent fashion vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.253