DOI QR코드

DOI QR Code

Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications

  • Lee, Hohyeon (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Haemin (Department of Biomedical Engineering, Sogang University) ;
  • Han, Hyounkoo (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Minji (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Sunho (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Yoo, Hongkeun (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Chang, Jin Ho (Department of Biomedical Engineering, Sogang University) ;
  • Kim, Hyuncheol (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Received : 2016.11.13
  • Accepted : 2017.01.18
  • Published : 2017.06.30

Abstract

Ultrasound was developed several decades ago as a useful imaging modality, and it became the second most popular diagnostic tool due to its non-invasiveness, real-time capabilities, and safety. Additionally, ultrasound has been used as a therapeutic tool with several therapeutic agents and in nanomedicine. Ultrasound imaging is often used to diagnose many types of cancers, including breast, stomach, and thyroid cancers. In addition, ultrasound-mediated therapy is used in cases of joint inflammation, rheumatoid arthritis, and osteoarthritis. Microbubbles, when used as ultrasound contrast agents, can act as echo-enhancers and therapeutic agents, and they can play an essential role in ultrasound imaging and ultrasound-mediated therapy. Recently, various types of ultrasound contrast agents made of lipid, polymer, and protein shells have been used. Air, nitrogen, and perfluorocarbon are usually included in the core of the microbubbles to enhance ultrasound imaging, and therapeutic drugs are conjugated and loaded onto the surface or into the core of the microbubbles, depending on the purpose and properties of the substance. Many research groups have utilized ultrasound contrast agents to enhance the imaging signal in blood vessels or tissues and to overcome the blood-brain barrier or blood-retina barrier. These agents are also used to help treat diseases in various regions or systems of the body, such as the cardiovascular system, or as a cancer treatment. In addition, with the introduction of targeted moiety and multiple functional groups, ultrasound contrast agents are expected to have a potential future in ultrasound imaging and therapy. In this paper, we briefly review the principles of ultrasound and introduce the underlying theory, applications, limitations, and future perspectives of ultrasound contrast agents.

Keywords

References

  1. Castle J, Feinstein SB. Drug and gene delivery using sonoporation for cardiovascular disease. Ther Ultrasound. 2016;880:331-8.
  2. Mace E, Montaldo G, Cohen I, et al. Functional ultrasound imaging of the brain. Nat Methods. 2011;8(8):662-4. https://doi.org/10.1038/nmeth.1641
  3. Rrico CE, Pierre J, Pezet S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527(7579):499-502. https://doi.org/10.1038/nature16066
  4. Montilla LG, Olafsson R, Bauer DR, et al. Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays. Phys Med Biol. 2013;58(1):N1-12. https://doi.org/10.1088/0031-9155/58/1/N1
  5. Kang J, Kim EK, Kim GR, et al. Photoacoustic imaging of breast microcalcifications: a validation study with 3-dimensional ex vivo data and spectrophotometric measurement. J Biophotonics. 2015;8(1-2):71-80. https://doi.org/10.1002/jbio.201300100
  6. Kang J, Chang JH, Wilson BC, et al. A prototype hand-held trimodal instrument for in vivo ultrasound, photoacoustic, and fluorescence imaging. Rev Sci Instrum. 2015;86(3):034901. https://doi.org/10.1063/1.4915146
  7. Moon H, Kumar D, Kim H, et al. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photo acoustic imaging. ACS Nano. 2015;9(3):2711-9. https://doi.org/10.1021/nn506516p
  8. Ju KY, Kang J, Pyo J, et al. pH-Induced aggregated melanin nanoparticles for photoacoustic signal amplification. Nanoscale. 2016;8(30):14448-56. https://doi.org/10.1039/C6NR02294D
  9. Lee J, Chang JH, Jeong JS, et al. Backscattering measurement from a single microdroplet. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(4):874-9. https://doi.org/10.1109/TUFFC.2011.1882
  10. Hwang JY, Kim J, Park JM, et al. Cell deformation by singlebeam acoustic trapping: a promising tool for measurements of cell mechanics. Sci Rep. 2016;6:27238. https://doi.org/10.1038/srep27238
  11. Yoon S, Kim MG, Chiu CT, et al. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound. Sci Rep. 2016;6:20477. https://doi.org/10.1038/srep20477
  12. Song JH, Yoo Y, Song TK, et al. Real-time monitoring of HIFU treatment using pulse inversion. Phys Med Biol. 2013;58(15):5333-50. https://doi.org/10.1088/0031-9155/58/15/5333
  13. Kim H, Kang J, Chang JH. Thermal therapeutic method for selective treatment of deep-lying tissue by combining laser and high-intensity focused ultrasound energy. Opt Lett. 2014;39(9):2806-9. https://doi.org/10.1364/OL.39.002806
  14. Ebbini ES, Ter Haar G. Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperth. 2015;31(2):77-89. https://doi.org/10.3109/02656736.2014.995238
  15. Feinstein SB. The evolution of contrast ultrasound from diagnosis to therapy. J Am Coll Cardiol. 2016;67(21):2516-8. https://doi.org/10.1016/j.jacc.2016.04.004
  16. Blomley MJK, Cooke JC, Unger EC, et al. Science, medicine, and the future-microbubble contrast agents: a new era in ultrasound. Br Med J. 2001;322(7296):1222-5. https://doi.org/10.1136/bmj.322.7296.1222
  17. Garg S, Thomas AA, Borden MA. The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence. Biomaterials. 2013;34(28):6862-70. https://doi.org/10.1016/j.biomaterials.2013.05.053
  18. Chen JL, Dhanaliwala AH, Dixon AJ, et al. Synthesis and characterization of transiently stable albumin-coated microbubbles via a flow-focusing microfluidic device. Ultrasound Med Biol. 2014;40(2):400-9. https://doi.org/10.1016/j.ultrasmedbio.2013.09.024
  19. Song S, Guo HZ, Jiang ZQ, et al. Self-assembled microbubbles as contrast agents for ultrasound/magnetic resonance dualmodality imaging. Acta Biomater. 2015;24:266-78. https://doi.org/10.1016/j.actbio.2015.06.025
  20. Grinstaff MW, Suslick KS. Air-filled proteinaceous microbubbles-synthesis of an echo-contrast agent. Proc Natl Acad Sci USA. 1991;88(17):7708-10. https://doi.org/10.1073/pnas.88.17.7708
  21. Carroll BA, Turner RJ, Tickner EG, et al. Gelatin encapsulated nitrogen microbubbles as ultrasonic contrast agents. Invest Radiol. 1980;15(3):260-6. https://doi.org/10.1097/00004424-198005000-00013
  22. Moon H, Yoon C, Lee TW, et al. Therapeutic ultrasound contrast agents for the enhancement of tumor diagnosis and tumor therapy. J Biomed Nanotechnol. 2015;11(7):1183-92. https://doi.org/10.1166/jbn.2015.2056
  23. Yang F, Li Y, Chen Z, et al. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials. 2009;30(23):3882-90. https://doi.org/10.1016/j.biomaterials.2009.03.051
  24. Postema M, Van Wamel A, Lancee CT, et al. Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med Biol. 2004;30(6):827-40. https://doi.org/10.1016/j.ultrasmedbio.2004.02.010
  25. Miller DL. Frequency relationships for ultrasonic activation of free microbubbles, encapsulated microbubbles, and gas-filled micropores. J Acoust Soc Am. 1998;104(4):2498-505. https://doi.org/10.1121/1.423755
  26. Maresca G, Summaria V, Colagrande C, et al. New prospects for ultrasound contrast agents. Eur J Radiol. 1998;27:S171-8. https://doi.org/10.1016/S0720-048X(98)00059-X
  27. Schuh S, Chan K, Langer JC, et al. Properties of serial ultrasound clinical diagnostic pathway in suspected appendicitis and related computed tomography use. Acad Emerg Med. 2015;22(4):406-14. https://doi.org/10.1111/acem.12631
  28. Walton CB, Shohet RV. Tiny bubbles and endocytosis? Circ Res. 2009;104(5):563-5. https://doi.org/10.1161/CIRCRESAHA.109.195651
  29. Sirsi SR, Borden MA. Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics. 2012;2(12):1208-22. https://doi.org/10.7150/thno.4306
  30. Mehier-Humbert S, Bettinger T, Yan F, et al. Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Release. 2005;104(1):213-22. https://doi.org/10.1016/j.jconrel.2005.01.007
  31. Tsutsui JM, Xie F, Porter RT. The use of microbubbles to target drug delivery. Cardiovasc Ultrasound. 2004;2(1):1. https://doi.org/10.1186/1476-7120-2-1
  32. Unger EC, Porter T, Culp W, et al. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev. 2004;56(9):1291-314. https://doi.org/10.1016/j.addr.2003.12.006
  33. Unger EC, Hersh E, Vannan M, et al. Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis. 2001;44(1):45-54. https://doi.org/10.1053/pcad.2001.26443
  34. Moon H, Kang J, Sim C, et al. Multifunctional theranostic contrast agent for photoacoustics- and ultrasound-based tumor diagnosis and ultrasound-stimulated local tumor therapy. J Control Release. 2015;218:63-71. https://doi.org/10.1016/j.jconrel.2015.09.060
  35. Rawat M, Singh D, Saraf S, et al. Lipid carriers: A versatile delivery vehicle for proteins and peptides. Yakugaku Zasshi J Pharm Soc Jpn. 2008;128(2):269-80. https://doi.org/10.1248/yakushi.128.269
  36. Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev. 2008;60(10):1153-66. https://doi.org/10.1016/j.addr.2008.03.005
  37. Cullen DM, Breidahl WH, Janes GC. Diagnostic accuracy of shoulder ultrasound performed by a single operator. Australas Radiol. 2007;51(3):226-9. https://doi.org/10.1111/j.1440-1673.2007.01685.x
  38. Fan Z, Kumon RE, Deng CX. Mechanisms of microbubblefacilitated sonoporation for drug and gene delivery. Ther Deliv. 2014;5(4):467-86. https://doi.org/10.4155/tde.14.10
  39. Borden MA, Kruse DE, Caskey CF, et al. Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(11):1992-2002. https://doi.org/10.1109/TUFFC.2005.1561668
  40. Blomley MJ, Cooke JC, Unger EC, et al. Microbubble contrast agents: a new era in ultrasound. BMJ. 2001;322(7296):1222-5. https://doi.org/10.1136/bmj.322.7296.1222
  41. Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Biomed Eng. 2007;9:415-47.
  42. Klibanov AL. Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging. Med Biol Eng Comput. 2009;47(8):875-82. https://doi.org/10.1007/s11517-009-0498-0
  43. Ernst H, Hahn EG, Balzer T, et al. Color doppler ultrasound of liver lesions: signal enhancement after intravenous injection of the ultrasound contrast agent Levovist. J Clin Ultrasound. 1996;24(1):31-5. https://doi.org/10.1002/(SICI)1097-0096(199601)24:1<31::AID-JCU5>3.0.CO;2-M
  44. Faez T, Goertz D, De Jong N. Characterization of $definity^{TM}$ ultrasound contrast agent at frequency range of 5-15 MHz. Ultrasound Med Biol. 2011;37(2):338-42. https://doi.org/10.1016/j.ultrasmedbio.2010.11.014
  45. Li TL, Tachibana K, Kuroki M, et al. Gene transfer with echoenhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice-initial results. Radiology. 2003;229(2):423-8. https://doi.org/10.1148/radiol.2292020500
  46. Watanabe R, Matsumura M, Chen CJ, et al. Characterization of tumor imaging with microbubble-based ultrasound contrast agent, Sonazoid, in rabbit liver (vol 28, pg 973, 2006). Biol Pharm Bull. 2006;29(12):2536.
  47. von Herbay A, Vogt C, Haussinger D. Late-phase pulse-inversion sonography using the contrast agent Levovist: differentiation between benign and malignant focal lesions of the liver. Am J Roentgenol. 2002;179(5):1273-9. https://doi.org/10.2214/ajr.179.5.1791273
  48. Schwarz KQ, Chen XC, Steinmetz S, et al. Harmonic imaging with Levovist. J Am Soc Echocardiogr. 1997;10(1):1-10. https://doi.org/10.1016/S0894-7317(97)80027-2
  49. Yanagisawa K, Moriyasu F, Miyahara T, et al. Phagocytosis of ultrasound contrast agent microbubbles by Kupffer cells. Ultrasound Med Biol. 2007;33(2):318-25. https://doi.org/10.1016/j.ultrasmedbio.2006.08.008
  50. Ward M, Wu JR, Chiu JF. Experimental study of the effects of $Optison^{(R)}$ concentration on sonoporation in vitro. Ultrasound Med Biol. 2000;26(7):1169-75. https://doi.org/10.1016/S0301-5629(00)00260-X
  51. Lindner JR, Dayton PA, Coggins MP, et al. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation. 2000;102(5):531-8. https://doi.org/10.1161/01.CIR.102.5.531
  52. Sontum PC. Physicochemical characteristics of $Sonazoid^{TM}$, a new contrast agent for ultrasound imaging. Ultrasound Med Biol. 2008;34(5):824-33. https://doi.org/10.1016/j.ultrasmedbio.2007.11.006
  53. Appis AW, Tracy MJ, Feinstein SB. Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo research and practice. 2015;2(2):R55-62. https://doi.org/10.1530/ERP-15-0018
  54. Bokor D, Chambers JB, Rees PJ, et al. Clinical safety of $SonoVue^{TM}$, a new contrast agent for ultrasound imaging, in healthy volunteers and in patients with chronic obstructive pulmonary disease. Invest Radiol. 2001;36(2):104-9. https://doi.org/10.1097/00004424-200102000-00006
  55. Morel DR, Schwieger I, Hohn L, et al. Human pharmacokinetics and safety evaluation of $SonoVue^{TM}$, a new contrast agent for ultrasound imaging. Invest Radiol. 2000;35(1):80-5. https://doi.org/10.1097/00004424-200001000-00009
  56. Schneider M. Characteristics of $SonoVue^{TM}$. Echocardiogr J Cardiovas Ultrasound Allied Tech. 1999;16(7):743-6.
  57. Gorce JM, Arditi M, Schneider M. Influence of bubble size distribution on the echogenicity of ultrasound contrast agents-a study of $SonoVue^{TM}$. Invest Radiol. 2000;35(11):661-71. https://doi.org/10.1097/00004424-200011000-00003
  58. Datta S, Coussics CC, Ammi AY, et al. Ultrasound-enhanced thrombolysis using $Definity^{(R)}$ as a cavitation nucleation agent. Ultrasound Med Biol. 2008;34(9):1421-33. https://doi.org/10.1016/j.ultrasmedbio.2008.01.016
  59. Miyamoto Y, Ito T, Takada E, et al. Efficacy of sonazoid (perflubutane) for contrast-enhanced ultrasound in the differentiation of focal breast lesions: phase 3 multicenter clinical trial. Am J Roentgenol. 2014;202(4):W400-7. https://doi.org/10.2214/AJR.12.10518
  60. Raisinghani A, DeMaria AN. Physical principles of microbubble ultrasound contrast agents. Am J Cardiol. 2002;90(10A):3J-7J.
  61. Gramiak R, Shah PM, Kramer DH. Ultrasound cardiography: contrast studies in anatomy and function. Radiology. 1969;92(5):939-48. https://doi.org/10.1148/92.5.939
  62. Hoff L. Acoustic characterization of contrast agents for medical ultrasound imaging. Berlin: Springer; 2001.
  63. Eloubeidi MA, Chen VK, Eltoum IA, et al. Endoscopic ultrasound-guided fine needle aspiration biopsy of patients with suspected pancreatic cancer: diagnostic accuracy and acute and 30-day complications. Am J Gastroenterol. 2003;98(12):2663-8. https://doi.org/10.1016/S0002-9270(03)01699-X
  64. Defreitas R, Costa MV, Schneider SV, et al. Accuracy of ultrasound and clinical examination in the diagnosis of axillary lymph-node metastases in breast-cancer. Eur J Surg Oncol. 1991;17(3):240-4.
  65. Villanueva FS, Wagner WR. Ultrasound molecular imaging of cardiovascular disease. Nat Clin Pract Cardiovasc Med =. 2008;5:S26-32. https://doi.org/10.1038/ncpcardio1246
  66. Desser TS, Jeffrey RB. Tissue harmonic imaging techniques: physical principles and clinical applications. Semin Ultrasound CT MRI. 2001;22(1):1-10. https://doi.org/10.1016/S0887-2171(01)90014-9
  67. Song J, Chang JH, Song TK, et al. Coded tissue harmonic imaging with nonlinear chirp signals. Ultrasonics. 2011;51(4):516-21. https://doi.org/10.1016/j.ultras.2010.12.005
  68. Bouakaz A, Frigstad S, Ten Cate FJ, et al. Super harmonic imaging: a new imaging technique for improved contrast detection. Ultrasound Med Biol. 2002;28(1):59-68. https://doi.org/10.1016/S0301-5629(01)00460-4
  69. Kono Y, Moriyasu F, Mine Y, et al. Gray-scale second harmonic imaging of the liver with galactose-based microbubbles. Invest Radiol. 1997;32(2):120-5. https://doi.org/10.1097/00004424-199702000-00008
  70. Unger EC, Matsunaga TO, McCreery T, et al. Therapeutic applications of microbubbles. Eur J Radiol. 2002;42(2):160-8. https://doi.org/10.1016/S0720-048X(01)00455-7
  71. Church CC, Carstensen EL. "Stable" inertial cavitation. Ultrasound Med Biol. 2001;27(10):1435-7. https://doi.org/10.1016/S0301-5629(01)00441-0
  72. Ohl CD, Wolfrum B. Detachment and sonoporation of adherent HeLa-cells by shock wave-induced cavitation. Biochim Biophys Acta. 2003;1624(1-3):131-8. https://doi.org/10.1016/j.bbagen.2003.10.005
  73. Lentacker I, De Cock I, Deckers R, et al. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev. 2014;72:49-64. https://doi.org/10.1016/j.addr.2013.11.008
  74. Doinikov AA, Bouakaz A. Theoretical investigation of shear stress generated by a contrast microbubble on the cell membrane as a mechanism for sonoporation. J Acoust Soc Am. 2010;128(1):11-9. https://doi.org/10.1121/1.3419775
  75. Fan Z, Kumon RE, Deng CX. Mechanisms of microbubblefacilitated sonoporation for drug and gene delivery. Ther Deliv. 2014;5(4):467-86. https://doi.org/10.4155/tde.14.10
  76. Zhao YZ, Luo YK, Lu CT, et al. Phospholipids-based microbubbles sonoporation pore size and reseal of cell membrane cultured in vitro. J Drug Target. 2008;16(1):18-25. https://doi.org/10.1080/10611860701637792
  77. Tsunoda S,Mazda O,Oda Y, et al. Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart. Biochem Biophys Res Commun. 2005;336(1):118-27. https://doi.org/10.1016/j.bbrc.2005.08.052
  78. Sirsi S, Borden M. Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol. 2009;1(1-2):3-17. https://doi.org/10.1179/175889709X446507
  79. Kooiman K, Foppen-Harteveld M, van der Steen AFW, et al. Sonoporation of endothelial cells by vibrating targeted microbubbles. J Control Release. 2011;154(1):35-41. https://doi.org/10.1016/j.jconrel.2011.04.008
  80. Karshafian R, Samac S, Bevan PD, et al. Microbubble mediated sonoporation of cells in suspension: clonogenic viability and influence of molecular size on uptake. Ultrasonics. 2010;50(7):691-7. https://doi.org/10.1016/j.ultras.2010.01.009
  81. Liao AH, Ho HC, Lin YC, et al. Effects of microbubble size on ultrasound-induced transdermal delivery of high-molecularweight drugs. PLoS ONE. 2015;10(9):e0138500. https://doi.org/10.1371/journal.pone.0138500
  82. Cordon-Cardo C, O'Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci. 1989;86(2):695-8. https://doi.org/10.1073/pnas.86.2.695
  83. Tung YS, Vlachos F, Feshitan JA, et al. The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice. J Acoust Soc Am. 2011;130(5):3059-67. https://doi.org/10.1121/1.3646905
  84. Yang FY, Fu WM, Chen WS, et al. Quantitative evaluation of the use of microbubbles with transcranial focused ultrasound on blood-brain-barrier disruption. Ultrason Sonochem. 2008;15(4):636-43. https://doi.org/10.1016/j.ultsonch.2007.08.003
  85. Hynynen K, McDannold N, Vykhodtseva N, et al. Non-invasive opening of BBB by focused ultrasound. Acta Neurochir Suppl. 2003;86:555-8.
  86. Samiotaki G, Karakatsani ME, Buch A, et al. Pharmacokinetic analysis and drug delivery efficiency of the focused ultrasoundinduced blood-brain barrier opening in non-human primates. Magn Reson Imaging. 2016;37:273-81.
  87. Cho H, Lee HY, Han M, et al. Localized down-regulation of P-glycoprotein by focused ultrasound and microbubbles induced blood-brain barrier disruption in rat brain. Sci Rep. 2016;6:31201. https://doi.org/10.1038/srep31201
  88. Bai M, Shen M, Teng Y, et al. Enhanced therapeutic effect of Adriamycin on multidrug resistant breast cancer by the ABCG2-siRNA loaded polymeric nanoparticles assisted with ultrasound. OncoTarget. 2015;6:43779-90.
  89. Baron Toaldo M, Salvatore V, Marinelli S, et al. Use of VEGFR-2 targeted ultrasound contrast agent for the early evaluation of response to sorafenib in a mouse model of hepatocellular carcinoma. Mol Imaging Biol. 2015;17(1):29-37. https://doi.org/10.1007/s11307-014-0764-x
  90. Shen ZY, Xia GL, Wu MF, et al. The effects of percutaneous ethanol injection followed by 20-kHz ultrasound and microbubbles on rabbit hepatic tumors. J Cancer Res Clin Oncol. 2016;142(2):373-8. https://doi.org/10.1007/s00432-015-2034-y
  91. Zhang Y, Chang R, Li M, et al. Docetaxel-loaded lipid microbubbles combined with ultrasound-triggered microbubble destruction for targeted tumor therapy in MHCC-H cells. Onco Targets Ther. 2016;9:4763-71. https://doi.org/10.2147/OTT.S102101
  92. Kotopoulis S, Delalande A, Popa M, et al. Sonoporation-enhanced chemotherapy significantly reduces primary tumour burden in an orthotopic pancreatic cancer xenograft. Mol Imaging Biol. 2014;16(1):53-62. https://doi.org/10.1007/s11307-013-0672-5
  93. Xing LX, Shi QS, Zheng KL, et al. Ultrasound-mediated microbubble destruction (UMMD) facilitates the delivery of CA19-9 targeted and paclitaxel loaded mPEG-PLGA-PLL nanoparticles in pancreatic cancer. Theranostics. 2016;6(10):1573-87. https://doi.org/10.7150/thno.15164
  94. Sorace AG, Saini R, Mahoney M, et al. Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. J Ultrasound Med. 2012;31(10):1543-50. https://doi.org/10.7863/jum.2012.31.10.1543
  95. Staud F, Pavek P. Breast cancer resistance protein (BCRP/ABCG2). Int J Biochem Cell Biol. 2005;37(4):720-5. https://doi.org/10.1016/j.biocel.2004.11.004
  96. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3-29. https://doi.org/10.1016/S0169-409X(02)00169-2
  97. Adams H. Guidelines for the early management of patients with ischemic stroke: 2005 guidelines update: a scientific statement from the stroke council of the American Heart Association/American Stroke Association" (vol 36, pg 916, 2005). Stroke. 2006;37(6):1582. https://doi.org/10.1161/01.STR.0000208523.66512.af
  98. Go AS. Heart disease and stroke statistics-2013 update: a report from the American Heart Association (vol 127, pg e6, 2013). Circulation. 2013;127(23):E841.
  99. Unger E, Porter T, Lindner J, et al. Cardiovascular drug delivery with ultrasound and microbubbles. Adv Drug Deliv Rev. 2014;72:110-26. https://doi.org/10.1016/j.addr.2014.01.012
  100. Wang XW, Gkanatsas Y, Palasubramaniam J, et al. Thrombustargeted theranostic microbubbles: a new technology towards concurrent rapid ultrasound diagnosis and bleeding-free fibrinolytic treatment of thrombosis. Theranostics. 2016;6(5):726-38. https://doi.org/10.7150/thno.14514
  101. Hagisawa K, Nishioka T, Suzuki R, et al. Thrombus-targeted perfluorocarbon-containing liposomal bubbles for enhancement of ultrasonic thrombolysis: invitro and invivo study. J Thromb Haemost. 2013;11(8):1565-73. https://doi.org/10.1111/jth.12321
  102. Schutt EG, Klein DH, Mattrey RM, et al. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed. 2003;42(28):3218-35. https://doi.org/10.1002/anie.200200550
  103. Shekhar H, Rychak JJ, Doyley MM. Modifying the size distribution of microbubble contrast agents for high-frequency subharmonic imaging. Med Phys. 2013;40(8):082903. https://doi.org/10.1118/1.4813017
  104. Feshitan JA, Chen CC, Kwan JJ, et al. Microbubble size isolation by differential centrifugation. J Colloid Interface Sci. 2009;329(2):316-24. https://doi.org/10.1016/j.jcis.2008.09.066
  105. Hettiarachchi K, Talu E, Longo ML, et al. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Lab Chip. 2007;7(4):463-8. https://doi.org/10.1039/b701481n
  106. de Jong N, Bouakaz A, Frinking P. Basic acoustic properties of microbubbles. Echocardiography. 2002;19(3):229-40. https://doi.org/10.1046/j.1540-8175.2002.00229.x
  107. Hannah A, Luke G, Wilson K, et al. Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano. 2014;8(1):250-9. https://doi.org/10.1021/nn403527r
  108. Min KH, Min HS, Lee HJ, et al. pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano. 2015;9(1):134-45. https://doi.org/10.1021/nn506210a
  109. Tay LM, Xu C. Coating microbubbles with nanoparticles for medical imaging and drug delivery. Nanomedicine. 2017;12(2):91-4. https://doi.org/10.2217/nnm-2016-0362
  110. Li J, Tian Y, Shan D, et al. Neuropeptide YY 1 receptor-mediated biodegradable photoluminescent nanobubbles as ultrasound contrast agents for targeted breast cancer imaging. Biomaterials. 2016;116:106-17.