DOI QR코드

DOI QR Code

The Bonggil Pseudotachylyte, SE Korea: Its occurrence and characteristics

봉길 슈도타킬라이트: 산상과 특성

  • Kang, Hee-Cheol (Department of Geological Sciences, Pusan National University) ;
  • Han, Raehee (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Chang-Min (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cheon, Youngbeom (Department of Geological Sciences, Pusan National University) ;
  • Cho, Hyeongseong (Department of Geological Sciences, Pusan National University) ;
  • Yi, Keewook (Division of Environmental and Material Sciences, Korea Basic Science Institute) ;
  • Son, Moon (Department of Geological Sciences, Pusan National University) ;
  • Kim, Jong-Sun (Department of Geological Sciences, Pusan National University)
  • 강희철 (부산대학교 지질환경과학과) ;
  • 한래희 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 김창민 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 천영범 (부산대학교 지질환경과학과) ;
  • 조형성 (부산대학교 지질환경과학과) ;
  • 이기욱 (한국기초과학지원연구원 환경.소재분석본부) ;
  • 손문 (부산대학교 지질환경과학과) ;
  • 김종선 (부산대학교 지질환경과학과)
  • Received : 2017.01.31
  • Accepted : 2017.02.28
  • Published : 2017.02.28

Abstract

Pseudotachylytes, i.e., solidified friction-induced melts, are strong evidence of seismic slip on faults. Here we report pseudotachylyte (PT)-bearing faults studied in outcrops of granodiorite (SHRIMP U-Pb zircon age, $75.0{\pm}1.5Ma$) and biotite granite (SHRIMP U-Pb zircon age, $58.4{\pm}1.1Ma$) on the coast of Bonggil-ri, Yangbuk-myeon, Gyeongju, SE Korea. Three types of pseudotachylyte are identified on the basis of thickness and morphology: Single dyke-, fault vein-, and injection vein-type PT. The single dyke-type PT shows a variation of thickness from 15~40 centimeters along its strike and has an average thickness of 21 cm, which is the largest in the world, as far as we know. The PT is dark gray and neighbors with several tens meters-thick cataclasite zone. At a first glance it looks like a mafic dike, but it has a chemical composition almost identical to the wall rock of granodiorite. Also, it has many subrounded clasts which consist predominantly of quartz and feldspar and newly crystallized tiny grains (submicrometers to several micrometers in size) such as plagioclase, K-feldspar, quartz, biotite, and Fe-oxides. The feldspars and biotite are euhedral and some plagioclase grains show zoning. Flow structures and embayed clasts are also observed. A number of fault vein-type PTs occur as thin (as thick as 2 cm) layers generated on the fault plane, and striations, such as slickensides indicating slip direction, develop along the fault planes and formed during co-seismic slip at the interface between the wall rock and frictional melt. Smaller injection vein-type PTs are found along the single dyke-type PT and the fault vein-type PTs, and appear in a variety of shapes (bleb, lens, sigmoid, network, and breccia) based on field occurrence and vein geometry. All of these observations indicate the PT formed due to frictional melting of the wall rock minerals during fault slip. We propose to call the single dyke type-PT to "Bonggil Pseudotachylyte" considering the thickness of the PT and the locality of the study area. The Bonggil PT-bearing fault strikes $N54^{\circ}W$, dips to NE with an angle of $65{\sim}72^{\circ}$, shows sinistral-reverse oblique-slip sense, and can be traced continuously over ~110 m. Since $^{40}Ar/^{39}Ar$ whole rock age of the Bonggil PT is $47.3{\pm}1.4Ma$, the age of seismic faulting which is responsible for the formation of the Bonggil PT should be younger than the Middle Eocene. Further work will be conducted to understand the mechanical aspect of the PT formation.

한반도 남동부 경주시 양북면 봉길리 해안가에 노출된 슈도타킬라이트(PT)에 대하여 야외관찰, 구조지질학적 특성, 암석기재학적 및 지화학적 분석, 연대측정 연구를 수행하였다. 모암인 화강섬록암(SHRIMP U-Pb 저어콘 연대, $75.0{\pm}1.5Ma$)과 흑운모화강암(SHRIMP U-Pb 저어콘 연대, $58.4{\pm}1.1Ma$)을 절단하며 노출된 PT들은 두께와 산출 형태에 따라 단일암맥형, 단층세맥형, 주입세맥형 PT로 구분된다. 단일암맥형 PT는 단층의 주향을 따라 15~40 cm의 두께변화를 보이나, 평균 21 cm로 세계최대급에 속한다. 야외에서 일견 염기성암맥처럼 인지되는 단일암맥형 PT는 모암인 화강섬록암의 화학조성과 거의 일치하며, 함유된 잔류광물들은 석영, 알칼리장석, 사장석, 흑운모로 아원형의 암편들과 함께 쇄설성 조직과 융식구조를 나타낸다. 또한 새롭게 결정화된 미립의 사장석, 알칼리장석, 석영, 흑운모 등이 관찰되며, 특히 장석과 흑운모는 자형의 형태로, 사장석은 누대구조를 보인다. 세계적으로 가장 많이 보고되며 연구지역에서도 다수 관찰되는 단층세맥형 PT는 판상의 얇은 두께(1 mm~2 cm)로 단층면을 따라 수십 cm~수십 m의 길이로 나타나며, 암맥형 PT와 거의 평행하게 분포한다. 단층세맥형 PT의 면상에는 단층의 모암과 용융물의 경계면을 따라 단층의 운동학적 특성을 지시하는 조선이 뚜렷하여 단층의 미끌림 방향과 고응력장 분석에 유용한 자료를 제공한다. 소규모의 주입세맥형 PT는 암맥형 PT와 단층세맥형 PT로부터 용융물이 주변의 모암으로 주입되어 형성된 것으로 야외산상 및 기하에 따라 기포형, 렌즈형, S자형, 망상형, 각력형 등의 다양한 형태로 산출된다. 이상의 관찰과 분석은 연구지역 PT들의 형성이 고속으로 운동하는 단층활면에 발생한 마찰열로 인하여 모암이 선별적으로 용융 및 마모된 결과임을 지시한다. 여기서 연구자들은 암맥형의 PT를 기존에 보고된 지진성 단층작용에 의한 PT의 두께자료에 근거하여 세계최대급으로 추정하였으며, 이를 "봉길 슈도타킬라이트"로 명명하였다. 봉길 PT를 수반한 단층의 자세와 운동감각은 각각 $N54^{\circ}W/65-72^{\circ}NE$와 역이동성 좌수주향이동 운동을 나타내며, 봉길 PT는 야외에서 약 110 m 이상 연장된다. 봉길 PT에서 수행된 $^{40}Ar/^{39}Ar$ 전암 연령은 $47.3{\pm}1.4Ma$이며 이로부터 봉길 PT는 신생대 중기 에오세 이후에 지진성 단층운동으로 생성된 것임을 제시한다. 한편 본 연구에서 완전히 규명하지 못한 PT의 역학적 측면과 봉길 PT를 수반한 단층의 운동학적 특성은 후속연구를 통하여 밝힐 예정이다.

Keywords

Acknowledgement

Supported by : 기상청, 한국연구재단

References

  1. Austrheim, H. and Boundy, T.M., 1994, Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust. Science, 265, 82-83. https://doi.org/10.1126/science.265.5168.82
  2. Boundy, T.M. and Austrheim, H., 1998, Deep crustal eclogite-facies pseudo-tachylytes. In: Snoke, A.W., Tullis, J. and Todd, V.R. (eds.). Fault-related rocks-a photographic atlas. Princeton, New Jersey, 126 p.
  3. Boynton, W.V., 1984, Geochemistry of the rare earth elements:Meteorite studies. In Rare Earth Element Geochemistry (eds. Henderson, P.), Elsevier, 63-114.
  4. Chang, C.-J., 2002, Structural characteristics and evolution of the Yangsan fault, SE Korea. Ph.D. Thesis, Kyungpook National University, Daegu, 259 p (in Korean with English abstract).
  5. Chang, C.J. and Chang, T.-W., 1998, Movement history of the Yangsan Fault based on paleostress analysis. The Journal of the Engineering Geology, 8, 35-49 (in Korean with English abstract).
  6. Chang, C.-J. and Chang, T.W., 2009, Behavioral characteristics of the Yangsan fault based on geometric analysis of fault slip. The Journal of Engineering Geology, 19, 277-285 (in Korean with English abstract).
  7. Cheon, Y., Ha, S., Lee, S.J., Cho, H. and Son, M., 2017, Deformation features and history of the Yangsan fault zone in the Eonyang-Gyeongju area, SE Korea. Journal of the Geological Society of Korea, 95-114 (in Korean with English abstract).
  8. Choi, J.-H., Yang, S.-J. and Kim, Y.-S., 2009, Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. Journal of the Geological Society of Korea, 45, 9-28 (in Korean with English abstract).
  9. Choi, P.Y., 1995, Aspects of stress inversion methods in fault tectonic analysis. Annales Tectonicae, 9, 22-38.
  10. Choi, S.-J., Jeon, J.-S., Song, K.-Y., Kim, H.-C., Kim, Y.-H., Choi, P.-Y., Chwae, U.C., Han, J.-G., Ryoo, C.-R., Sun, C.-G., Jeon, M.S., Kim, G.-Y., Kim, Y.-B., Lee, H.-J., Shin, J.S., Lee, Y.-S. and Kee, W.-S., 2012, Active faults and seismic hazard map. NEMA, Seoul, 882 p.
  11. Choi, S.-J., Merritts, D.J. and Ota, Y., 2008, Elevation and ages of marine terraces and late Quaternary rock uplift n southeastern Korea. Journal of Geophysical Research, 113, B10403, 1-15. https://doi.org/10.1029/2007JB005260
  12. Chwae, W., Hwang, J.H., Yoon, W. and Kim, D.H., 1988, Explanatory Note of the Geological Map of 1: 25,000 Eoil Sheet. Korea Institute of Energy and Resources, 42 p.
  13. Clarke, G.L. and Norman, A.R., 1993, Generation of pseudotachylite under granulite facies conditions, and its preservation during cooling. Journal of Metamorphic Geology, 11, 319-335. https://doi.org/10.1111/j.1525-1314.1993.tb00151.x
  14. Di Toro, G., Hirose, T., Nielsen, S. and Shimamoto, T., 2006, Relating high-velocity rock friction experiments to coseismic slip in the presence of melts. In: Abercrombie, R., McGarr, A., Kanamori, H. and Di Toro, G. (eds.), Earthquakes: Radiated Energy and the Physics of Faulting. Geophysical Monograph Series, 170, American Geophysical Union, Washington, D.C., 121-134.
  15. Di Toro, G., Pennacchioni, G. and Teza, G., 2005, Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults. Tectonophysics, 402, 3-20. https://doi.org/10.1016/j.tecto.2004.10.014
  16. Ferre, E.C., Yeh, E.C., Chou, Y.M., Kuo, R.L., Chu, H.T. and Korren, C.S., 2016, Brushlines in fault pseudotachylytes:A new criterion for coseismic slip direction. Geology, 44, 395-398. https://doi.org/10.1130/G37751.1
  17. Ha, S., Cheon, Y., Kang, H.-C., Kim, J.-S., Lee, S.-K. and Son, M., 2016, Geometry and kinematics of the subsidiary faults of the Ilgwang fault, SE Korea. Journal of the Geological Society of Korea, 52, 31-50 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2016.52.1.31
  18. Hisada, E., 2004, Clast-size analysis of impact-generated pseudotachylite from Vredefort Dome, South Africa. Journal of Structural Geology, 26, 1419-1424. https://doi.org/10.1016/j.jsg.2003.10.007
  19. Hwang, J.H., Kihm, Y.H., Kim, Y.B. and Song, K.Y., 2007, Tertiary hydroexplosion at Bonggil-ri, Yangbuk-myeon, Gyeongju. Journal of the Geological Society of Korea, 43, 453-462 (in Korean with English abstract).
  20. Irvine, T.N. and Baragar, W.R.A., 1971, A guide to the common volcanic rocks. Canadian Journal of Earth Science, 8, 532-548.
  21. Jin, K. and Kim, Y.-S., 2007, Fracture developing history and density analysis based on grid-mapping in Bonggil-ri, Gyeongju, SE Korea. The Journal of Engineering Geology, 17, 455-469 (in Korean with English abstract).
  22. Jin, W., Choi, J.-H., Edwards, P. and Kim, Y.-S., 2012, Preliminary study on pseudotachylyte-like rock injected along a fault zone in Daeheuksan island. Proceedings of KSEG 2012 Spring Conference, 101-105 (extended abstract).
  23. Jolivet, L., Huchon, P. and Brun, J.P., 1991, Arc deformation and marginal basin opening: Japan Sea as a case study. Journal of Geophysical Research, 96, 4367-4384. https://doi.org/10.1029/90JB02455
  24. Kano, K., Lin, A., Fukui, A. and Tanaka, H., 2004, Pseudotachylytes of crushing origin from the Shimotsuburai fault of the Itoigawa-Shizuoka tectonic line active fault system, central Japan. The Journal of the Geological Society of Japan, 110, 779-790 (in Japanese with English abstract). https://doi.org/10.5575/geosoc.110.779
  25. Kee, W.-S., Kim, B.C., Hwang, J.H., Song, K.-Y. and Kihm, Y.-H., 2007, Structural Characteristics of Quaternary reverse faulting on the Eupcheon Fault, SE Korea. Journal of the Geological Society of Korea, 43, 311-333 (in Korean with English abstract).
  26. Kim, G.-S., Kim, J.-Y., Jung, K.K., Hwang, J.-Y. and Lee, J.-D., 1995, Rb-Sr whole rock geochronology of the granitic rocks in the Kyeongju-Gampo area, Kyeongsangbugdo, Korea. Journal of Korean Earth Science Society, 16, 272-279 (in Korean with English abstract).
  27. Kim, I.-S. and Kang, H.-C., 1989, Palaeomagnetism of Tertiary rocks in the Eoil basin and its vicinities, southeast Korea. Journal of the Geological Society of Korea, 25, 273-293 (in Korean with English abstract).
  28. Kim, J.-S., Son, M., Kim, J.S. and Kim, I.-S., 2002, Tertiary dyke swarms and their tectonic importance in the southeastern part of the Korean peninsula. Journal of the Petrological Society of Korea, 11, 169-181 (in Korean with English abstract).
  29. Kim, M.-C., Jung, S., Yoon, S., Jeong, R.-Y., Song, C.W. and Son, M., 2016, Neotectonic crustal deformation and current stress field in the Korean peninsula and their tectonic implications: A Review. Journal of the Petrological Society of Korea, 25, 169-193 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2016.25.3.169
  30. Kim, N.J. and Jin, M.S., 1971, Explanatory Text of the Geological Map of 1: 50,000 Moryang Sheet. Geological Survey of Korea, 19 p.
  31. Kim, Y.-S. and Park, J.-Y., 2006, Cenozoic deformation history of the area around Yangnam-Yangbuk, SE Korea and its tectonic significance. Journal of Asian Earth Sciences, 26, 1-20. https://doi.org/10.1016/j.jseaes.2004.08.008
  32. Kim, Y.-S., Park, J.-Y., Kim, J.H., Shin, H.C. and Sanderson, D.J., 2004, Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, southeast Korea. The Island Arc, 13, 403-415. https://doi.org/10.1111/j.1440-1738.2004.00435.x
  33. Kirkpatrick, J.D., Dobson, K.J., Mark, D.F., Shipton, Z.K., Brodsky, E.E. and Stuart, F.M., 2012, The depth of pseudotachylyte formation from detailed thermochronology and constraints on coseismic stress drop variability. Journal of Geophysical Research, 117, B06406, doi:10.1029/2011JB008846.
  34. Kokelaar, P., 2007, Friction melting, catastrophic dilation and breccia formation along caldera superfaults. Journal of the Geological Society, 164, 751-754. https://doi.org/10.1144/0016-76492006-059
  35. KOPEC (Korea Power Engineering Company), 2002, Preliminary Site Assessment Report for the New Site of the Wolsung Power Plant (unpublished report). 2.5.-1-2.5.-281 p.
  36. Kyung, J.B. and Chang, T.W., 2001, The latest fault movement on the northern Yangsan fault zone around the Yugye-ri area, southeast Korea. Journal of the Geological Society of Korea, 37, 563-577 (in Korean with English abstract).
  37. Legros, F., Cantagrel, J.-M. and Devouard, B., 2000, Pseudotachylyte (frictionite) at the base of the Arequipa volcanic landslide deposit (Peru): Implications for emplacement mechanisms. The Journal of Geology, 108, 601-611. https://doi.org/10.1086/314421
  38. Lin, A., 1994a, Glassy pseudotachylyte veins from the Fuyun fault zone, northwest China. Journal of Structural Geology, 16, 71-83. https://doi.org/10.1016/0191-8141(94)90019-1
  39. Lin, A., 1994b, Microlite morphology and chemistry in pseudotachylite, from the Fuyun fault zone, China. The Journal of Geology, 102, 317-329. https://doi.org/10.1086/629674
  40. Lin, A., 1996, Injection veins of crushing-originated pseudotachylyte and fault gouge formed during seismic faulting. Engineering Geology, 43, 213-224. https://doi.org/10.1016/0013-7952(96)00062-2
  41. Lin, A., 1997, Fluidization and rapid injection of crushed fine-grained materials in fault zones during e.pisodes of seismic faulting. In: Zheng, Y, Davis, G.A., Yin, A. (eds,), Proceedings of the 30th International Geological Congress, 14, 27-40.
  42. Lin, A., 2008, Fossil earthquakes: The Formation and Preservation of Pseudotachylytes. Lecture Notes in Earth Sciences, 111, Springer, Berlin, 349 p.
  43. Lin, A., Maruyama, T., Stallard, A., Michibayashi, K., Camacho, A. and Kano, K., 2005, Propagation of seismic slip from brittle to ductile regimes: Evidence from the pseudotachylyte of Woodroffe thrust, central Australia. Tectonophysics, 402, 21-35. https://doi.org/10.1016/j.tecto.2004.10.016
  44. Lin, A. and Shimamoto, T., 1998, Selective melting processes as inferred from experimentally generated pseudotachylytes. Journal of Asian Earth Sciences, 16, 533-545. https://doi.org/10.1016/S0743-9547(98)00040-3
  45. Lin, A., Sun, Z. and Yang, Z., 2003, Multiple generations of pseudotachylyte in the brittle to ductile regimes, Qinling-Dabie Shan ultrahigh-pressure metamorphic complex, central China. The Island Arc, 12, 423-435. https://doi.org/10.1046/j.1440-1738.2003.00407.x
  46. Magloughlin, J.F., 1992, Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crust levels: the cataclasite- pseudotachylyte connection. Tectonophysics, 204, 243-260. https://doi.org/10.1016/0040-1951(92)90310-3
  47. Magloughlin, J.F. and Spray, J.G., 1992, Frictional melting process and products in geological materials: introduction and discussion. Tectonophysics, 204, 197-206. https://doi.org/10.1016/0040-1951(92)90307-R
  48. Martini, J.E.J., 1978, Coesite and stishovite in the Vredefort Dome, South Africa. Nature, 277, 495-96.
  49. McKenzie, D. and Brune, J.N., 1972, Melting on fault planes during large earthquakes. Geophysical Journal of the Royal Astronomical Society, 29, 65-78. https://doi.org/10.1111/j.1365-246X.1972.tb06152.x
  50. McNulty, B.A., 1995, Pseudotachylyte generated in semibrittle and brittle regimes, Bench Canyon shear zone, central Sierra Nevada. Journal of Structural Geology, 11, 1507-1521.
  51. Middlemost, E.A.K., 1994, Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37, 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
  52. Mitchell, T.M., Toy, V., Di Toro, G., Renner, J. and Sibson, R.H., 2016, Fault welding by pseudotachylyte formation. Geology, 44, 1059-1062. https://doi.org/10.1130/G38373.1
  53. Moon, T.-H., Son, M., Chang, T.-W. and Kim, I.-S., 2000, Paleostress reconstruction in the Tertiary basin areas in southeastern Korea. Journal of the Korean Earth Science Society, 21, 230-249 (in Korean with English abstract).
  54. Park, J.C., Kim, W., Chung, T.W., Baag, C.E. and Ree, J.H., 2007, Focal mechanism of recent earthquakes in the Southern Korean Peninsula. Geophysical Journal International, 169, 1103-1114. https://doi.org/10.1111/j.1365-246X.2007.03321.x
  55. Park, Y.D. and Yoon, H.D., 1968, Explanatory Text of the Geological Map of 1: 50,000 Ulsan Sheet. Geological Survey of Korea, 20 p.
  56. Passchier, C.W., 1982, Pseudotachylyte and the development of ultramylonite bands in the Saint-Barthelemy Massif, French Pyrenees. Journal of Structural Geology, 4, 69-79. https://doi.org/10.1016/0191-8141(82)90008-6
  57. Passchier, C.W. and Trouw, R.A.J., 2005, Microtectonics. Springer-Verlag, Berlin, 366 p.
  58. Proctor, B. and Lockner, D.A., 2016, Pseudotachylyte increases the post-slip strength of faults. Geology, 44, 1003-1006, doi:10.1130/G38349.1.
  59. Ryoo, C.-R., Lee, B.J., Son, M., Lee, Y.H., Choi, S.-J. and Chwae, W.C., 2002, Quaternary faults in Gaegok-ri, Oedong-eup, Gyeongju, Korea. Journal of the Geological Society of Korea, 38, 309-323 (in Korean with English abstract).
  60. Sherlock, S.C., Jones, K.A. and Park, R.G., 2008, Grenvilleage pseudotachylite in the Lewisian: Laserprobe 40Ar/39Ar ages from the Gairloch region of Scotland (UK). Journal of the Geological Society, 165, 73-83, doi:10.1144/0016-76492006-134.
  61. Sibson, R.H., 1975, Generation of pseudotachylyte by ancient seismic faulting, Geophysical Journal of the Royal Astronomical Society, 43,775-43,794. https://doi.org/10.1111/j.1365-246X.1975.tb06195.x
  62. Sibson, R.H. and Toy, V.G., 2006, The habit of fault-generated pseudotachylyte: presence vs. absence of friction-melt. In: Abercrombie, R.A., McGarr, A., DiToro, G., Kanamori, H. (eds.), Earthquakes: Radiated Energy and the Physics of Faulting: Geophysical Monograph Series, 170, 153-166.
  63. Son, M., Kim, J.-S., Cheong, H.-Y., Lee, Y.H. and Kim, I.-S., 2007, Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications. Korean Journal of Petroleum Geology, 13, 1-16 (in Korean with English abstract).
  64. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Cho, H. and Sohn, Y.K., 2015, Miocene tectonic evolution of the basins and fault systems, SE Korea: Dextral, simple shear during the East Sea (Sea of Japan) opening. Journal of the Geological Society, 172, 664-680. https://doi.org/10.1144/jgs2014-079
  65. Son, M., Song, W.S., Kim., M.-C., Cheon, Y., Jung, S., Cho, H., Kim, H.-G., Kim, J.S. and Sohn, Y.K., 2013, Miocene Crustal Deformation, Basin Development, and Tectonic Implication in the southeastern Korean Peninsula. Journal of the Geological Society of Korea, 49, 93-118 (in Korean with English abstract).
  66. Spray, J.G., 1987, Artificial generation of pseudotachylyte using friction welding apparatus: Simulation of melting on a fault plane. Journal of Structural Geology, 9, 49-60. https://doi.org/10.1016/0191-8141(87)90043-5
  67. Spray, J.G., 1995, Pseudotachylyte controversy: Fact or friction? Geology, 23, 1119-1122. https://doi.org/10.1130/0091-7613(1995)023<1119:PCFOF>2.3.CO;2
  68. Spray, J.G., 1997, Superfaults. Geology, 25, 579-582. https://doi.org/10.1130/0091-7613(1997)025<0579:S>2.3.CO;2
  69. Spray, J.G., Kelly, S.P. and Reimold, W.U., 1995, Laser probe argon-40/argon-39 dating of coesite- and stishovite-bearing pseudotachylytes and the age of the Vredefort impact event. Meteoritics, 30, 335-343. https://doi.org/10.1111/j.1945-5100.1995.tb01132.x
  70. Spray, J.G. and Thompson, L.M., 1995, Friction melt distribution in a multiring impact basin. Nature, 373, 130-132. https://doi.org/10.1038/373130a0
  71. Sun, S.-S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in Ocean Basins (eds. Saunders, A.D. and Norry, M.J.), Geological Society of London, Special Publications, 42, 313-345.
  72. Thompson, L.M. and Spray, J.G., 1994, Pseudotachylitic rock distribution and genesis within the Sudbury impact structure. In Large meteorite impacts and planetary evolution, edited by Dressler, B.O., Grieve, R.A.F. and Sharpton, V.L., GSA Special Paper, 293. Boulder: Geological Society of America, 275-288.
  73. Yoon, S.H. and Chough, S.K., 1995, Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung basin, East Sea (Sea of Japan). Geological Society of America Bulletin, 107, 83-97. https://doi.org/10.1130/0016-7606(1995)107<0083:RSSITE>2.3.CO;2
  74. Yoon, S.H., Sohn, Y.K. and Chough, S.K., 2014, Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan). Marine Geology, 352, 70-88. https://doi.org/10.1016/j.margeo.2014.03.004
  75. Yoon, S.W., Kim, M.-C., Song, C.W. and Son, M., 2014, Basin-fill lithostratigraphy of the Early Miocene Haseo basin in SE Korea. Journal of the Geological Society of Korea, 50, 193-214 (in Korean with English abstract).

Cited by

  1. 시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동 vol.27, pp.4, 2017, https://doi.org/10.9720/kseg.2017.4.489
  2. Assessment of the value and distribution of geological heritages in Gyeongbuk Province, Korea vol.54, pp.2, 2018, https://doi.org/10.14770/jgsk.2018.54.2.133
  3. Structures and deformation characteristics of the active fault, Hwalseongri area, Gyeongju, Korea vol.56, pp.6, 2020, https://doi.org/10.14770/jgsk.2020.56.6.703