DOI QR코드

DOI QR Code

Development and Application of Scientific Model Co-construction Program about Image Formation by Convex Lens

볼록렌즈가 상을 만드는 원리에 대한 과학적 모형의 사회적 구성 프로그램 개발 및 적용

  • Park, Jeongwoo (Department of Physics Education, Seoul National University)
  • 박정우 (서울대학교 물리교육과)
  • Received : 2017.08.16
  • Accepted : 2017.09.15
  • Published : 2017.10.25

Abstract

A scientific model refers to a conceptual system that can describe, explain, and predict a particular physical phenomenon. The co-construction of the scientific model is attracting attention as a new teaching and learning strategy in the field of science education and various studies. The evaluation and modification of models compared with the predicted models of data from the real world is the core of modeling strategy. However, there were only a limited data provided by the teacher in many studies of modeling comparing the students' predictions of their own models. Most of the students were not given the opportunity to evaluate the suitability of the model with the data in the real world. The purpose of this study was to develop a scientific model co-construction program that can evaluate the model by directly comparing the predicted models with the observed data from the real world. Through a collaborative discussion between teachers and researchers for 6 months, a 5-session scientific model co-construction program on the subject 'image formation by convex lenses' for second grade middle school students was developed. Eighty (80) students in 3 classes and a science teacher with 20 years of service from general public co-educational middle school in Gyeonggi-do participated in this 2-week program. After the class, students were asked about the helpfulness and difficulty of the class, and whether they would like to recommend this class to a friend. After the class, 95.8% of the students constructed the scientific model more than the model using the construction rule. Students had difficulties to identify principles or understand their friends, but the result showed that they could understand through model evaluation experiment. 92.5% of the students said that they would be more than willing to recommend this program to their friends. It is expected that the developed program will be applied to the school and contribute to the improvement of students' modeling ability and co-construction ability.

과학적 모형은 특정한 물리적 현상을 기술, 설명, 예측할 수 있는 개념 체계를 말한다. 과학적 모형의 사회적 구성 수업은 과학교육 분야에서 새로운 교수 학습 전략으로 주목받고 있으며 다양한 연구가 진행되고 있다. 모형을 통한 예상과 실제 세계에서 얻은 자료와의 일치, 불일치에 따라 모형의 적합성을 판단하고 모형을 수정해 가는 것이 모형 구성 수업의 핵심이다. 하지만 많은 모형 구성 수업에서는 교사가 제공한 제한적인 자료를 가지고 모형을 비교하고 판단하는 것에 그쳤으며, 스스로 실험을 통해 얻은 실제 세계에 대한 자료를 가지고 모형의 적합성을 판단할 수 있는 기회를 제공하는 수업은 많지 않았다. 이에 본 연구에서는 실험을 통해 얻은 결과를 모형을 통한 예측과 직접 비교하여 모형을 평가할 수 있는 과학적 모형의 사회적 구성 프로그램을 제시하고자 하였다. 6개월간 교사, 연구자 간의 협력적 논의를 통해 중학교 2학년 빛과 파동 단원 중 '볼록렌즈가 상을 만드는 원리'라는 주제에 대해 총 5차시의 모형 구성 프로그램을 개발하였다. 경기도 남녀 공학 중학교 2학년 3개 반 80명의 일반 학생과 20년 경력의 현직 과학 교사가 2주간 개발된 프로그램에 함께 참여하였으며, 학생들에게 수업의 어떤 점이 좋거나 어려웠는지, 이 수업을 친구에게 추천하고 싶은지를 질문하였다. 수업 후 95.8%의 학생이 구조 규칙을 사용한 모형 이상의 과학적 모형을 구성하였다. 학생들의 응답을 살펴보면 원리를 찾아내거나 친구들을 이해시키기가 어려웠지만 이론으로 이해하기 어려웠던 것을 실험을 통한 모형 수정 과정을 통해 이해하게 되었고, 학급 친구들끼리 경쟁자가 아닌 동반자가 된다는 점이 좋았다는 등의 응답이 나타났다. 참여 학생 중 92.5%가 본 프로그램을 보통이상으로 친구에게 추천하겠다고 응답하였다. 개발된 프로그램은 학교현장에 적용되어 학생의 모형 구성 능력 및 사회적 구성 능력의 향상에 기여할 것으로 기대한다.

Keywords

References

  1. W. B. Rouse and N. M. Morris, "On looking into the black box: prospects and limits in the search for mental models," Psychol. bull. 100, 349-363 (1986). https://doi.org/10.1037/0033-2909.100.3.349
  2. I. Halloun, Modeling theory in science education (Springer Science & Business Media, Netherlands, 2007), Chapter 3.
  3. J. J. Clement and M. A. Rea-Ramirez, Model based learning and instruction in science (Springer Science & Business Media, Netherlands, 2008), Chapter 1.
  4. J. K. Gilbert and C. J. Boulter, Developing models in science education (Springer Science & Business Media, Netherlands, 2000), Chapter 2.
  5. I. A. Grunbaum and W. Salmon, The Limits of Deductivism (University of California Press, Berkeley, 1988), 37-46.
  6. D. Hestenes, "Toward a modeling theory of physics instruction," Am. J. Phys. 55, 440-454 (1987). https://doi.org/10.1119/1.15129
  7. J. B. Lopes and N. Costa, "The Evaluation of Modelling Competences: Difficulties and potentials for the learning of the sciences," Int. J. Sci. Educ. 29, 811-851 (2007). https://doi.org/10.1080/09500690600855385
  8. P. S. Oh, "An interpretation of modeling-based elementary science lessons from a perspective of distributed cognition," J. Korean Elem. Sci. Educ. 36, 16-30 (2017). https://doi.org/10.15267/keses.2017.36.1.016
  9. D. W. Lee and J. H. Yoo, "College-students' modeling of thermoacoustic refrigeration phenomena," New Phys.: Sae Mulli 66, 719-733 (2016). https://doi.org/10.3938/NPSM.66.719
  10. D. S. Bae and J. H. Yoo, "Middle school students' learning progressions for scientific modeling force and motion," New Phys.: Sae Mulli 62, 809-825 (2012). https://doi.org/10.3938/NPSM.62.809
  11. H. K. Park, J. L. Choi, C. J. Kim, H. B. Kim, J. H. Yoo, S. H. Jang, and S. U. Choe, "The change in modeling ability of science-gifted students through the co-construction of scientific model," J. Korea Assoc. Sci. Educ. 36, 15-28 (2016). https://doi.org/10.14697/jkase.2016.36.1.0015
  12. A. S. Palincsar, "Social constructivist perspectives on teaching and learning," Annu. Rev. Psychol. 49, 345-375 (1998). https://doi.org/10.1146/annurev.psych.49.1.345
  13. E. H. Kang, C. J. Kim, S. U. Choe, J. H. Yoo, H. J. Park, S. Y. Lee, and H. B. Kim, "Small group interaction and norms in the process of constructing a model for blood flow in the heart," J. Korea Assoc. Sci. Educ. 32, 372-387 (2012). https://doi.org/10.14697/jkase.2012.32.2.372
  14. C. E. Lee and H. B. Kim, "Understanding the role of wonderment questions related to activation of conceptual resources in scientific model construction: focusing on students' epistemological framing and positional framing," J. Korea Assoc. Sci. Educ. 36, 471-483 (2016). https://doi.org/10.14697/jkase.2016.36.3.0471
  15. C. H. Yang, S. H. Kim, M. J. Jo, and T. H. Noh, "The characteristics of group and classroom discussions in the scientific modeling of the particulate model of matter," J. Korea Assoc. Sci. Educ. 36, 361-369 (2016). https://doi.org/10.14697/jkase.2016.36.3.0361
  16. G. Welford, J. Osborn, and P. Schott, Research in science education in Europe (The Falmer Press, USA, Bristol, 2005), Chapter 13.
  17. D. W. Lee, Ph. D. Thesis, Seoul National University, Seoul (2015), p. 7.
  18. D. Gentner and A. L. Stevens, Mental models (Psychology Press, USA, NY, 2006), Chapter 8.
  19. R. Girer, Understanding scientific reasoning (Holt, Rinehart, and Winston, Inc., Orlando, FL, 1991).
  20. S. K. Park, "Analysis on the argumentation pattern and level of students' mental models in modeling-based learning about geologic structures," J. Korea Assoc. Sci. Educ. 35, 919-929 (2015). https://doi.org/10.14697/jkase.2015.35.5.0919
  21. H. W. Yu, D. C. Ham, H. J. Cha, M. S. Kim, H. B. Kim, J. H. Yoo, and S. U. Choe, "Model creation and model developing process of science gifted students in scientific model constructing class for phase change of the moon," J. Gifted/Talented Educ. 22, 291-315 (2012). https://doi.org/10.9722/JGTE.2012.22.2.291
  22. F. A. Jenkins and H. E. White, Fundamentals of optics (Mcgraw-Hill College, USA, NY, 1976), Chapter 4-5.
  23. E. Hecht, Optics (Addison-Wesley, San Francisco, 2002), Chapter 4-6.
  24. J. O. Hyun, H. S. Kim, H. K. Yun, T. W. Kang, W. S. Choi, I. O. Han, M. Y. Park, K. S. Kim, J. H. Ji, B. I. Kim, M. K. Kim, Y. A. Som, T. W. Lee, H. S. Jo, C. Y. Park, M. S. Yun, and J. E. Lee, Middle school science 2 (Sinsago, Seoul, 2010), Chapter 2.
  25. A. Singh and P. H. Butler, "Refraction: conceptions and knowledge structure," Int. J. Sci. Educ. 12, 429-442 (1990). https://doi.org/10.1080/0950069900120409
  26. P.-K. Tao, "Developing understanding of image formation by lenses through collaborative learning mediated by multimedia computer-assisted learning programs," Int. J. Sci. Educ. 26, 1171-1197 (2004). https://doi.org/10.1080/0950069032000138879
  27. J. G. Koh and H. J. Lee, "Analysis on conceptual sequencr related to optometry in Korean science textbooks," Korean J. Vis. Sci. 12, 19-30 (2010).
  28. S. I. Lee, B. J. Jo, B. H. Jeon, K. S. Nam, S. Y. Hwang, Y. H. Kim, J. J. Eo, D. G. Noh, K. T. Kim, S. Y. Baek, C. W. Kim, Y. G. Kim, L. W. Park, S. J. Shin, and O. S. Kwon, Middle school science 2 (Jihaksa, Seoul, 2010), Chapter 2.
  29. I. Galili, "Students' conceptual change in geometrical optics," Int. J. Sci. Educ. 18, 847-868 (1996). https://doi.org/10.1080/0950069960180709
  30. M. R. Matthews, International handbook of research in history, philosophy and science teaching (Springer, Dordrecht: 2014), Chapter 4.
  31. H. D. Park, K. D. Kim, M. R. Kwon, and J. B. Kim, "College students' concept of converging lens," Sae Mulli 41, 345-356 (2000).
  32. L. Heikkinen, A. Savinainen, and M. Saarelainen, "Virtual ray tracing as a conceptual tool for image formation in mirrors and lenses," The Phys. Teach. 54, 538-540 (2016). https://doi.org/10.1119/1.4967893
  33. G. P. Kwon, "Science high school students' conceptions for the image by converging lens," Stud. Const. Cases 25, 63-69 (2012).