DOI QR코드

DOI QR Code

Design and Analysis of an Optical System for an Uncooled Thermal-imaging Camera Using a Hybrid Lens

Hybrid 렌즈를 이용한 비냉각 열상장비 광학계 설계 및 분석

  • Received : 2017.08.21
  • Accepted : 2017.09.22
  • Published : 2017.10.25

Abstract

This paper presents the design and evaluation of the optical system for an uncooled thermal-imaging camera. The operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through optimization, we have obtained a LWIR (Long Wave Infrared) optical system with a focal length of 5.44 mm, which consists of four aspheric surfaces and two diffractive surfaces. The f-number of the optical system is F/1.2, and its field of view is $90^{\circ}{\times}67.5^{\circ}$. The hybrid lens was used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We calculated the polychromatic integrated diffraction efficiency, and the MTF drop generated by background noise. We have evaluated the thermal compensation of a LWIR fixed optical system, which is optically passively athermalized to maintain MTF performance in the focal depth. In conclusion, these design results are useful for an uncooled thermal-imaging camera.

본 논문에서는 $7.7{\mu}m$에서 $12.8{\mu}m$ 파장 대역에 적용 가능한 비냉각 열상장비 광학계를 설계 및 분석 하였다. 최적화 과정을 통하여 설계된 원적외선 광학계의 유효초점거리는 5.44 mm를 가지며, 4면의 비구면과 2면의 회절면을 포함하였다. 광학계의 F/수는 F/1.2로 설정하였고, 시야각은 $90^{\circ}{\times}67.5^{\circ}$가 되도록 하였다. 회절면이 적용된 hybrid 렌즈를 이용하여 보다 효율적으로 고차 수차가 보정되도록 하였고, 이때 발생되는 회절 특성은 scalar 회절 효율을 이용하여 평가하였다. 또한 hybrid 렌즈에서 발생되는 회절 현상에 의한 통합 회절효율을 예측하고 배경잡음에 의한 MTF 저하를 고려하였다. 원적외선 광학계의 온도 변화에 따른 보상은 광학식 비열화를 이용하여 광학계의 MTF 성능이 초점 심도 내에서 유지되도록 하였다. 결론적으로 비냉각 열상장비에 효율적으로 적용 가능한 광학설계 결과를 얻었다.

Keywords

References

  1. S. M. Hong and H. S. Kim, "Advanced thermal imaging system with a large zoom optics," Korean J. Opt. Photon. 16, 354-360 (2005). https://doi.org/10.3807/KJOP.2005.16.4.354
  2. 홍석민, 송인섭, "열상장비 개요," 물리학과 첨단기술 (1998).
  3. T. Meitzler, G. Gerhart, E. Sohn, and P. Collins, "A comparision of the performance of 3-5 and 8-12 infrared camera," Proc. SPIE Conference 2224, (1994).
  4. G. C. Holst, "Imaging system performance based upon $F{\lambda}$/d," Proc. SPIE Opt. Eng. 46, 103204 (2007).
  5. H. S. Kim, D. H. Lee, H. K. Kim, and G. W. Lee, "Analysis of aspheric and diffractive surface effect for long wavelength infrared lens," Korean J. Opt. Photon. 14, 369-376 (2003). https://doi.org/10.3807/KJOP.2003.14.4.369
  6. C. M. Ok and S. C. Park, "Design and anlysis of a 10$\times$ optical zoom system for an LWIR camera," J. Opt. Soc. Korea 18, 574-581 (2014). https://doi.org/10.3807/JOSK.2014.18.5.574
  7. C. M. Ok, H. J. Lee, and H. K. Kim, "Optimization of a middle infrared optical system with double magnification," in Proc. OSK Summer Meeting (Phoenix Park, Korea), 397-398 (2008).
  8. J. A. Ratches, R. H. Vollmerhausen, and R. G. Driggers, "Target acquisition performance modeling of infrared imaging systems: past, present, and future," IEEE Sensors J. 1, 31-40 (2001). https://doi.org/10.1109/JSEN.2001.923585
  9. R. K. Bhan, R. S. Saxena, C. R. Jalwania, and S. K. Lomash, "Uncooled infrared microbolometer arrays and their characterisation techniques," Def. Sci. J. 59, 580-589 (2009). https://doi.org/10.14429/dsj.59.1562
  10. H. Gross, "Handbook of Optical Systems," Wiley-VCH Verlag GmbH & Co. KGaA, pp. 406-410.
  11. P. J. Rogers and M. Roberts, "Thermal compensation techniques," Pilkington Optronics, pp. 39.1-39.17.
  12. S. C. Park and M. J. Kim, "Development for optical design technology of diffractive optical element system using optimazation method," Dankook University Faculty Research Papers 34, 51-59 (1999).
  13. C. Bigwood, "New infrared optical systems using diffractive optics," Proc. SPIE 4767, (2002).
  14. D. A. Buralli and G. M. Morris, "Effects of diffraction efficiency on the modulation transfer function of diffractive lenes," Appl. Opt. 31, 4389-4396 (1992). https://doi.org/10.1364/AO.31.004389
  15. D. A. Buralli, G. M. Morris, and J. R. Rogers, "Optical performance of holographic kinoforms," Appl. Opt. 28, 976-983 (1989). https://doi.org/10.1364/AO.28.000976