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I. INTRODUCTION

Recently, free-space optical (FSO) communication has 

attracted considerable research attention, since it has many 

advantages and possible applications. For example, it has 

been recognized as a promising solution for metropolitan 

area network (MAN) extension, fiber back-up, backhaul 

for wireless cellular networks, and disaster recovery [1]. 

Compared to their radio-frequency (RF) counterparts, FSO 

links provide several distinguishing properties, such as very 

high data rates and a large amount of available, license-free 

frequency spectrum [2]. However, FSO communications 

are vulnerable to pointing errors and scintillations. These 

pointing errors coming from misalignment between trans-

mitter and receiver in long-range outdoor applications, and 

scintillations due to atmospheric turbulence can seriously 

deteriorate communication performance in FSO systems [3].

To overcome the above disadvantages, many techniques 

have been applied in FSO systems, such as channel coding 

[4], spatial diversity [4-17], adaptive transmission [18, 19], 

relay-assisted (cooperative) transmission [20-22] and hybrid 

RF/FSO systems [23, 24]. Among these techniques, spatial 

diversity is commonly used due, to its simple and efficient 

features. Spatial diversity can be realized via receive 

diversity at the receiver [4-7], transmit diversity at the 

transmitter [8, 9], or a combination of the two [10-17]. 

Aperture averaging and multiple apertures at the receiver 

are two simple solutions to receive diversity. Fading 

reduction by aperture-averaging receivers in turbulent FSO 

systems is discussed in [4]. In [5], the exact expressions 

for the aperture-averaging factor in the weak-turbulence 

regime are developed, for both plane and spherical waves. 

Outage probability and bit-error rate (BER) performance 

of FSO links with multiple apertures at the receiver are 

presented in [6] and [7]. In [8], a transmit-diversity scheme 

combining transmit laser selection (TLS) and space-time 

trellis code (STTC) is analyzed. In [9], a BER evaluation is 

presented by means of numerical simulations, to demonstrate 

the improvement of a multibeam system over its single- 

beam counterpart.
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Symbol-error probability (SEP) for MIMO (Multiple-Input 

Multiple-Output) FSO transmission with Q-ary PPM (pulse- 

position modulation) and Multipulse PPM is obtained in 

[10] and [11] respectively. In [12], error-rate performance 

of FSO systems for K-distributed atmospheric turbulence 

channels is investigated. A new power-series-based represen-

tation is proposed for the PDF (probability density function) 

of the Gamma-Gamma fading FSO links with pointing 

errors in [13], and based on this PDF the performance of 

FSO MIMO links is analyzed. By the PDF approximation 

of the sum of the independent and identically distributed 

Gamma-Gamma random variables (RVs) through the α μ−  

distribution, an ergodic capacity characterization of MIMO 

FSO systems is provided in [14]. Diversity gain and outage 

probability for MIMO FSO links with misalignment are 

studied in [15-17]. 

The current literature for the performance analysis of 

FSO communication systems mainly concentrates on single- 

user regular FSO systems. These studies attempt to improve 

communication performance of FSO systems using traditional 

RF technologies, such as diversity, relaying, etc. However, 

FSO communication is a kind of peer-to-peer transmission. 

In a two-user regular FSO system, at least two independent 

photodetectors are needed for the two users. Consequently, 

system cost increases with the number of users. Our aim 

in this study is to save a set of receiving devices by 

photodetector multiplexing in a two-user FSO system, and 

to improve the communication performance.

In this paper we analyze the performance of an FSO 

communication system with two users. These two FSO 

users are denoted as the primary user (PU) and secondary 

user (SU) respectively. We assume PU and SU send their 

own BPPM (binary pulse-position) modulated data pulses 

synchronously. The shared detector at the destination node 

decides on the superposed symbols sent by PU and SU 

through decision rules. The performance of this FSO 

communication system is evaluated with the metric of 

SEP (symbol-error probability). We derive the maximum- 

likelihood (ML) decision rule in the presence of back-

ground radiation, based on multiple-hypothesis testing. Exact 

conditional analytic expressions of SEP for both PU and 

SU are presented, in the presence and absence of back-

ground radiation. The average SEP expressions are also 

derived, based on an optical channel in which both atmo-

spheric turbulence and misalignment errors are considered. 

Furthermore, we also discuss the approximate behavior of 

this FSO system at high symbol energy, and the corres-

ponding approximate expressions are provided. Numerical 

simulations are also provided, for more intuitive explanation 

and presentation.

The remainder of the paper is organized as follows. In 

Section 2, the model of the two-user FSO system is intro-

duced. Performance analysis without background radiation 

is provided in Section 3. The ML decision rule and SEP 

expressions for both PU and SU in the presence of back-

ground radiation are derived in Section 4. The exact and 

asymptotic expressions obtained in the previous sections are 

numerically evaluated and interpreted in Section 5. Finally, 

we review our main results and draw some conclusions in 

Section 6.

II. SYSTEM MODEL

Figure 1 depicts a block diagram of the two-user FSO 

communication system used in this paper. We define one 

source node as the primary user (PU), and another one as 

the secondary user (SU). Total transmitted power of PU 

and SU is fixed, and is allocated to PU and SU with the 

condition that PU always has larger transmitted power than 

SU. Typically we assign the source node with more 

stringent requirements for communication quality, so that 

PU can have better communication performance. The laser 

sources of PU and SU operate at the same wavelength, in 

order to share optical components at the receiver. We 

assume that the transmitted symbols from PU and SU can 

be exactly aligned by the high-precision synchronous signals 

generated at the synchronization unit. A shared detector is 

deployed at the destination node, to simultaneously detect 

the symbols from PU and SU.

FIG. 1. Two-user FSO communication system.
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Next we present specific details and symbol definitions 

for this two-user FSO system. We define the total transmitted 

power of PU and SU as 1 2
P P P= + , where 

1
P and 

2
P  are 

the transmitted optical power of PU and SU respectively. 

P  is allocated to PU and SU in a certain proportion, and 

the power allocated to PU is higher than that to SU, i.e.

1 2
P P> . Then we define this proportion with a coefficient 

α, thus the powers of PU and SU can be expressed as 

1
P Pα=  and ( )2

1P Pα= − . As mentioned above, BPPM 

(binary pulse-position modulation) is adopted as the modu-

lation format in our FSO communication system. In BPPM, 

a symbol interval 
s

T  is subdivided into two slots of size T  

with / 2
s

T T= , and the digital information is sent by the 

pulse of the laser source in one of the two slots. We define 

the symbols of PU and SU as { }, 1,2
PU SU
s s ∈  respectively, 

where 1 means the pulse appears in the first slot, and 2 

means it is in the second one. We define the symbol 

energies of PU and SU at the transmitter as 
1

PU

s
E PT= =

PTα  and ( )2
1

SU

s
E PT PTα= = −  respectively.

The optical pulses suffer random fading, due to atmo-

spheric turbulence and misalignment errors, when they go 

through the optical channel. Hence the optical pulse powers 

of PU and SU measured at the receiver can be expressed 

as 
1 1r
P I Pα=  and ( )2 2

1
r

P I Pα= −  respectively, where 1
I  

and 
2
I  are the real-valued fading gain (irradiance). We 

assume 1
I  and 

2
I  are independent and identically distributed, 

for which the probability density function (PDF) is derived 

by F. Yang as [25]

( ) ( )

22
3,0

1,3 2

0 0

( ) , 0
1, 1, 1

I

I
f I I

A A
G

ϕαβϕ αβ

α β ϕ α β
′

⎡ ⎤′
′ = ≥⎢ ⎥

Γ Γ − − −⎢ ⎥⎣ ⎦
(1)

where 2
zeq s

ϕ ω σ= , zeq
ω  is the equivalent beam width and 

( ) ( )2 2 22 exp
zeq z

erf v v vω ω π⎡ ⎤ ⎡ ⎤= −⎣ ⎦⎣ ⎦ , z
ω  is the beam waist 

width (a Gaussian beam is assumed), and 
2

s
σ  is the jitter 

variance at the receiver. 0
A  is calculated using ( )

2

0
A erf v=  

and 2
z

v rπ ω= , where r  is the aperture radius of the 

detector and ( )erf x  is the error function. The remaining 

two parameters α and β  are related to the small- and 

large-scale turbulence eddies obtained as in [26] 

expα
⎡=
⎢⎣

( )( )
1

7/6
2 12/5

0.49 1 1.11 1
x x

σ σ

−

⎤+ −
⎥⎦ ,

( )( )
1

5/6
2 12/5

exp 0.51 1 0.69 1
x x

β σ σ
−

⎡ ⎤= + −
⎢ ⎥⎣ ⎦ , 

where 
2

x
σ  is the log irradiance variance. 
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,
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z
b b b b

G
+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
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K K

 is Meijer’s G-function.

The n th moment of I ′ is derived in [25]

( ) ( )

( ) ( ) ( )( )

2

0

2

n

n

n

A n n
E I

n

ϕ α β

ϕ α β αβ

Γ + Γ +
′⎡ ⎤ =⎣ ⎦

+ Γ Γ
. (2)

Letting 1n = , we can get the expectation of I ′ as 

[ ] ( )2 2

0 0
1I E I Aϕ ϕ′= = + , which is usually on the order 

of 
3

10
−

. To better show the randomness of the irradiance, 

we determine the PDF of the normalized irradiance 

0
/I I I′=  as

( ) ( ) ( )

24 2
3,0

21,3 22
( ) , 0

1 1, 1, 11
I
f I I IG

ϕαβϕ αβϕ

ϕ ϕ α βϕ α β

⎡ ⎤
= ≥⎢ ⎥

+ − − −+ Γ Γ ⎢ ⎥⎣ ⎦
.

(3)

Using the symbol definitions above, we can evaluate the 

symbol energy of PU at the receiver through 1 1

PU

r s
P T I E=  

and the corresponding symbol energy of SU is 2r
P T =

2

SU

s
I E . According to the symbols sent by PU and SU, the 

wave forms at the receiver are shown in Fig. 2. For data 

1 and data 2 in Fig. 2, when PU sends the same data as 

SU, the two laser pulses at the receiver overlap; if 

different data are sent, two staggered laser pulses appear at 

the detector. In Fig. 2(a), the scenario with no background 

radiation, the total energy of each BPPM symbol is denoted 

by 1 2

PU SU

s s
I E I E+ . For the FSO communication system 

with background radiation, we assume that the background 

radiation power 
b
P  is constant in each time slot, and the 

FIG. 2. Waveforms at the receiver.
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total symbol energy is calculated by 1 2
2

PU SU

s s b
I E I E PT+ + . 

If we define the background radiation energy of each slot 

as 
b b

E PT= , then 
1 2

2
PU SU

s s b
I E I E E+ + .

The optical detection at the receiver can be modeled as 

a Poissonian point process [10], i.e. the number of 

photoelectrons generated by the incident light in the pulse 

slot is a Poissonian random variable with parameter λ , 

where λ  is the expectation value of this Poissonian random 

variable to represent the average photoelectron number in 

the designated slot. In [27], 
r
PT hfλ η= , where 

r
P  is the 

power of the incident optical signal, η  is the quantum 

efficiency of the photoelectric detector, h is Planck’s constant, 

and f  is the frequency of incident light. We define 

1

PU

PU s
PT hf E hfλ η η= =  corresponding to the transmitted 

power of PU; then the average photoelectron at the receiver 

is 
1PU
Iλ . Similarly, 2

SU

SU s
PT hf E hfλ η η= = , and the 

average number of photoelectrons generated by SU is 
2SU
Iλ . 

In the background-radiation scenario, the photoelectrons 

generated by the background radiation and dark current in 

each time slot are also modeled as a Poissonian random 

variable with parameter b b
E hfλ η= .

III. PERFORMANCE ANALYSIS WITHOUT 

BACKGROUND RADIATION

The atmospheric turbulence channel can be modeled as 

a slowly fading channel, according to the experiment 

demonstrated in [28], which means that the fading factor 

is constant over millions of symbols. Hence we can assume 

that channel-state information is known perfectly at the 

receiver (PCSIR). In other words, the fading factors 1
I  and 

2
I  are known when the receiver decides the symbols. To 

represent photoelectron numbers in a designated symbol, we 

define a two-dimensional vector [ ]1 2
,Z Z=Z , where 1

Z  is 

the photoelectron number in the first time slot and 2
Z  

corresponds to the second time slot. If no background 

radiation is considered, there are two kinds of waveforms 

at the shared detector. In Fig. 2, we know when PU sends 

the same symbol as SU, the optical pulses at the receiver 

overlap and are superimposed; otherwise, the laser pulses 

are staggered. In the overlap scenario, one of 1
Z  and 2

Z  is 

a Poissonian random variable, while the other is definitely 

zero. Since intensity modulation plus direct detection (IM/ 

DD) is adopted, the parameter of this Poissonian random 

variable is 1 2PU SU
I Iλ λ+ , i.e. ( )1 2

, 1
q PU SU

Z I I qπ λ λ+ =�

2or . In the staggered case, both 1
Z  and 2

Z  are Poissonian 

random variables and the parameters are 
1PU
Iλ  and 

2SU
Iλ  

respectively. As a matter of routine, 1
z  and 2

z  are the 

realizations of the random variable 1
Z  and 2

Z .

3.1. Decision Strategy

The decision variables of PU and SU are denoted by 
ˆ

PU
s  and ˆSUs  respectively. When background radiation is 

not considered, the data from SU can be treated as 

interference for PU. Since the transmitted power of PU is 

always larger than that of SU, we just select the time slot 

with more photoelectrons as the data of PU. One exception 

is when the photoelectron numbers of the two time slots 

are equal; in this case, PU will make a decision randomly 

between the two time slots. To summarize, PU decides in 

favor of ˆPUs  according to the following strategy:

1 2

1,2 1 2

(1, 2),
ˆ

argmaxPU

q q

rand z z
s

z z z
=

=⎧
= ⎨

≠⎩
(4)

The decision strategy for SU is similar to that for PU, 

but some changes are needed. First, the time slot with 

fewer photoelectrons cannot always be considered the data 

of SU. This decision is effective only when PU sends 

different data than SU, and neither of the two time slots is 

empty. Second, when PU sends the same data as SU, the 

optical pulses overlap and one of the two time slots is 

empty. In this scenario we decide on the nonempty time 

slot for SU’s data. We must note specially that the empty 

time slot is a necessary condition for PU to send the same 

data as SU, but it is not a sufficient condition. If different 

data are sent, the appearance of an empty time slot is also 

possible. However, neither of the two time slots being 

empty definitely means that PU sends different data than 

SU. To summarize, SU will decide in favor of ˆSUs  according 

to the following strategy:

( )

( )

1 2

1 2

1 2

1,2 1 2

(1,2),

0 0
ˆ arg 0 ,

0 0

argmin , 0

SU q q

q q

rand z z

z and z or
s z

z and z

z z z
=

⎧ =
⎪

= ≠⎪
⎡ ⎤= ≠⎨ ⎣ ⎦ ≠ =⎪

⎪ ≠ ≠⎩

(5)

3.2. Symbol-error Probability of PU
In this section we evaluate the symbol-error probability 

(SEP) of PU under the condition of 1
I  and 

2
I , in the case 

of no background radiation. Therefore, the average SEP of 

PU is derived based on the channel models in the previous 

section. Finally, the approximate PU SEP is presented. 

Based on Eq. (4), we know that the data based on wrong 

decisions for PU appear in the following cases. 

Case A: Random decision 

When the photoelectron number of the two time slots is 

equal, namely 1 2
z z= , the receiver makes a decision randomly 

between the two time slots. As a result, the probabilities 

of correct and incorrect decisions are equal. The random 

decision can be further divided into the following two 

categories.

Case A-1: Neither time slot is zero
In this category, 1 2

z z=  but none of the two time slots 

are empty, i.e. 1 2
0z z= ≠ . Since there is no background 
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radiation, the pulses sent by PU and SU are interleaved, 

which means PU sends different data than SU. This is an 

implicit condition for case A-1. In brief, case A-1 occurs 

only when the following two conditions are simultaneously 

satisfied: (a) different data are sent, and (b) 1 2
z z= . In 

case A-1, one time slot is use by PU’s laser pulse and the 

other by SU’s pulse. The photoelectron numbers of the two 

slots are two Poissonian random variables with parameters 

1PU
Iλ  and 2SU

Iλ  respectively. Then we can calculate the 

SEP of PU in case A-1 as

( ) ( ), 1

1 2 1 2
| , Pr | 0PU A

s
P e I I e z z

−

= = ≠

               ( )1 2 1 2
Pr | 0, 0z z z z= ≠ ≠

               ( )1 2
Pr 0, 0z z≠ ≠

              ( ) ( )1 2

1

1
Pr , Pr

2
PU SU

k

Z k Z k s s

∞

=

= = = ≠∑

(6)

From [29], we know that X  is a Poissonian random 

variable with parameter λ  if X  takes the values 0,1,2,...,∞, 

with probability

{ }Pr , 0,1,2,...,
!

k
e

X k k
k

λ
λ

−

= = = ∞ (7)

Without loss of generality, we assume that the first time 

slot is occupied by PU’s pulse, and SU’s data appear in 

the second time slot. Therefore, the probability of 1
Z  with 

k photoelectrons is ( )1

1
/ !PU

kI

PU
e I k

λ
λ

−

. Accordingly, the 

second time slot has k photoelectrons with a probability of 

( )2

2
/ !SU

kI

SU
e I k

λ
λ

−

. For more concise representation, we 

define 

( ) { }, Pr
!

k
e

k X k
k

λ
λ

λ

−

Θ = = = (8)

Then Eq. (6) can be rewritten as 

( )
( ) ( )1 2

1 2, 1

1 2

1

1
| ,

4 ! !

PU SU
k kI I

PU SUPU A

s

k

e I e I
P e I I

k k

λ λ
λ λ

− −
∞

−

=

= ∑

              
( ) ( )1 1

1

1
, ,

4
PU SU

k

k I k Iλ λ

∞

=

= Θ Θ∑

(9)

 

Case A-2: Both time slots are zero

This is another scenario where the photoelectron 

numbers of the two slots are equal, i.e. 1 2
0z z= = . 

Unfortunately, we cannot judge whether PU and SU send 

the same or different data in this case. If the same data 

are sent, one time slot must have zero photoelectrons, and 

the photoelectron number in the other time slot is a 

Poissonian random variable with parameter 
1 2PU SU
I Iλ λ+ . 

Therefore, the probability of 1 2
0z z= =  under the condition 

that the same data are sent can be described as 

( ) ( )1 2 1 2
Pr 0 | 0,

PU SU PU SU
z z s s I Iλ λ= = = = Θ + (10)

If PU sends different data than SU, the photoelectron 

numbers of the two time slots are two Poissonian random 

variables with parameters 1PU
Iλ  and 2SU

Iλ  respectively. 

The probability of 1 2
0z z= =  under the condition of 

different data being sent can be expressed as 

( ) ( ) ( )1 2 1 2
Pr 0 | 0, 0,

PU SU PU SU
z z s s I Iλ λ= = ≠ = Θ Θ (11)

Hence we can get the probability of 1 2
0z z= =  as

( ) ( ) ( )

( ) ( )

1 2 1 2

1 2

Pr 0 Pr 0 | Pr

Pr 0 | Pr

PU SU PU SU

PU SU PU SU

z z z z s s s s

z z s s s s

= = = = = = =

+ = = ≠ ≠

            ( )1 2
0,

PU SU
I Iλ λ= Θ +

(12)

Here the property ( ) ( )1 2 1
0, 0,

PU SU PU
I I Iλ λ λΘ + = Θ ×

( )20,
SU
IλΘ  is used. Finally, we can obtain the conditional 

SEP of PU in case A-2 as 

( ) ( ) ( ), 2

1 2 1 2 1 2
| , Pr | 0 Pr 0PU A

s
P e I I e z z z z

−

= = = = =

              ( )1 2

1
0,

2
PU SU
I Iλ λ= Θ +

(13)

Case B: Nonrandom decision

In this case 1 2
z z≠ , and the wrong decision occurs when 

the time slot with more photoelectrons is not used for the 

laser pulse sent by PU. This scenario occurs only when 

PU sends different data than SU, which in fact is also an 

implicit condition. If the same data are sent and the time 

slot with overlapping pulses is not empty, it is impossible 

for PU to make the wrong decision. Without loss of 

generality, we assume 1
PU
s = , and 2

SU
s = . Since the 

transmitted power of PU is larger than that of SU, in the 

first time slot there are more photoelectrons than in the 

second, and the photoelectron numbers in the two time 

slots are random variables. It is clear that the wrong 

decision occurs when 
1 2
z z< , which implies ( )1 1PU

Z Iπ λ� , 

and ( )2 2SU
Z Iπ λ� . Therefore, the conditional SEP of PU 

in case B is the probability of the Poissonian random 

variable with parameter 1PU
Iλ , which is smaller than that of 

the Poissonian random variable with parameter 
2SU
Iλ . Then 

the conditional SEP of PU in case B can be expressed as 

( ) ( ) ( )
1

,

1 2 2 1

1 0

| , Pr , Pr
i

PU B

s PU SU

i j

P e I I Z i Z j s s
∞ −

= =

= = = ≠∑∑

             
( ) ( )

1

2 1

1 0

1
, ,

2

i

SU PU

i j

i I j Iλ λ

∞ −

= =

= Θ Θ∑∑

(14)
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We need to point out that the above three cases A-1, A-2, 

and B are mutually exclusive, so that the conditional SEP 

of PU with no background radiation can be evaluated as

( ) , 1 , 2 ,

1 2
| ,PU PU A PU A PU B

s s s s
P e I I P P P

− −

= + +

            

( ) ( )

( ) ( )

1 2

1

1

2 1

1 0

1 1
, ,

2 2

, ,

PU SU

k

i

SU PU

i j

k I k I

i I j I

λ λ

λ λ

∞

=

∞ −

= =

⎡
= Θ Θ⎢

⎣

+ Θ Θ

∑

∑∑

              
( )1 2
0,

PU SU
I Iλ λ

⎤
+Θ + ⎥

⎦.

(15)

The average SEP of PU can be obtained by taking the 

expectation value of the conditional SEP ( )1 2
| ,PU

s
P e I I  over 

1
I  and 2

I . Since 
1
I  and 2

I  are independent and identically 

distributed, the average SEP of PU can be expressed as 

( ) ( )

( ) ( )

1 2

2 1

1 2

1

1

2 1

1 0

1
, ,

4

1
, ,

2

PU

s I PU I SU

k

i

I SU I PU

i j

P E k I E k I

E i I E j I

λ λ

λ λ

∞

=

∞ −

= =

= Θ Θ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ Θ Θ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∑

∑∑

    ( ) ( )
1 2

1 2

1
0, 0,

2
I PU I SUE I E Iλ λ+ Θ Θ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .

(16)

The expectation value ( )
1

1
,

I PU
E k IλΘ⎡ ⎤⎣ ⎦  can be evaluated 

as 

( )
( )

( )
1

1 1

1

1 1 1
0

,
!

PU
kI

PU

I PU I

e I
E k I f I dI

k

λ
λ

λ

−

∞

Θ =⎡ ⎤⎣ ⎦ ∫ .
(17)

Substituting Eq. (3) into Eq. (17), we have

( )
( ) ( ) ( )

1

1

4

1 12 0

,
1 !

PU

k

IkPU

I PU
E k I I e

k

λαβϕ λ
λ

ϕ α β

∞

−Θ =⎡ ⎤⎣ ⎦
+ Γ Γ ∫

                

22
3,0 1

121,3 21 1, 1, 1

I
dIG

ϕαβϕ

ϕ ϕ α β

⎡ ⎤
⎢ ⎥

+ − − −⎢ ⎥⎣ ⎦ .

(18)

Using Eq. (11) and in [30], the exponential function can 

be written in the form of Meijer’s G-function, i.e. 

1,0

0,1
exp( )

0
x xG

⎡ −⎤
− = ⎢ ⎥

⎣ ⎦ .
(19)

Substituting Eq. (19) into Eq. (18) and using Eq. (07.34. 

21.0011.01) in [31] to calculate Meijer’s integral from two 

G-functions, after some mathematical development we have

( )
( ) ( ) ( )1

4

1 2
,

1 !
I PU

PU

E k I
k

αβϕ
λ

ϕ α β λ
Θ =⎡ ⎤⎣ ⎦

+ Γ Γ

                ( )

22
3,1

2,3 22

,

1, 1, 11
PU

k

G
ϕαβϕ

ϕ α βϕ λ

⎡ ⎤−
⎢ ⎥

− − −+⎢ ⎥⎣ ⎦ .

(20)

The above expression can be further simplified by Eq. 

(07.34.16.0001.01) in [31]

( )
( ) ( )1

2

1
,

!
I PU

E k I
k

ϕ
λ

α β
Θ =⎡ ⎤⎣ ⎦ Γ Γ

                ( )

22
3,1

2,3 22

1 , 1

, ,1
PU

k

G
ϕαβϕ

ϕ α βϕ λ

⎡ ⎤− +
⎢ ⎥

+⎢ ⎥⎣ ⎦ .

(21)

We use ( ),
PU

k λΞ  to represent ( )
1

1
,

I PU
E k IλΘ⎡ ⎤⎣ ⎦, and 

the average SEP of PU can be given as 

( ) ( )
1

1 1
, ,

2 2

PU

s PU SU

k

P k kλ λ

∞

=

⎡
= Ξ Ξ⎢

⎣
∑

        
( ) ( )

1

1 0

, ,
i

SU PU

i j

i jλ λ

∞ −

= =

+ Ξ Ξ∑∑

        
( )0,

PU SU
λ λ

⎤
+ Ξ + ⎥

⎦.

(22)

Under ideal no-fading conditions, 1
I  and 2

I  are assumed to 

be unity, and the SEP of PU is ( ) ( )
1

1
, ,

4
PU SU

k

k kλ λ

∞

=

Θ Θ +∑

( ) ( ) ( )
1

1 0

1 1
, , 0,

2 2

i

SU PU PU SU

i j

i jλ λ λ λ

∞ −

= =

Θ Θ + Θ +∑∑ . Since PU
λ +

SU
λ  is equal to 

s
E hfη , and for an FSO communication 

system the total symbol energy is usually large enough to 

ensure PU SU
e

λ λ− −  approaches zero, we obtain the approximate 

SEP expression of PU under ideal conditions as

( ) ( ),

1

1
, ,

4

PU Appro

s PU SU

k

P k kλ λ

∞

=

≈ Θ Θ∑

       
( ) ( )

1

1 0

1
, ,

2

i

SU PU

i j

i jλ λ

∞ −

= =

+ Θ Θ∑∑ .

(23)

Under fading conditions, the approximate average SEP 

of PU is

 

( ) ( ),

1

1
, ,

4

PU Appro

s PU SU

k

P k kλ λ

∞

=

≈ Ξ Ξ∑

       
( ) ( )

1

1 0

1
, ,

2

i

SU PU

i j

i jλ λ

∞ −

= =

+ Ξ Ξ∑∑
.

(24)

We will verify this expression in the simulation section.
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3.3. Symbol-error Probability of SU

The receiver decides SU data based on the strategy from 

Eq. (5). Decision error occurs in the following cases.

Case A: Random decision 

When the two time slots have the same number of photo-

electrons, both PU and SU have a fifty percent probability 

to make the right decision, and the probability of 1 2
z z=  is 

the same for PU and SU. Thus the conditional SEP of SU 

due to a random decision is equal to that of PU, and we 

have 

( ) ( ) ( ), , 1 , 2

1 2 1 2 1 2
| , | , | ,SU A PU A PU A

s s s
P e I I P e I I P e I I

− −

= +

(25)

Case B: Nonrandom decision 
Unlike the decision of PU when 1 2

z z≠ , which just 

selects the time slot with more photoelectrons, the decision 

of SU is more complex and can be divided into the 

following sub-cases.

Case B-1: Neither time slot is zero

In this sub-case, neither of the two time slots is empty 

and the two slots have different photoelectron counts. 

Hence the evaluation of conditional SEP is similar to that 

for ( ),

1 2
| ,PU B

s
P e I I , but the minimum photoelectron numbers 

of these slots are 1 and 2 respectively. Thus we can 

describe this conditional SEP of SU in case B-1 as 

( ) ( ) ( )
1

, 1

1 2 2 1

2 1

| , Pr , Pr
i

SU B

s PU SU

i j

P e I I Z i Z j s s
∞ −

−

= =

= = = ≠∑∑

              
( ) ( )

1

2 1

2 1

1
, ,

2

i

SU PU

i j

i I j Iλ λ

∞ −

= =

= Θ Θ∑∑
.

(26)

Case B-2: Exactly one slot is zero

If only one of the two time slots is empty and PU 

sends the same data as SU, there will be no wrong 

decision for SU. A decision error can only occur when 

different data are sent. For example, we assume PU sends 

symbol 1, and SU sends 2. If the time slot of SU is 

empty and the time slot of PU is not empty, the receiver 

will decide the data of SU as symbol 2, which in fact is 

wrong. Therefore, the conditional SEP of SU in case B-2 

can be expressed as

( ) ( ), 2

1 2
| , Pr ' 0, ' 0SU B

s
P e I I PU s slot SU s slot

−

= ≠ =

                ( )Pr
PU SU
s s≠

              
( ) ( )2 1

1
0, 1 0,

2
SU PU
I Iλ λ= Θ −Θ⎡ ⎤⎣ ⎦ .

(27)

 

Finally, the conditional SEP of SU is

( )1 2
| ,SU

s
P e I I ( ) ( )1 2

1

1 1
, ,

2 2
PU SU

k

k I k Iλ λ

∞

=

⎡
= Θ Θ⎢

⎣
∑

                ( ) ( )
1

2 1

2 1

, ,
i

SU PU

i j

i I j Iλ λ

∞ −

= =

+ Θ Θ∑∑

                ( )20,
SU
Iλ

⎤
+Θ ⎥

⎦
.

(28)

As for PU, taking the expectation value of conditional 

SEP ( )1 2
| ,SU

s
P e I I , we can also obtain the average SEP of 

SU as 

( ) ( )
1

1 1
, ,

2 2

SU

s PU SU

k

P k kλ λ

∞

=

⎡
= Ξ Ξ⎢

⎣
∑

        ( ) ( ) ( )
1

2 1

, , 0,
i

SU PU SU

i j

i jλ λ λ

∞ −

= =

⎤
+ Ξ Ξ +Ξ ⎥

⎦
∑∑ .

(29)

To get an approximate expression for the SEP of SU 

under ideal no-fading conditions, we first set 
1
I  and 2

I  be 1, 

then consider the last item ( )0,
SU

λΘ  in Eq. (28). If PU 

occupies the majority of the total transmitted power, i.e. 

1α → , the transmitted power of SU is much smaller than 

that of PU. Consequently, the average photoelectron number 

SU
λ  is small, and the value of 

SU

s
P  is dominated by 

( )0,
SU

λΘ . Instead, if 0.5α → , the value of SU
λ  is slightly 

smaller than that of PU
λ . The last item ( )0,

SU
λΘ  is no 

longer a dominant item and can be omitted. Finally, we 

can get the approximate expression for the SEP of SU as

( ) ( ), , 0.5

1

1
, ,

4

SU Appro

s PU SU

k

P k kα

λ λ

∞

→

=

≈ Θ Θ∑

           ( ) ( )
1

2 1

1
, ,

2

i

SU PU

i j

i jλ λ

∞ −

= =

+ Θ Θ∑∑
(30a)

( ) ( ) ( )
1

, , 1

2 1

1 1
0, , ,

2 2

i
SU Appro

s SU SU PU

i j

P i j
α

λ λ λ

∞ −

→

= =

≈ Θ + Θ Θ∑∑

(30b)

Similarly, the approximate average SEP for SU in the 

fading case is

( ) ( ), , 0.5

1

1
, ,

4

SU Appro

s PU SU

k

P k kα

λ λ

∞

→

=

≈ Ξ Ξ∑

           ( ) ( )
1

2 1

1
, ,

2

i

SU PU

i j

i jλ λ

∞ −

= =

+ Ξ Ξ∑∑
(31a)

( ) ( ) ( )
1

, , 1

2 1

1 1
0, , ,

2 2

i
SU Appro

s SU SU PU

i j

P i j
α

λ λ λ

∞ −

→

= =

≈ Ξ + Ξ Ξ∑∑

(31b)
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IV. PERFORMANCE ANALYSIS WITH 

BACKGROUND RADIATION

4.1. Decision Strategy
In practical FSO communication systems, background 

radiation cannot be removed completely. The number of 

photoelectrons generated by background radiation is also 

modeled as a Poissonian random variable with parameter 

/
b b

E hfλ η= , where b
E  is the symbol energy of the 

background radiation. In the background-radiation scenario, 

even if the same data are sent and the signal pulses of PU 

and SU are superimposed in one time slot, photoelectrons 

may still appear in the other time slot. This is totally 

different from the scenario without background radiation, 

in which one of two time slots is definitely empty when 

the same data are sent. When we take the background 

radiation into consideration, the photoelectron number of 

each time slot in a symbol is two Poissonian random 

variables. According to the data sent by PU and SU, we 

have the following four hypotheses: 

0

1

2

3

: 1, 1

: 1, 2

: 2, 1

: 2, 2

PU SU

PU SU

PU SU

PU SU

H s s

H s s

H s s

H s s

= =

= =

= =

= =

(32)

We define a two-dimensional vector [ ]1 2
,Z Z=Z  in which 

the two elements represent the photoelectron numbers in 

the two time slots respectively. 1
Z  and 2

Z  are independent 

Poissonian random variables with different parameters. These 

parameters are determined according to the four hypotheses 

in Eq. (32). For example, under hypothesis 0
H  both of the 

optical pulses of PU and SU appear in the first time slot, 

and ( )1 1 2PU SU b
Z I Iπ λ λ λ+ +� . Meanwhile, the second time 

slot is occupied by the photoelectrons generated by the 

background radiation, i.e. ( )2 b
Z π λ� . In the background- 

radiation scenario, we also assume the CSI is known 

perfectly by the receiver. Hence the joint probability 

distribution function of Z  under hypothesis 0
H  conditioned 

on 1
I  and 2

I  can be expressed as 

( ) ( ) ( )

( ) ( )

0 1 2 1 0 1 2 2 0 1 2

1 1 2 2

| , , | , , | , ,

, ,
PU SU b b

p H I I p z H I I p z H I I

z I I zλ λ λ λ

=

= Θ + + Θ

Z

             

( ) ( ) 11 2 2
2

1 2

1 2
! !

PU SU b
zI I z

PU SU b b
e I I

z z

λ λ λ

λ λ λ λ
− + +

+ +

=

(33)

Similarly, we can get the conditional joint probability 

distribution function of Z under hypotheses 1
H , 2

H , and 

3
H  as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1 2 2

2 1 2 1 2 2 1

3 1 2 1 2 1 2

| , , , ,

| , , , ,

| , , , ,

PU b SU b

SU b PU b

b PU SU b

p H I I z I z I

p H I I z I z I

p H I I z z I I

λ λ λ λ

λ λ λ λ

λ λ λ λ

= Θ + Θ +⎧
⎪

= Θ + Θ +⎨
⎪

= Θ Θ + +⎩

Z

Z

Z

(34)

Then the log-likelihood function for Z can be written as

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0 1 2 1 1 2 2

1 1 2 1 1 2 2

2 1 2 1 2 2 1

3 1 2 1 2 1 2

| , , ln ln

| , , ln ln

| , , ln ln

| , , ln ln

PU SU b b

PU b SU b

SU b PU b

b PU SU b

L H I I z I I z

L H I I z I z I

L H I I z I z I

L H I I z z I I

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

= + + +⎧
⎪

= + + +⎪
⎨

= + + +⎪
⎪ = + + +⎩

Z

Z

Z

Z

(35)

From the maximum-likelihood (ML) detection rule, we 

know if hypothesis 0
H  is correct, the following inequality 

group needs to be established:

( ) ( )

( ) ( )

( ) ( )

0 1 2 1 1 2

0 1 2 2 1 2

0 1 2 3 1 2

| , , | , ,

| , , | , ,

| , , | , ,

L H I I L H I I

L H I I L H I I

L H I I L H I I

>⎧
⎪

>⎨
⎪ >⎩

Z Z

Z Z

Z Z

(36)

Substituting Eq. (35) into Eq. (36), we have 

( )

( )
21

2 2 1

ln 1 /
max ,

ln 1 /

SU b

SU PU b

Iz

z I I

λ λ

λ λ λ

⎧ +⎪
> ⎨

+ +⎡ ⎤⎪ ⎣ ⎦⎩

         
( )

( )
1

1 2

ln 1 /

ln 1 /

PU b

PU SU b

I

I I

λ λ

λ λ λ

⎫+ ⎪
⎬

+ +⎡ ⎤ ⎪⎣ ⎦ ⎭

(37)

We define 

( )

( )

( )

( )
2 1

2 1 1 2

ln 1 / ln 1 /
max ,

ln 1 / ln 1 /

SU b PU b

SU PU b PU SU b

I I

I I I I

λ λ λ λ
κ

λ λ λ λ λ λ

⎧ ⎫+ +⎪ ⎪
= ⎨ ⎬

+ + + +⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
, 

which is greater than one. Then we have 

( )

( )

( )

( )

2

1 2

2 1

1

1 2

1 2

ln 1 /
,

ln 1 /

ln 1 /
,

ln 1 /

SU b

PU SU

SU PU b

PU b

PU SU

PU SU b

I
I I

I I

I
I I

I I

λ λ
λ λ

λ λ λ

κ
λ λ

λ λ
λ λ λ

+⎧
≥⎪

+ +⎡ ⎤⎪ ⎣ ⎦
= ⎨

+⎪ <
⎪ + +⎡ ⎤⎣ ⎦⎩

. (38)

(See Appendix for detailed proof).
Then we can obtain the conditional decision region for 

0
H  as ( ) { }0 1 2 1 2 1 2

| , / /R H I I z z z z κ= > . Repeating the 

process above, we can obtain the decision regions for 1
H , 

2
H , and 3

H  respectively. After some calculations, we have 

the decision rule in the background-radiation scenario as 
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( )

( )

( )

( )

( )

1 2

1 2

1 2

1 2

1,1 /

1,2 1 /
ˆ ˆ,

2,1 1/ / 1

2,2 / 1/

PU SU

z z

z z

s s

z z

z z

κ

κ

κ

κ

>⎧
⎪

< <⎪
= ⎨

< <⎪
⎪ <⎩

. (39)

Note that we do not take the boundaries of the decision 

regions into consideration in the above derivations. Since 

1
z  and 2

z  are discrete random variables, the decisions in 

the cases of 1 2
z zκ=

， 1 2
z z= , and 2 1

z zκ=  must be handled 

carefully when the likelihood functions are equal. To simplify 

the analysis, we assume κ  is not an integer; then we can 

ignore the cases of 1 2
z zκ=  and 2 1

z zκ= , since 1
z  and 2

z  

are integers. When 1 2
z z= , we adopt the random decision 

used in the previous section. Finally, we rewrite the decision 

rule for PU in the background radiation scenario as 

1 2

1,2 1 2

(1,2),
ˆ

argmax ,PU

q q

rand z z
s

Z z z
=

=⎧
= ⎨

≠⎩
. (40)

Accordingly, the decision rule for SU is 

1 2 1 2

1 2

1 2 1 2

1, / 1/ / 1

ˆ (1, 2),

2, 1 / / 1/

SU

z z or z z

s rand z z

z z or z z

κ κ

κ κ

> < <⎧
⎪

= =⎨
⎪ < < <⎩

. (41)

4.2. Symbol-error Probability of PU

Comparing Eq. (4) to Eq. (40), we can see that the 

decision rule for PU in the background-radiation scenario 

is the same as in the no-background-radiation scenario. If 

two time slots have the same number of photoelectrons, a 

random decision occurs; otherwise, both background radiation 

and SU data are treated as interference with PU. Wrong 

decisions may happen in the following cases.

Case A: Random decision

According to the data sent by PU and SU, the random- 

decision case can be further divided into cases A-1 and A-2, 

corresponding to different data and same data respectively.

Case A-1: Different data sent

When different data are sent, the two laser pulses are 

staggered. In the time slot for PU data, the number of 

photoelectrons is a Poissonian random variable with para-

meter 1PU b
Iλ λ+ , while in the time slot for SU data the 

parameter of the Poissonian random variable is 2SU b
Iλ λ+ . 

The conditional SEP in this case is 

( ) ( ) ( ), 1,

1 2 1 2

0

1
| , Pr , Pr

2

PU A BR

s PU SU

k

P e I I Z k Z k s s

∞

−

=

= = = ≠∑

               
( ) ( )1 2

0

1
, ,

4
PU b SU b

k

k I k Iλ λ λ λ

∞

=

= Θ + Θ +∑

(42)

Case A-2: Same data sent

When the same data are sent, the two laser pulses 

overlap. However, the time slot without a signal is occupied 

by background radiation. The average number of photo-

electrons in the two time slots are 1 2PU SU b
I Iλ λ λ+ +  and 

b
λ  respectively. The conditional SEP of PU in this case 

can be evaluated as

( ) ( ) ( ), 2,

1 2 1 2

0

1
| , Pr , Pr

2

PU A BR

s PU SU

k

P e I I Z k Z k s s

∞

−

=

= = = =∑

               
( ) ( )1 2

0

1
, ,

4
PU SU b b

k

k I I kλ λ λ λ

∞

=

= Θ + + Θ∑

(43)

Case B: Nonrandom decision

If 1 2
z z≠ , wrong decisions are divided into the following 

two categories.

Case B-1: Different data sent
In this case the average numbers of photoelectrons in 

two slots are 1PU b
Iλ λ+  and 2SU b

Iλ λ+  respectively. If the 

time slot for SU data has more photoelectrons than that 

for PU data, the receiver will interpret it as the wrong data 

for PU. The conditional SEP for PU in this case can be 

written as

( ) ( ) ( )
1

, 1,

1 2 2 1

1 0

1
| , , ,

2

i
PU B BR

s SU b PU b

i j

P e I I i I j Iλ λ λ λ

∞ −

−

= =

= Θ + Θ +∑∑

(44)

Case B-2: Same data sent

The conditional SEP for PU in case B-2 can be obtained 

in the same way as in cases A-2 and B-1, i.e.

( ) ( ) ( )
1

, 2,

1 2 1 2

1 0

1
| , , ,

2

i
PU B BR

s b PU SU b

i j

P e I I i j I Iλ λ λ λ

∞ −

−

= =

= Θ Θ + +∑∑

(45)

Overall, the conditional SEP for PU in the background- 

radiation scenario is

( ) ( ) ( ),

1 2 1 2

0

1
| , , ,

4

PU BR

s PU b SU b

k

P e I I k I k Iλ λ λ λ

∞

=

= Θ + Θ +⎡⎣∑

                   ( ) ( )1 2
, ,

PU SU b b
k I I kλ λ λ λ+Θ + + Θ ⎤⎦

            
( ) ( )

1

2 1

1 0

1
, ,

2

i

SU b PU b

i j

i I j Iλ λ λ λ

∞ −

= =

+ Θ + Θ +⎡⎣∑∑

                   ( ) ( )1 2
, ,

b PU SU b
i j I Iλ λ λ λ+Θ Θ + + ⎤⎦

(46)

The average SEP of PU in the background-radiation 

scenario can be numerically evaluated, though its analytic 

expression is difficult to obtain. In the ideal no-fading 

condition 
1
I  and 2

I  are assumed to be unity, and in the 

region of high symbol energy 1 2PU SU b
I Iλ λ λ+ +  is usually 
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large enough to guarantee that the items containing it in Eq. 

(46) go to zero. Thus the approximate expression for SEP 

of PU in this background-radiation-no-fading scenario is

( ) ( ), ,

0

1
, ,

4

PU Appro BR

s PU b SU b

k

P k kλ λ λ λ

∞

=

≈ Θ + Θ +∑

         ( ) ( )
1

1 0

1
, ,

2

i

SU b PU b

i j

i jλ λ λ λ

∞ −

= =

+ Θ + Θ +∑∑
(47)

4.3. Symbol-error Probability of SU

In this section we derive the conditional SEP of SU in 

the background-radiation scenario. From Eq. (41), we know 

that wrong decisions for SU data occur in the following 

cases.

Case A: Random decision

The SEP for SU in this case is the same as the SEP for 

PU when 1 2
z z= , i.e.

( ) ( ) ( ), , , 1, , 2,

1 2 1 2 1 2
| , | , | ,SU A BR PU A BR PU A BR

s s s
P e I I P e I I P e I I

− −

= +

(48)

Case B: Nonrandom decision

If 1 2
z z≠ , we adopt the following expression to evaluate 

the conditional SEP for SU:

( ) ( ) ( )
3

, ,

1 2 1 2

0

| , | , ,SU B BR

s i i

i

P e I I P e H I I P H

=

=∑ (49)

where ( )1 2
| , ,

i
P e H I I  is the error probability under hypo-

thesis 
i

H  conditioned on 1
I  and 2

I , and ( )
i

P H  is the prior 

probability of hypothesis 
i

H . In our FSO communication 

system, symbols 1 and 2 are transmitted with equal 

probability for both PU and SU. Hence the four hypotheses 

, 0,1,2,3
i

H i =  are equally probable. The conditional SEP 

for SU in case B can be written as 

( ) ( )
3

, ,

1 2 1 2

0

1
| , | , ,

4

SU B BR

s i

i

P e I I P e H I I

=

= ∑ (50)

Then we can derive the four conditional error probabilities 

( )1 2
| , , , 0,1,2,3

i
P e H I I i =  respectively.

First, we consider ( )0 1 2
| , ,P e H I I . Under hypothesis 0

H , 

symbol 1 is sent by both PU and SU, and the laser pulses 

overlap in the first time slot. The photoelectron number 

in this time slot obeys the Poissonian distribution with 

parameter 1 2PU SU b
I Iλ λ λ+ + . Similarly, the second slot 

has ( )2 b
Z π λ�  photoelectrons. According to Eq. (41), if 

1 2
1 /z z κ< <  or 1 2

/ 1/z z κ<
，the receiver will judge SU 

data as symbol 2, and the wrong decision occurs. The 

conditional error probability under hypothesis 0
H  can be 

expressed as

( ) ( ) ( )

( ) ( )

( ) ( )

1

2

1

0 1 2 1 2

1 0

1 2

1 0

1 2

1 0

| , , , ,

, ,

, ,

i

PU SU b b

i j

J

b PU SU b

i j

J

b PU SU b

i j

P e H I I i I I j

i j I I

i j I I

λ λ λ λ

λ λ λ λ

λ λ λ λ

∞ −

= =

∞

= =

∞

= =

⎡ ⎤
= Θ + + Θ⎢ ⎥
⎣ ⎦

⎡ ⎤
× Θ Θ + +⎢ ⎥
⎣ ⎦

⎡ ⎤
+ Θ Θ + +⎢ ⎥
⎣ ⎦

∑∑

∑∑

∑∑

(51)

where 1
J  and 2

J  are two integers defined as 1
J iκ= ⎢ ⎥⎣ ⎦ and 

2
/J i κ= ⎢ ⎥⎣ ⎦.

Second, under hypothesis 
1

H  symbols 1 and 2 are sent 

by PU and SU respectively. Then ( )1 1PU b
Z Iπ λ λ+�  and 

( )2 2SU b
Z Iπ λ λ+� . If 1 2

/z z κ>  or 1 2
1/ / 1z zκ < < , the 

receiver will decide SU data to be symbol 1, which is also 

wrong. Therefore, ( )1 1 2
| , ,P e H I I  is

( ) ( ) ( )

( ) ( )

( ) ( )

1

2

1

1 1 2 2 1

1 0

1 2

1 0

1 2

1 0

| , , , ,

, ,

, ,

i

SU b PU b

i j

J

PU b SU b

i j

J

PU b SU b

i j

P e H I I i I j I

i I j I

i I j I

λ λ λ λ

λ λ λ λ

λ λ λ λ

∞ −

= =

∞

= =

∞

= =

⎡ ⎤
= Θ + Θ +⎢ ⎥
⎣ ⎦

⎡ ⎤
× Θ + Θ +⎢ ⎥
⎣ ⎦

⎡ ⎤
+ Θ + Θ +⎢ ⎥
⎣ ⎦

∑∑

∑∑

∑∑

(52)

Due to the symmetry of the decision rule in Eq. (41), the 

conditional error probability under 2
H  is equal to that under 

1
H , namely ( ) ( )1 1 2 2 1 2

| , , | , ,P e H I I P e H I I= . Similarly, this 

symmetry also holds for 0
H  and 3

H , i.e. ( )0 1 2
| , ,P e H I I =

( )3 1 2
| , ,P e H I I .

Finally, substituting Eqs. (48), (51), and (52) into 
,SU BR

s
P =

, , , ,SU A BR SU B BR

s s
P P+ , we can obtain the conditional SEP 

expression for SU in the background-radiation scenario as

(53)
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In no-fading channels 1 2
1I I= = , and PU SU b

λ λ λ+ +  can 

be large enough to guarantee the items containing it in 

Eq. (53) approach zero in the high-symbol-energy region. 

Corresponding to the no-background-radiation scenario, the 

approximate SEP of SU in the background-radiation-no- 

fading scenario can also be obtained according to α . If 
1α → , few decision errors occur in the random-decision 

case, and ( ), ,

1 2
| ,SU A BR

s
P e I I  approaches zero, while 

( ) ( )
1

1 0

, ,

i

SU b PU b

i j

i jλ λ λ λ

∞ −

= =

Θ + Θ +∑∑  approaches one. Then 

Eq. (53) can be approximated by

( ) ( )
1

,

1 0

1
, ,

2

J
SU Appro

s b PU SU b

i j

P i jλ λ λ λ

∞

= =

⎡
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⎣
∑∑

            ( ) ( )
2

1 0

, ,

J

PU b SU b

i j

i jλ λ λ λ

∞

= =

⎤
+ Θ + Θ + ⎥

⎦
∑∑

(54)

If 0.5α → , the power difference between PU and SU 

is small, and the approximate expression is 

( ) ( ),

0

1
, ,

4

SU Appro

s PU b SU b

k

P k kλ λ λ λ

∞

=

≈ Θ + Θ +⎡⎣∑

              ( ) ( ), ,
PU SU b b
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1 0

, ,

J

b PU SU b

i j

i jλ λ λ λ

∞
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+ Θ Θ + +⎡⎣∑∑

       
( ) ( ), ,PU b SU bi jλ λ λ λ

⎫
+Θ + Θ + ⎤⎬⎦

⎭
(55)

V. RESULTS

In this section we present numerical simulation results 

for the SEP of PU and SU, with and without background 

radiation. In the no-background-radiation scenario, both the 

conditional SEP in the ideal no-fading channel and the 

average SEP in the practical channel with atmospheric 

turbulence are evaluated, while in the background-radiation 

scenario, only the conditional SEP is discussed. In our 

simulations the laser sources are assumed to be 1500 nm 

in wavelength, and the quantum efficiency η  is unity. 

5.1. Numerical Simulations without Background Radiation

The conditional SEP performance of PU without back-

ground radiation is shown in Fig. 3. The simulation is 

conducted in an ideal no-fading channel, i.e. 1 2
1I I= = . 

The horizontal axis represents the total symbol energy, and 

the four curves correspond to different values of the power 

ratio α . For one curve with exact power ratio, we can see 

that the SEP of PU decreases as the total symbol energy 

increases. In addition, if we fix the total symbol energy 

we can observe that the SEP performance of PU deteriorates 

with decreasing α . In an FSO system with fixed total 

power, decreasing α  means SU has larger transmitted power. 

As mentioned above, the pulses sent by SU can be treated 

as interference with PU in the decision; hence decrease in 

α  can deteriorate PU performance. 

Figure 4 depicts the conditional SEP of SU in the no- 

background-radiation and no-fading scenario. For a better 

understanding, we illustrate the SEP of SU in three- 

dimensional coordinates. The x-axis represents total symbol 

energy and the y-axis is the power ratio α , varying from 

0.6 to 1. The z-axis represents the SEP of SU, in log 

scale. In Fig. 4 we can clearly see that this SEP decreases 

with increasing total symbol energy, which is the same as 

the case for PU. However, the SEP of SU is no longer a 

monotonic function of α . If we fix the total symbol 

energy and vary α  from 0.6 to 1, this SEP decreases at 
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first, then increases. Moreover, as 
s

E  increases, this fall 

and rise of the SEP becomes more and more obvious. We 

can explain this interesting phenomenon in the following 

aspects: First, when α  increases from 0.5 to the optimum 

point, the power of PU increases and less power is 

allocated to SU. Therefore, the difference in photoelectron 

number between PU and SU increases, which means that 

the error probability in the random-decision cases is reduced, 

while in the nonrandom-decision case SU is less likely to 

have more photoelectrons than PU. Consequently, the SEP 

of SU decreases at this stage. Second, when α  increases 

further from the optimum point to 1, SU has less and less 

power, and the average photoelectron number of the SU 

pulse decreases. If PU sends different data than SU and 

the time slot for SU is empty, SU will be considered as 

sending the same data as PU, which actually is wrong, 

and the probability of this incorrect decision increases in 

the second stage, so that the SEP of SU rises.

Figure 5 presents the approximate SEP performance of 

PU and SU in the no-background-radiation and no-fading 

scenario. In Fig. 5(a) the solid curves give the exact SEP 

of PU using Eq. (15), in which 1
I  and 2

I  are set to 1, and 

the dotted curves are obtained from the approximate 

expression for SEP of PU in Eq. (23). We evaluate the 

exact and approximate expressions for SEP of PU for 

different values of the power ratio, 0.7α =  and 0.9α = . 

We find that when the total symbol energy is larger than 

-180 dB J, the curves in Fig. 5(a) show the tightness of 

this approximation. Similar simulations for SU are also 

presented in Fig. 5(b). The exact curves are evaluated 

using Eq. (28), and the approximate curves are plotted 

according to α . For 0.6α =  we use Eq. (30a) to evaluate 

the SEP of SU, and for 0.9α =  we use Eq. (30b). We can 

see that the curves in Fig. 5(b) also converge to the exact 

result in the high-symbol-energy region.

The average SEP of PU and SU in channels with fading 

due to atmospheric turbulence and misalignment are shown 

in Figure 6. The channel parameters are chosen as follows: 
2

1.5
x

σ =  represents medium turbulence, / 6
z

rω =  represents 

normalized beam width, and / 1
s

rσ =  denotes normalized 
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jitter at the receiver. The SEP curves are derived with 

different symbol energies and different power ratios. 

Comparing the curves in Fig. 6 to those in Figs. 3 and 4, 

we can draw similar conclusions, i.e. the SEP decreases 

with increasing symbol energy. Although the SEP of PU 

and SU in the fading channels are much larger than that 

in the ideal channels, the power ratio plays a similar role 

in SEP performance. For PU, larger power ratio means 

better communication quality. For SU, an optimal power 

ratio exists to ensure that the SEP of SU reaches its 

lowest point.

The approximate average SEP of PU and SU in channels 

with fading due to atmospheric turbulence and misalignment 

is shown in Fig. 7. We use the same channel parameters 

as in Fig. 6. In Fig. 7(a) the exact SEP curves of PU 

coincide with the approximate curves, which verifies Eq. 

(24). In Fig. 7(b) we take 0.6α =  to represent 0.5α → , 

and the approximate simulation result is calculated using 

Eq. (31a). Similarly, we use 0.95α =  to represent 1α → , 

and Eq. (31b) is adopted. The curves in Fig. 7(b) verify 

the approximate average SEP expressions in Eq. (31).

5.2. Numerical Simulations with Background Radiation
Now we take background radiation into consideration. 

The simulation parameters are the same as the previous 

ones in the no-background-radiation section, i.e. 1 2
1I I= = . 

Figure 8 demonstrates the SEP curves of PU in the 

background-radiation scenario. We take the background 

radiation energy for each time slot as -195 dB J. In Fig. 8, 

the horizontal axis denotes the total symbol energy of PU 

and SU. These results yield similar conclusions as in the 

no-background-radiation scenario. The communication perfor-

mance of PU can be improved by either increasing total 

transmitted power or α .

To further study the influence of background radiation 

on PU communication performance, we simulate the condi-

tional SEP of PU for different background-radiation powers 

in Fig. 9. Comparing the two groups of parallel curves, we 

can see that for a given α , the SEP performance of PU 

deteriorates with increasing background radiation. Further-

more, this deterioration becomes more serious if we increase 
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the power ratio: If we increase α , the transmitted power of 

SU decreases. For PU, both SU and background radiation 

can be treated as interference. A higher power ratio means 

that background radiation plays a more important part in 

this interference; hence, it has more effect on the performance 

of PU.
In Fig. 10 we illustrate the approximate SEP performance 

of PU with different background-radiation energies, using the 

exact expression of Eq. (46) and the approximate expression 

of Eq. (47) respectively. Three groups of curves show the 

tightness of this approximation. Moreover, when we take 

0.8α =  and gradually increase background-radiation energy 

from -195 dB J to -175 dB J, the approximation becomes 

worse. Since the approximate SEP expression of PU is 

obtained by ignoring items with PU SU b
λ λ λ+ + , the increase 

of background radiation will make the ignored items have 

more impact on the overall SEP performance. Therefore, 

increase in background radiation deteriorates the fidelity of 

the approximation. 

The conditional SEP performance of SU with background 

radiation is provided in Fig. 11. As for the simulations 

in the no-background-radiation scenario, these results are 

presented in three-dimensional coordinates, per Fig. 4. We 

fix the background radiation energy b
E  at -195 dB J in the 

simulation. From this figure, we find that SU can achieve 

better communication performance with increase of total 

transmitted power. If we fix the total symbol energy and 

change the power ratio, there will be an optimal point at 

which SU performs best. This phenomenon can be explained 

using the analysis of Fig. 4.

Finally, Fig. 12 presents the approximate SEP perfor-

mance of SU under different background-radiation energies. 

In Fig. 12(a) the power ratio is 0.9, corresponding to 1α → , 

and the approximate expression of Eq. (54) is adopted to 

obtain the curves. In Fig. 12(b) 0.6α = , and the approxi-

mate SEP is evaluated using Eq. (55). All curves in Fig. 

12 show the tightness of the approximation. Furthermore, 

in Fig. 12(b), we also find that the curves with lower 

background-radiation energy achieve better performance of 

the approximation.  
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VI. CONCLUSION

This paper considers a two-user free-space optical (FSO) 

communication system with a shared detector. We investi-

gate the performance of this system in the absence and 

presence of background radiation. Exact and approximate 

SEP expressions for the two users are derived. Numerical 

simulations are presented, and the results demonstrate that 

both PU and SU can achieve better communication 

performance as the total transmitted power increases. Both 

atmospheric turbulence and misalignment errors can 

deteriorate PU and SU SEP performance. In an ideal 

no-fading channel, we find that the SEP of PU decreases 

monotonically with increasing power ratio; hence we can 

say that the more power distributed to PU, the better 

performance PU achieves. However, this is not true for 

SU: Interestingly, there is an optimal power ratio for 

which SU achieves minimum SEP. We also demonstrate 

that background radiation deteriorates the performance of 

PU, and this deterioration is particularly obvious in the 

region of high power ratio. At last, the simulation results 

also show the high fidelity of our SEP approximation, 

which is useful and necessary for the performance analysis 

of this FSO communication system.

VII. APPENDIX 

Appendix: Proof of Eq. (38)

In this appendix we prove that Eq. (38) holds. First, we 

derive the condition for the following inequality:

( )

( )

( )

( )
2 1

2 1 1 2

ln 1 / ln 1 /

ln 1 / ln 1 /

SU b PU b

SU PU b PU SU b

I I

I I I I

λ λ λ λ

λ λ λ λ λ λ

+ +
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(A.1)

(A.1) is equivalent to

( ) ( )2
ln ln

SU b b
Iλ λ λ+ − ×⎡ ⎤⎣ ⎦

( ) ( )1 2 2
ln ln

PU SU b SU b
I I Iλ λ λ λ λ+ + − + >⎡ ⎤⎣ ⎦
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(A.2)

Further expanding (A.2) and eliminating common item 

( )1 2
ln ln

b PU SU b
I Iλ λ λ λ+ + , we have

( ) ( )2 1 2
ln ln

SU b PU SU b
I I Iλ λ λ λ λ+ + + −
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Shifting the items on the right side of (A.3) and 

combining the common items, (A.3) becomes
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λ  in the expression above can be written as 
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I Iλ λ< . Finally,
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, (A.5)

Thus Eq. (38) holds.
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