Surface Emitting Terahertz Transistor Based on Charge Plasma Oscillation

  • Kumar, Mirgender (Department of Electronics Engineering, Yeungnam University) ;
  • Park, Si-Hyun (Department of Electronics Engineering, Yeungnam University)
  • Received : 2017.01.24
  • Accepted : 2017.07.13
  • Published : 2017.10.25


This simulation based study reports a novel tunable, compact, room temperature terahertz (THz) transistor source, operated on the concept of charge plasma oscillation with the capability of radiating within a terahertz gap. A vertical cavity with a quasi-periodic distributed-Bragg-reflector has been attached to a THz plasma wave transistor to achieve a monochromatic coherent surface emission for single as well as multi-color operation. The resonance frequency has been tuned from 0.5 to 1.5 THz with the variable quality factor of the optical cavity from 5 to 290 and slope efficiency maximized to 11. The proposed surface emitting terahertz transistor is able to satisfy the demand for compact solid state terahertz sources in the field of teratronics. The proposed device can be integrated with Si CMOS technology and has opened the way towards the development of silicon photonics.


  1. K. Thyagarajan and A. Ghatak, Lasers: Fundamentals and Applications, 2nd Edition, by springer (2010).
  2. J. Vasseur, Properties and Applications of Transistors, 1st Edition, by Elsevier (2013).
  3. S. Iezekiel and M. Hammar, "Transistor lasers and their expected applications in microwave photonics," Proc. ICTON, Mo.C5.5 (2015).
  5. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).
  6. Y. Kawano and K. Ishibashi, "An on-chip near-field terahertz probe and detector," Nat. Photonics 2, 618-621 (2008).
  7. C. W. I. Chan, "Towards room-temperature terahertz quantum cascade lasers: directions and design," Ph. D. Thesis, MIT February (2015).
  8. M. Dyakonov and M. Shur, "Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current," Phys. Rev. Lett. 71, 2465-2468 (1993).
  9. B. S. Williams, "Terahertz quantum-cascade lasers," Nat. Photonics, 1, 517-525 (2007).
  10. W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, "Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors," Appl. Phys. Lett. 84, 2331-2333 (2004).
  11. T. Otsuji, Y. M. Meziani, T. Nishimura, T. Suemitsu, W. Knap, E. Sano, T. Asano and V. V. Popov, "Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems," J. Phys.: Condens. Matter 20, 384206 (2008).
  12. S. Vainshtein, J. Kostamovaara, V. Yuferev, W. Knap, A. Fatimy, and N. Diakonova, "Terahertz emission from collapsing field domains during switching of a gallium arsenide bipolar transistor," Appl. Phys. Lett. 99, 176601 (2007).
  13. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, "Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power," Appl. Phys. Lett. 89, 253511 (2006).
  14. W. Stillman, F. Guarin, V. Y. Kachorovskii, N. Pala, S. Rumyantsev, M. S. Shur, and D. Veksler, "Nanometer scale complementary silicon MOSFETs as detectors of terahertz and sub-terahertz radiation," Proc. IEEE Sensors, 934-937 (2007).
  15. E. Gornik and D. C. Tsui, "Far infrared emission from hot electrons in Si inversion layers," Solid State Electron. 21, 139-142 (1978).
  16. D. C. Tsui, E. Gornik, and R. A. Logan, "Far infrared emission from plasma oscillation of Si inversion layers," Solid State Commun. 35, 875-877 (1980).
  17. Y. Deng and M. S. Shur, "Electron mobility and terahertz detection using silicon MOSFETs," Solid State Electron. 47, 1559-1563 (2003).
  18. S. L. Rumyantsev, K. Fobelets, D. Veksler, T. Hackbarth and M. S. Shur, "Strained-Si modulation doped field effect transistors as detectors of terahertz and sub-terahertz radiation," Semicond. Sci. Technol. 23, 105001 (2008).
  19. Y. M. Meziani, E. Garcia-Garcia, J. E. Velazquez-Perez, D. Coquillat, N. Dyakonova, W. Knap, I. Grigelionis, and K. Fobelets, "Terahertz imaging using strained-Si MODFETs as sensors," Solid State Electron. 83, 113-117 (2013).
  20. J. Y. Park, S. H. Kim, and K. R. Kim, "Extended design window of resonant plasma-wave transistor for terahertz emitter by considering degenerate carrier velocity model with Fermi-Dirac distribution," Jpn. J. Appl. Phys. 54, 06FG08 (2015).
  21. M. Kumar, S. Kumar, E. Goel, K. Singh, B. Singh, and S. Jit, "Strain-induced plasma radiation in Terahertz domain in Strained-Si-on-Insulator MOSFETs," IEEE Trans. Plasma Sci. 44, 245-249 (2016).
  22. M. Dyakonov, "Generation and detection of Terahertz radiation by field effect transistors," C. R. Phys. 11, 413-420 (2010).
  23. T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, "Emission and detection of Terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene," IEEE Trans. THz Sci. Technol. 3, 63-74 (2013).
  24. S. J. Orfanidis, Electromagnetic Waves and Antennas, (Rutgers University: Piscataway, NJ, 2008).
  25. K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott, N. Klymko, F. Cardone, L. Tai, S. Koester, M. Cobb, D. Canaperi, B. To, E. Duch, I. Babich, R. Carruthers, P. Saunders, G. Walker, Y. Zhang, M. Steen, and M. Ieong, "Fabrication and mobility characteristics of ultrathin strained Si directly on insulator (SSDOI) MOSFETs," in IEDM Tech. Dig., 3.1.1-3.1.4 (2003).
  26. J. Wang, and M. Lundstrom, "Ballistic transport in high electron mobility transistors," IEEE Trans. Electron Devices 50, 1604-1609 (2003).
  27. S. S. Chung, Y. J. Tsai, C. H. Tsai, P. W. Liu, Y. H. Lin, C. T. Tsai, G. H. Ma, S. C. Chien, and S. W. Sun, "Technology roadmaps on the ballistic transport in strain engineered nanoscale CMOS devices," in 2007 IEEE conf. proceeding on Electron Devices and Solid-State Circuits, 23-25 (2003).