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I. INTRODUCTION

Medical optical applications require knowledge about 

the optical properties in target tissue. The radiance transport 

equation (RTE) is an accurate model for light propagation 

in tissue media. Monte Carlo simulations (MCs) and 

Diffusion equations (DE) are two widely used calculation 

methods to solve the RTE [1-3]. MCS displays advantages 

over other methods due to its flexibility and accuracy. In 

MCS, the light dose is computed by simulating a large 

number of photons’ propagations with random numbers. 

Done this way, MCS is a time-consuming method. For 

instance, CPU-based MCS may take hours to complete one 

accurate calculation.

Recent improvements in the programmability of graphics 

processing units (GPU) have enabled use of the GPU to 

accelerate the MC simulations [4-7]. Alerstam et al. presented 

a GPU-based MC to simulate a homogeneous medium, 

providing a massive 1000 × speed-up over traditional CPU 

code [4]. Additionally, Fang’s MC model achieved a 100 ×  

speed-up by using the GPU to trace photon migration in a 

heterogeneous medium [5]. Moreover, Jiang et al. demon-

strated a GPU cluster-based Monte Carlo simulation [8], 

whose speed up is proportional to the number of GPUs 

used. Recently, Doronin et al. developed an online object 

oriented Monte Carlo computational tool [9], which makes 

the GPU-based simulations more easily accessible for the 

scientific community. Therefore, based on the rapid develop-

ment of GPU and internet technology, MCS is becoming a 

real-time and accessible method.

It is widely acknowledged that MCS is a statistical 

method that relies on an abundance of repeated random 

sampling to reduce the statistical error. When the calculation 

time of MCS is several hours, it is acceptable to take 

several minutes to determine the number of simulated 

photons, which is known as batch method [10] to achieve 

a particular accuracy. However, as the calculation speed 

issue can be overcome by parallel processing based GPU 
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calculation, the batch method emerges as an inconvenience 

to utilize MCS. Therefore, a dynamic accuracy criterion, 

which is also known as history by history statistical 

estimators [10, 11], is highly demanded. In the next section, 

a dynamic accuracy estimation for GPU-based Monte Carlo 

simulation will be described in detail. The simulations are 

performed on a notebook computer (NVidia GeForce 840M, 

8G RAM and 2.0G CPU).

II. METHODS

A tissue optical measurement, consists of three basic 

elements: laser sources, tissue medium and optical sensors 

[1]. Usually, a laser source, with 0
P  mw intensity is 

simulated by a pencil beam with 
0

N  photon package in 

MCS. Each photon packet is initially assigned a weightw , 

equal to unity. The position and detected surface of the 

optical sensor are preset according to the real set-up. The 

tissue medium is described by the following parameters: 

the absorption coefficient 
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, the scattering coefficient 
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 and the anisotropy factor g. The code and 

detailed description of the MCS process can be found 

elsewhere [1-2, 4-5].

Assumptions in MC simulation, after a large number of 

photon tracing, the sensor detects N  photons, and then the 

probe light intensity value is
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detected by the sensor. N  is defined as the detected 

photon number. Based on the Law of Large Numbers, det
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Thus, the relative error can be estimated by the following 

equation:
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In a GPU-based MCS, there are Nt  threads running 

parallel simultaneously, then Eq. (3) can be approximated 

by:
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i

j
w  represents the optical weight for the i

th photon 

detected by the sensor in thread j, N  is defined as the 

detected photon number in thread j.

This work utilizes a widely accepted GPU-based MCS 

code from Ref. [5]. It is worth mentioning that, Eq. (4) 

can easily be applied as the dynamic accuracy estimation 

in the GPU-based MCS code to predict the statistical error 

dynamically. In the next section, MCS for homogenous 

tissue medium and heterogeneous (brain) tissue medium 

will be performed and the dynamic accuracy estimation 

will be tested in these simulation examples.

III. RESULTS

To verify the feasibility of the dynamic accuracy 

estimation, an implementation detail of MCS for a homo-

genous tissue medium is presented here. The statistical 

errors, which are predicted by dynamic accuracy estimation 

and batch method, are also analyzed in this section.

In Fig. 1, a fiber bundle probe is placed on a 

semi-infinite homogenous tissue medium. In the optical 

fiber, the light source is incident to the biological medium 

through fiber F0, which is denoted as source F0, and the 

optical fibers F1-F4, which collect the back scattered light, 

are denoted as sensors F1-F4. The core radius of the fiber 

is 200 μm. The distance of the optical fiber is 280 μm. 

Hence, the distance between source fiber F0 and detect 

fiber F4 is 1120 (4×280) μm. The refractive index for the 

cladding and core are 1.4413 and 1.458, respectively. The 

absorption coefficient, the scattering coefficient and the 

anisotropy factor g for the tissue medium are 0.1 cm-1, 60 

cm-1 and 0.8, respectively.

The distance between sensor F4 and source F0 is the 

largest; hence F4 suffers the most serious error. When the 

sensor F4 has a great computational accuracy, it can be 

considered that the sensors F1-F3 also achieve the ideal 

calculation precision. Therefore, only the statistical error of 

sensor F4 is considered herein. 
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In each thread, there is a global initially assigned variable 

j
rep , equal to zero. When F4 detected a photon package 

with weight w, j
rep  is modified by the following equation: 

( )
2
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j j

rep rep w w= + − . 'w  is the photon package previous 

detected by F4. After the above process, '  w w=  and 

det det
 '

j j
w w w= + . Herein, det j

w  is another global variable, 

which is utilized to record the total detected photon 

package’s weight. Subsequently, the relative statistical 

error can be predicted by the following equation:
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For ease of exposition, the statistical error, which is 

predicted by the dynamic accuracy estimation, denoted as 

dynamic statistical error.

We also applied the traditional statistical error predicted 

method in this work. As the sensor F4’s detected photon 

number equals to a preset number, the MCS process ceases 

and the results det

i
P  are stored in the hard disk. det

i
P

 is 

denoted as the total detected photon package’s weight by 

sensor F4 in one simulation. Ten MCS’s are implemented, 

afterwards, the average detected weight can be calculated 

by 
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=∑ . The statistical error predicted by the 

batch method [10], which is denoted as static statistical 

error, can be described by the following equation:
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n  is equal to 10 and represents ten simulations in this 

study. When the sensor F4’s detected photon number 

reaches a preset quantity, the simulation terminates, and 

the dynamic and the static relative statistical errors are 

calculated based on the above discussion. The simulation 

results are shown in Fig. 1(b). Based on the nature of 

MCS, the error is reduced gradually as the detected photon 

number increases. Indeed, our results are consistent with 

this theory. There is a deviation between the dynamic and 

the static relative statistical error estimation, which is 

about 0.1% to 0.4%. The deviation stems from the 

approximation in Eq. (2). In fact, the power stability of a 

normal laser is about 1%. Therefore, 0.1% to 0.4% 

deviation exerts minimal effect on the actual application. 

It’s worth mentioning that the utilization of dynamic 

accuracy estimation has little influence on the efficiency of 

an MCS program. The computation time is slightly 

increased by about 1/69 compared to the traditional MCS 

without dynamic accuracy estimation.

IV. DISCUSSION

Light dose computation in the tissue medium is important 

for photodynamic therapy (PDT) [12] and functional 

near-infrared spectroscopy (fNIRS) [13]. To improve the 

efficiency of light dose computation, numerous previous 

studies had introduced GPU-based MCS in a biomedical 

model, such as skin [4], brain [5] and mouse [6] numerical 

optical model. With more computing cores, the GPU 

computing performance has been steadily increasing and 

achieves a billion floating-point operations per second 

(GFLOPS). It is apparent that the MCS will be applied to 

the clinical field in the near future. In our work, this 

dynamic accuracy estimation is applied in the MCS for 

brain numerical model to quickly monitor statistical error 

and halt the simulation as the statistical error reaches less 

than 1%.

The brain numerical optical model has been described in 

detail in Ref. [2] and [5]. In our work, the light is input 

from the forehead (as indicated by a solid arrow in Fig. 

2(a)) and the target tissue is prefrontal cortex, which relates 

to higher cognitive function, such as memory and decision 

making. To utilize dynamic accuracy estimation in these 

(a)

(b)

FIG. 1. (a) Schematic presentation of the simulated optical 

measurement for a homogeneous tissue medium. (b) The 

statistical error vs. the detected photon number for fiber F4 

in (a).
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simulations, a virtual sensor is placed at white matter 

(depth of 21 mm, 32 mm apart from the input position, as 

indicated by a dashed arrow in Fig. 2(a)). Clinically, the 

virtual sensor can be placed on the region of interest. The 

logarithm results of light doses inside the brain are shown 

in Fig. 2. The simulated photon numbers are 105, 107, and 

108 for Figs. 2(a)-2(c), and the simulation time is 1.92 s, 

164.73 s and 1515.93 s. When the simulated photon 

number is 105, the calculation accuracy is unsatisfied 

(Error = 4.7%) and the dose distribution image suffers 

from statistical noise, especially in the vicinity of the 

virtual sensor. As the simulated photon number increases, 

the light dose results get more accurate. In Fig. 2(c), the 

statistical error is reduced to 0.3% and the noise of dose 

distribution image is also suppressed. Therefore, our results 

suggest the dynamic accuracy estimation has the ability to 

real-time monitor the noise in the MCs for light dose 

calculation. In practices, the simulation can automatically 

cease as statistical error less than 1%.

Notably, the light is able to penetrate the skull and 

arrive at the white matter of the brain; hence, the light can 

be employed to study the surface of the brain in clinical 

and experimental purposes.

Time-of-flight measurement is another important tool to 

study blood oxygenation level-dependent (BOLD) signal. 

In this kind of measurement setup, a pulse laser, with 

pulse width less than 1 Ps, incident into the head. And a 

high-speed optical sensor, which is placed next to the 

laser incident position, monitors the reflectance from the 

prefrontal cortex. Using the reflectance, one can calculate 

the blood oxygen concentration of the position in the 

vicinity of the optical sensor. This technique is known as 

fNIRS. A time-domain MCS is utilized in our work to 

simulate a pulse laser propagating in the brain and detected 

in reflection mode. A virtual sensor is placed at the 1200 

Ps time-gate, as indicated by the arrow in Fig. 3(b). When 

FIG. 2. The light dose distribution simulation results of the brain. In the simulations, a virtual sensor, is placed inside the brain (as 

indicated by a dashed arrow in (a)) to monitor the statistical error. The statistical error is 4.7%, 1.4% and 0.3% for (a)-(c), respectively. 

As the statistical error is reduced, the statistical noise gets smaller.

FIG. 3. The time-of-flight measurement simulation results. (a) A pulse laser is input from the forehead to a high-speed optical sensor, 

which is 3mm apart from the source position. In the simulation, a virtual sensor is placed at the 1200 Ps time-gate, as illustrated by 

the arrow in (b). (b), (c) and (d) present the time-domain reflectance when the statistical error is 9.2%, 2.8% and 0.8%.
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the detected photon number by the sensor is 107, the 

statistical error is 9.2% and the reflectance curve suffers 

serious noise (see the sub-figure in Fig. 3(b)). As the 

detected photon number is increased to 108 or 109, the 

statistical error is reduced to 2.8% or 0.8% respectively. 

The reflectance curve is very smooth as shown in Fig. 3(d), 

which illustrates that the statistical noise is basically cleared. 

Therefore, the dynamic accuracy estimation can also be 

applied in time-domain MCS to precisely monitor the noise. 

It should be noted that the simulation times for results in 

Figs. 3(b)-3(d) are 135.76 s, 1352.21 s and 13521.57 s.

V. CONCLUSION

In our work, a method named dynamic accuracy esti-

mation has been developed to monitor statistical error in 

the GPU-based MCS. This method is very compatible with 

both the spatial and time-domain MCS. By using the 

dynamic accuracy estimation, the computation time of 

MCS is slightly increased by about 1/69 compared to the 

traditional one. Through using GPU to accelerate the MC 

simulations, we can acquire simulation results (statistical 

error < 1%) within 13521 s for a time-of-flight measurement. 

It is worth noting that our GPU-based MCS is still not yet 

optimized in terms of simulation speed and we expect 

significant simulation speed-up improvements by using a 

multi-GPU platform.

As the GPU-based MCS is becoming more effective, 

the utilization of dynamic accuracy estimation in MCS can 

reflect the current calculation accuracy in real time. In 

addition, the skin and brain are both heterogeneous media, 

but with different optical properties. If we utilized the 

optical properties of skin in the program, the method can 

also be applied for skin simulation. Therefore, our method 

can not only be used in fNIRS, but also in photodynamics 

therapy for skin disease.
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