DOI QR코드

DOI QR Code

Fabrication of Tungsten Powder Mixtures with Nano and Micro Size by Reduction of Tungsten Oxides

텅스텐 산화물의 환원을 이용한 나노/마이크로 크기 텅스텐 혼합분말 제조

  • Kwon, Na-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Jeong, Young-Keun (Graduate School of Convergence Science, Pusan National University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 권나연 (서울과학기술대학교 신소재공학과) ;
  • 정영근 (부산대학교 융합학부) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2017.08.11
  • Accepted : 2017.09.04
  • Published : 2017.10.27

Abstract

An optimum route to fabricate a hybrid-structured W powder composed of nano and micro size powders was investigated. The mixture of nano and micro W powders was prepared by a ball milling and hydrogen reduction process for $WO_3$ and W powders. Microstructural observation for the ball-milled powder mixtures revealed that the nano-sized $WO_3$ particles were homogeneously distributed on the surface of large W powders. The reduction behavior of $WO_3$ powder was analyzed by a temperature programmed reduction method with different heating rates in Ar-10% $H_2$ atmosphere. The activation energies for the reduction of $WO_3$, estimated by the slope of the Kissinger plot from the amount of reaction peak shift with heating rates, were measured as 117.4 kJ/mol and 94.6 kJ/mol depending on reduction steps from $WO_3$ to $WO_2$ and from $WO_2$ to W, respectively. SEM and XRD analysis for the hydrogen-reduced powder mixture showed that the nano-sized W particles were well distributed on the surface of the micro-sized W powders.

Keywords

References

  1. W. D. Klopp, J. Less-Common Met., 42, 261 (1975). https://doi.org/10.1016/0022-5088(75)90046-6
  2. J. W. Davis, V. R. Barabash, A. Makhankov. L. Plochl and K. T. Slattery, J. Nucl. Mater., 258-263, 308 (1998). https://doi.org/10.1016/S0022-3115(98)00285-2
  3. L. J. Kecskes and I. W. Hall, Metall. Mater. Trans. A, 26, 2407 (1995). https://doi.org/10.1007/BF02671254
  4. Z. Zhou, Y. Ma, J. Du and J. Linke, Mater. Sci. Eng. A, 505, 131 (2009). https://doi.org/10.1016/j.msea.2008.11.012
  5. H. Wang, Z. Z. Fang, K. S. Hwang, H. Zhang and D. Siddle, Int. J. Refract. Metals Hard Mater., 28, 312 (2010). https://doi.org/10.1016/j.ijrmhm.2009.11.003
  6. Y. S. Park, S.-T. Oh, J. H. Yang, Y. D. Kim and I.-H. Moon, J. Korean Powder Metall. Inst., 11, 149 (2004) (in Korean). https://doi.org/10.4150/KPMI.2004.11.2.149
  7. R. M. German and E. Olevsky, Int. J. Refract. Metals Hard Mater., 23, 77 (2005). https://doi.org/10.1016/j.ijrmhm.2004.10.002
  8. R. M. German, Metall. Trans. A, 23, 1455 (1992). https://doi.org/10.1007/BF02647329
  9. O. V. Tolochko, O. G. Klimova, S. S. Ordanian, D.-I. Cheong and Y. M. Kim, Rev. Adv. Mater. Sci., 21, 192 (2009).
  10. S. D. Robertson, B. D. McNicol, J. H. De Baas, S. C. Kloet and J. W. Jenkins, J. Cataly. 37, 424 (1975). https://doi.org/10.1016/0021-9517(75)90179-7
  11. T. R. Wilken, W. R. Morcom, C. A. Wert and J. B. Woodhouse, Metall. Trans. B, 7, 589 (1976). https://doi.org/10.1007/BF02698592
  12. H. E. Kissinger, Anal. Chem., 29, 1702 (1957). https://doi.org/10.1021/ac60131a045
  13. M. Ardestani, H. Arabi, H. Razavizaedh, H. R. Rezaie, B. Jamkovic and S. Mentus, Int. J. Powder Metall. Powder Technol., 28, 383 (2010).
  14. P. Taskinen, P. Hytonen and M. H Tikkanen, Scand. J. Metall., 6, 228 (1977).
  15. S J. A. Bustenes, D. U. Sichen and S. Seetharaman, Metall. Trans. B, 24, 475 (1993). https://doi.org/10.1007/BF02666430