DOI QR코드

DOI QR Code

Microstructural Characteristics of Al-Cr Coated Zr Alloy Fabricated by Laser Surface Melting Process

레이저 표면 용융공정으로 Al-Cr 코팅한 Zr합금의 미세조직 특성

  • Kim, Jeong-Min (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Lee, Jae-Cheol (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Kim, Il-Hyun (Light Water Reactor Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hyun-Gil (Light Water Reactor Fuel Technology Division, Korea Atomic Energy Research Institute)
  • Received : 2017.08.21
  • Accepted : 2017.09.23
  • Published : 2017.10.27

Abstract

In this study, the coating of an Al-Cr layer on the surface of a Zircaloy-4 alloy was carried out through plasma pretreatment coating and a laser surface melting process. Two different conditions for laser treatment, severe or minimal surface melting of the Zr alloy substrate, were applied to form the final coating. When there was significant surface melting of the Zr alloy, the solidification microstructure of the newly formed coating layer was mainly composed of needle-shaped $Al_3Zr$, Al(Cr) and $Al_7Cr$ phases. On the other hand, the solidification microstructure of the coating layer was mainly composed of Al(Cr) and $Al_7Cr$ phases when there was minimal surface melting of Zr base in the laser process. However, when the coating was maintained at $1100^{\circ}C$ for 2 hours, significant inter-diffusion occurred between the phases in the coating. As a result, the upper part of the coating layer was observed to mainly consist of $Al_3Zr$ and $Al_8Cr_5$ phases, regardless of the laser treatment conditions.

Keywords

References

  1. D. J. Park, H. G. Kim, J. Y. Park, Y. I. Jung, J. H. Park and Y. H. Koo, Corr. Sci., 94, 459 (2015). https://doi.org/10.1016/j.corsci.2015.02.027
  2. H. G. Kim, I. H. Kim, Y. I. Jung, D. J. Park and J. Y. Park, J. Nucl. Mater., 465, 531 (2015). https://doi.org/10.1016/j.jnucmat.2015.06.030
  3. A. S. Kuprin, V. A. Belous, V. N. Voyevodin, V. V. Bryk, R. L. Vasilenko, V. D. Ovcharenko, E. N. Reshetnyak, G. N. Tolmachova and P. N. V'yugov, J. Nucl. Mater., 465, 400 (2015). https://doi.org/10.1016/j.jnucmat.2015.06.016
  4. K. A. Terrani, C. M. Parish, D. Shin and B. A. Pint, J. Nucl. Mater., 438, 64 (2015).
  5. D. Jin, F. Yang, Z. Zou, L. Gu, X. Zhao, F. Guo and P. Xiao, Surf. Coat. Technol., 287, 55 (2016). https://doi.org/10.1016/j.surfcoat.2015.12.088
  6. C. Chen, J. Zhang, C. Duan, X. Feng and Y. Shen, J. Alloys Compd., 660, 208 (2016). https://doi.org/10.1016/j.jallcom.2015.11.094
  7. J. M. Kim, T. H. Ha, I. H. Kim and H. G. Kim, Metals, 7, 59 (2017). https://doi.org/10.3390/met7020059
  8. J. M. Kim, T. H. Ha, J. S. Park and H. G. Kim, Trans. Nonferrous Met. Soc. China, 26, 2603 (2016). https://doi.org/10.1016/S1003-6326(16)64386-8
  9. T. H. Ha, M. S. Thesis, Applied Mater. Eng., p. 21-22, Hanbat National University, Daejeon, Korea (2017).
  10. H. G. Kim, I. H. Kim, Y. I. Jung, D. J. Park, J. Y. Park and Y. H. Koo, Proceedings of the LWR Fuel Performance Meeting, Charlotte, NC, USA, 840 (2013).
  11. PANDAT. CompuTherm, LLC, Madison, WI, USA. Available online: http://www.computherm.com
  12. T. M. Yue, H. Xie, X. Lin and H. O. Yang, J. Alloys Compd., 509, 3705 (2011). https://doi.org/10.1016/j.jallcom.2010.12.173
  13. H. Okamoto, Phase Diagrams for Binary Alloys, ASM Desk Handbook, Materials Park, OH, USA, (2000). p.29.
  14. M. Zhang, B. Xu and G. Ling, App. Surf. Sci., 331, 1 (2015). https://doi.org/10.1016/j.apsusc.2015.01.071