DOI QR코드

DOI QR Code

Deformable image registration in radiation therapy

  • Oh, Seungjong (Department of Radiation Oncology, Virginia Commonwealth University) ;
  • Kim, Siyong (Department of Radiation Oncology, Virginia Commonwealth University)
  • Received : 2017.06.15
  • Accepted : 2017.06.20
  • Published : 2017.06.30

Abstract

The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

Keywords

References

  1. Mohan R, Bortfeld T. The potential and limitations of IMRT: a physicist's point of view. In: Bortfeld T, Neve W, Schmidt-Ullrich R, Wazer DE, editors. Image-guided IMRT. Heidelberg: Springer; 2006. p. 11-18.
  2. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 2002;53:1337-49. https://doi.org/10.1016/S0360-3016(02)02884-5
  3. Ma CM, Paskalev K. In-room CT techniques for image-guided radiation therapy. Med Dosim 2006;31:30-9. https://doi.org/10.1016/j.meddos.2005.12.010
  4. Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, et al. MRI/linac integration. Radiother Oncol 2008;86:25-9. https://doi.org/10.1016/j.radonc.2007.10.034
  5. Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;59:78-86. https://doi.org/10.1016/j.ijrobp.2003.10.044
  6. Emami B, Sethi A, Petruzzelli GJ. Influence of MRI on target volume delineation and IMRT planning in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2003;57:481-8. https://doi.org/10.1016/S0360-3016(03)00570-4
  7. Hill DL, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol 2001;46:R1-45. https://doi.org/10.1088/0031-9155/46/1/301
  8. Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a survey. IEEE Trans Med Imaging 2013;32:1153-90. https://doi.org/10.1109/TMI.2013.2265603
  9. Broit C. Optimal registration of deformed images [dissertation]. Pennsylvania, PA: University of Pennsylvania; 1981.
  10. Yan D, Vicini F, Wong J, Martinez A. Adaptive radiation therapy. Phys Med Biol 1997;42:123-32. https://doi.org/10.1088/0031-9155/42/1/008
  11. Yan D. Adaptive radiotherapy: merging principle into clinical practice. Semin Radiat Oncol 2010;20:79-83. https://doi.org/10.1016/j.semradonc.2009.11.001
  12. Yan D, Jaffray DA, Wong JW. A model to accumulate fractionated dose in a deforming organ. Int J Radiat Oncol Biol Phys 1999;44:665-75. https://doi.org/10.1016/S0360-3016(99)00007-3
  13. Sohn M, Birkner M, Yan D, Alber M. Modelling individual geometric variation based on dominant eigenmodes of organ deformation: implementation and evaluation. Phys Med Biol 2005;50:5893-908. https://doi.org/10.1088/0031-9155/50/24/009
  14. Christensen GE, Carlson B, Chao KS, et al. Image-based dose planning of intracavitary brachytherapy: registration of serialimaging studies using deformable anatomic templates. Int J Radiat Oncol Biol Phys 2001;51:227-43.
  15. Schaly B, Kempe JA, Bauman GS, Battista JJ, Van Dyk J. Tracking the dose distribution in radiation therapy by accounting for variable anatomy. Phys Med Biol 2004;49:791-805. https://doi.org/10.1088/0031-9155/49/5/010
  16. Velec M, Moseley JL, Eccles CL, et al. Effect of breathing motion on radiotherapy dose accumulation in the abdomen using deformable registration. Int J Radiat Oncol Biol Phys 2011;80:265-72. https://doi.org/10.1016/j.ijrobp.2010.05.023
  17. Nguyen TN, Moseley JL, Dawson LA, Jaffray DA, Brock KK. Adapting liver motion models using a navigator channel technique. Med Phys 2009;36:1061-73. https://doi.org/10.1118/1.3077923
  18. Budiarto E, Keijzer M, Storchi PR, et al. A population-based model to describe geometrical uncertainties in radiotherapy: applied to prostate cases. Phys Med Biol 2011;56:1045-61. https://doi.org/10.1088/0031-9155/56/4/011
  19. Oh S, Jaffray D, Cho YB. A novel method to quantify and compare anatomical shape: application in cervix cancer radiotherapy. Phys Med Biol 2014;59:2687-704. https://doi.org/10.1088/0031-9155/59/11/2687
  20. Shekhar R, Lei P, Castro-Pareja CR, Plishker WL, D'Souza WD. Automatic segmentation of phase-correlated CT scans through nonrigid image registration using geometrically regularized free-form deformation. Med Phys 2007;34:3054-66. https://doi.org/10.1118/1.2740467
  21. Chao KS, Bhide S, Chen H, et al. Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. Int J Radiat Oncol Biol Phys 2007;68:1512-21. https://doi.org/10.1016/j.ijrobp.2007.04.037
  22. Lee C, Langen KM, Lu W, et al. Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration. Radiother Oncol 2008;89:81-8. https://doi.org/10.1016/j.radonc.2008.07.006
  23. Wang H, Garden AS, Zhang L, et al. Performance evaluation of automatic anatomy segmentation algorithm on repeat or four-dimensional computed tomography images using deformable image registration method. Int J Radiat Oncol Biol Phys 2008;72:210-9. https://doi.org/10.1016/j.ijrobp.2008.05.008
  24. Reed VK, Woodward WA, Zhang L, et al. Automatic segmentation of whole breast using atlas approach and deformable image registration. Int J Radiat Oncol Biol Phys 2009;73:1493-500. https://doi.org/10.1016/j.ijrobp.2008.07.001
  25. Guerrero T, Sanders K, Noyola-Martinez J, et al. Quantification of regional ventilation from treatment planning CT. Int J Radiat Oncol Biol Phys 2005;62:630-4. https://doi.org/10.1016/j.ijrobp.2005.03.023
  26. Yaremko BP, Guerrero TM, Noyola-Martinez J, et al. Reduction of normal lung irradiation in locally advanced non-small-cell lung cancer patients, using ventilation images for functional avoidance. Int J Radiat Oncol Biol Phys 2007;68:562-71. https://doi.org/10.1016/j.ijrobp.2007.01.044
  27. Yamamoto T, Kabus S, von Berg J, Lorenz C, Keall PJ. Impact of four-dimensional computed tomography pulmonary ventilation imaging-based functional avoidance for lung cancer radiotherapy. Int J Radiat Oncol Biol Phys 2011;79:279-88. https://doi.org/10.1016/j.ijrobp.2010.02.008
  28. Wognum S, Bondar L, Zolnay AG, Chai X, Hulshof MC, Hoogeman MS, Bel A. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy. Med Phys 2013;40:021702. https://doi.org/10.1118/1.4773040
  29. Wang H, Dong L, Lii MF, et al. Implementation and validation of a three-dimensional deformable registration algorithm for targeted prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 2005;61:725-35. https://doi.org/10.1016/j.ijrobp.2004.07.677
  30. Castillo R, Castillo E, Fuentes D, et al. A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive. Phys Med Biol 2013;58:2861-77. https://doi.org/10.1088/0031-9155/58/9/2861
  31. Brock KK; Deformable Registration Accuracy Consortium. Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys 2010;76:583-96. https://doi.org/10.1016/j.ijrobp.2009.06.031
  32. Kadoya N, Nakajima Y, Saito M, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys 2016;96:422-31. https://doi.org/10.1016/j.ijrobp.2016.05.012
  33. Kashani R, Hub M, Kessler ML, Balter JM. Technical note: a physical phantom for assessment of accuracy of deformable alignment algorithms. Med Phys 2007;34:2785-8. https://doi.org/10.1118/1.2739812
  34. Kashani R, Hub M, Balter JM, et al. Objective assessment of deformable image registration in radiotherapy: a multiinstitution study. Med Phys 2008;35:5944-53. https://doi.org/10.1118/1.3013563
  35. Pukala J, Johnson PB, Shah AP, et al. Benchmarking of five commercial deformable image registration algorithms for head and neck patients. J Appl Clin Med Phys 2016;17:25-40.
  36. Hardcastle N, Tome WA, Cannon DM, et al. A multi-institution evaluation of deformable image registration algorithms for automatic organ delineation in adaptive head and neck radiotherapy. Radiat Oncol 2012;7:90. https://doi.org/10.1186/1748-717X-7-90
  37. Yeo UJ, Taylor ML, Supple JR, et al. Is it sensible to "deform" dose? 3D experimental validation of dose-warping. Med Phys 2012;39:5065-72. https://doi.org/10.1118/1.4736534
  38. Zitova B, Flusser J. Image registration methods: a survey. Image Vis Comput 2003;21:977-1000. https://doi.org/10.1016/S0262-8856(03)00137-9
  39. Kaus MR, Brock KK. Deformable image registration for radiation therapy planning: algorithms and applications. In: Leondes CT, editor. Biomechanical systems technology. Singapore: World Scientific Publishing; 2007. p. 1-28.
  40. Brock KK, Sharpe MB, Dawson LA, Kim SM, Jaffray DA. Accuracy of finite element model-based multi-organ deformable image registration. Med Phys 2005;32:1647-59. https://doi.org/10.1118/1.1915012
  41. Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys 2015;42:40-53.
  42. Wang H, Dong L, O'Daniel J, et al. Validation of an accelerated 'demons' algorithm for deformable image registration in radiation therapy. Phys Med Biol 2005;50:2887-905. https://doi.org/10.1088/0031-9155/50/12/011
  43. Zhong H, Peters T, Siebers JV. FEM-based evaluation of deformable image registration for radiation therapy. Phys Med Biol 2007;52:4721-38. https://doi.org/10.1088/0031-9155/52/16/001

Cited by

  1. Evaluation of CT to CBCT non-linear dense anatomical block matching registration for prostate patients vol.4, pp.4, 2017, https://doi.org/10.1088/2057-1976/aacada
  2. “Patient-specific validation of deformable image registration in radiation therapy: Overview and caveats” vol.45, pp.10, 2018, https://doi.org/10.1002/mp.13162
  3. What will the medical physics of proton therapy look like 10 yr from now? A personal view vol.45, pp.11, 2017, https://doi.org/10.1002/mp.13206
  4. Metal artifacts with dental implants: Evaluation using a dedicated CT/MR oral phantom with registration of the CT and MR images vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-018-36227-0
  5. Geometric and dosimetric evaluation of the differences between rigid and deformable registration to assess interfraction motion during pelvic radiotherapy vol.9, pp.None, 2017, https://doi.org/10.1016/j.phro.2019.02.005
  6. Imaging in Non-neurologic Oncologic Treatment Planning of the Head and Neck vol.6, pp.None, 2017, https://doi.org/10.3389/fvets.2019.00090
  7. Clinical Evaluation of Commercial Atlas-Based Auto-Segmentation in the Head and Neck Region vol.9, pp.None, 2017, https://doi.org/10.3389/fonc.2019.00239
  8. Technical Note: A method for quality assurance of landmark sets for use in evaluation of deformable image registration accuracy of lung parenchyma vol.46, pp.2, 2019, https://doi.org/10.1002/mp.13336
  9. Deep Learning Deformation Initialization for Rapid Groupwise Registration of Inhomogeneous Image Populations vol.13, pp.None, 2017, https://doi.org/10.3389/fninf.2019.00034
  10. Variation in accumulated dose of volumetric‐modulated arc therapy for pancreatic cancer due to different beam starting phases vol.20, pp.10, 2019, https://doi.org/10.1002/acm2.12720
  11. Surface deformation analysis of collapsed lungs using model-based shape matching vol.14, pp.10, 2019, https://doi.org/10.1007/s11548-019-02013-0
  12. Fully experiment-based evaluation of few digital volume correlation techniques vol.90, pp.11, 2017, https://doi.org/10.1063/1.5099572
  13. Biomechanical quality assurance criteria for deformable image registration algorithms used in radiotherapy guidance vol.65, pp.1, 2017, https://doi.org/10.1088/1361-6560/ab501d
  14. Automated air region delineation on MRI for synthetic CT creation vol.65, pp.2, 2017, https://doi.org/10.1088/1361-6560/ab5c5b
  15. Cross-Domain Data Augmentation for Deep-Learning-Based Male Pelvic Organ Segmentation in Cone Beam CT vol.10, pp.3, 2017, https://doi.org/10.3390/app10031154
  16. Dose accumulation with deformable image registration method using helical tomotherapy images for prostate cancer vol.19, pp.1, 2017, https://doi.org/10.1017/s1460396919000256
  17. Comparison of rigid and deformable image registration for nasopharyngeal carcinoma radiotherapy planning with diagnostic position PET/CT vol.38, pp.3, 2017, https://doi.org/10.1007/s11604-019-00911-6
  18. Online daily adaptive proton therapy vol.93, pp.1107, 2017, https://doi.org/10.1259/bjr.20190594
  19. 4D-CT deformable image registration using multiscale unsupervised deep learning vol.65, pp.8, 2017, https://doi.org/10.1088/1361-6560/ab79c4
  20. Evaluation of an x-ray CT polymer gel dosimetry system in the measurement of deformed dose vol.6, pp.3, 2017, https://doi.org/10.1088/2057-1976/ab895a
  21. Synergizing medical imaging and radiotherapy with deep learning vol.1, pp.2, 2017, https://doi.org/10.1088/2632-2153/ab869f
  22. A review of dose calculation approaches with cone beam CT in photon and proton therapy vol.76, pp.None, 2017, https://doi.org/10.1016/j.ejmp.2020.06.017
  23. Evaluating reconstruction algorithms for respiratory motion guided acquisition vol.65, pp.17, 2017, https://doi.org/10.1088/1361-6560/ab98d3
  24. Update on yesterday’s dose—Use of delivery log-files for daily adaptive proton therapy (DAPT) vol.65, pp.19, 2017, https://doi.org/10.1088/1361-6560/ab9f5e
  25. Deforming to Best Practice: Key considerations for deformable image registration in radiotherapy vol.67, pp.4, 2017, https://doi.org/10.1002/jmrs.417
  26. Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers vol.15, pp.1, 2020, https://doi.org/10.1186/s13014-020-01562-y
  27. Accuracy of automatic deformable structure propagation for high-field MRI guided prostate radiotherapy vol.15, pp.1, 2017, https://doi.org/10.1186/s13014-020-1482-y
  28. Synthetic CT in assessment of anatomical and dosimetric variations in radiotherapy - procedure validation vol.26, pp.4, 2020, https://doi.org/10.2478/pjmpe-2020-0022
  29. Pelvic organ motion and dosimetric implications during horizontal patient rotation for prostate radiation therapy vol.48, pp.1, 2017, https://doi.org/10.1002/mp.14579
  30. Cone Beam CT-Based Daily Adaptive Planning or Defined-Filling Protocol for Neoadjuvant Gastric Cancer Radiation Therapy: A Comparison vol.6, pp.1, 2017, https://doi.org/10.1016/j.adro.2020.09.026
  31. Clinical use, challenges, and barriers to implementation of deformable image registration in radiotherapy - the need for guidance and QA tools vol.94, pp.1122, 2017, https://doi.org/10.1259/bjr.20210001
  32. Evaluation of daily dose accumulation with deformable image registration method using helical tomotherapy images for nasopharyngeal carcinoma vol.20, pp.3, 2017, https://doi.org/10.1017/s1460396920000382
  33. Deformation analysis of surface and bronchial structures in intraoperative pneumothorax using deformable mesh registration vol.73, pp.None, 2017, https://doi.org/10.1016/j.media.2021.102181
  34. Evidence-Based Planning Target Volume Margin Reduction for Modern Lung Stereotactic Ablative Radiation Therapy Using Deformable Registration vol.6, pp.6, 2017, https://doi.org/10.1016/j.adro.2021.100750
  35. Development of a novel detection method for changes in lung conditions during radiotherapy using a temporal subtraction technique vol.44, pp.4, 2017, https://doi.org/10.1007/s13246-021-01070-7
  36. Comparison of rigid and deformable coregistration between mpMRI and CT images in radiotherapy of prostate bed cancer recurrence vol.92, pp.None, 2021, https://doi.org/10.1016/j.ejmp.2021.11.010