DOI QR코드

DOI QR Code

Lung Regeneration Therapy for Chronic Obstructive Pulmonary Disease

  • Oh, Dong Kyu (Department of Pulmonary and Critical Care Medicine, Asan Medical Center) ;
  • Kim, You-Sun (Asan Institute for Life Sciences) ;
  • Oh, Yeon-Mok (Department of Pulmonary and Critical Care Medicine, Asan Medical Center)
  • Received : 2016.01.08
  • Accepted : 2016.07.05
  • Published : 2017.01.31

Abstract

Chronic obstructive pulmonary disease (COPD) is a critical condition with high morbidity and mortality. Although several medications are available, there are no definite treatments. However, recent advances in the understanding of stem and progenitor cells in the lung, and molecular changes during re-alveolization after pneumonectomy, have made it possible to envisage the regeneration of damaged lungs. With this background, numerous studies of stem cells and various stimulatory molecules have been undertaken, to try and regenerate destroyed lungs in animal models of COPD. Both the cell and drug therapies show promising results. However, in contrast to the successes in laboratories, no clinical trials have exhibited satisfactory efficacy, although they were generally safe and tolerable. In this article, we review the previous experimental and clinical trials, and summarize the recent advances in lung regeneration therapy for COPD. Furthermore, we discuss the current limitations and future perspectives of this emerging field.

Keywords

References

  1. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease [Internet]. Global Initiative for Chronic Obstructive Lung Disease; 2015 [cited 2015 Dec 21]. Available from: http://www.goldcopd.org/uploads/users/files/GOLD_Report_2015_Sept2.pdf.
  2. Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 2014;20:822-32. https://doi.org/10.1038/nm.3642
  3. Rock J, Konigshoff M. Endogenous lung regeneration: potential and limitations. Am J Respir Crit Care Med 2012;186:1213-9. https://doi.org/10.1164/rccm.201207-1151PP
  4. Adamson IY, Bowden DH. Derivation of type 1 epithelium from type 2 cells in the developing rat lung. Lab Invest 1975;32:736-45.
  5. Voss GJ, Kump DK, Walker JA, Voss SR. Variation in salamander tail regeneration is associated with genetic factors that determine tail morphology. PLoS One 2013;8:e67274. https://doi.org/10.1371/journal.pone.0067274
  6. Laros CD, Westermann CJ. Postpneumonectomy compensatory lung growth. Am Rev Respir Dis 1989;139:1569-70. https://doi.org/10.1164/ajrccm/139.6.1569
  7. Landesberg LJ, Ramalingam R, Lee K, Rosengart TK, Crystal RG. Upregulation of transcription factors in lung in the early phase of postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 2001;281:L1138-49. https://doi.org/10.1152/ajplung.2001.281.5.L1138
  8. Kho AT, Liu K, Visner G, Martin T, Boudreault F. Identification of dedifferentiation and redevelopment phases during postpneumonectomy lung growth. Am J Physiol Lung Cell Mol 2013;305:L542-54. https://doi.org/10.1152/ajplung.00403.2012
  9. Wolff JC, Wilhelm J, Fink L, Seeger W, Voswinckel R. Comparative gene expression profiling of post-natal and postpneumonectomy lung growth. Eur Respir J 2010;35:655-66. https://doi.org/10.1183/09031936.00059709
  10. Roszell B, Mondrinos MJ, Seaton A, Simons DM, Koutzaki SH, Fong GH, et al. Efficient derivation of alveolar type II cells from embryonic stem cells for in vivo application. Tissue Eng Part A 2009;15:3351-65. https://doi.org/10.1089/ten.tea.2008.0664
  11. Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell 2012;10:709-16. https://doi.org/10.1016/j.stem.2012.05.015
  12. Katsha AM, Ohkouchi S, Xin H, Kanehira M, Sun R, Nukiwa T, et al. Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Mol Ther 2011;19:196-203. https://doi.org/10.1038/mt.2010.192
  13. Huh JW, Kim SY, Lee JH, Lee JS, Van Ta Q, Kim M, et al. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol 2011;301:L255-66. https://doi.org/10.1152/ajplung.00253.2010
  14. Schweitzer KS, Johnstone BH, Garrison J, Rush NI, Cooper S, Traktuev DO, et al. Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am J Respir Crit Care Med 2011;183:215-25. https://doi.org/10.1164/rccm.201001-0126OC
  15. Kim YS, Kim JY, Huh JW, Lee SW, Choi SJ, Oh YM. The therapeutic effects of optimal dose of mesenchymal stem cells in a murine model of an elastase induced-emphysema. Tuberc Respir Dis 2015;78:239-45. https://doi.org/10.4046/trd.2015.78.3.239
  16. Kim YS, Kim JY, Shin DM, Huh JW, Lee SW, Oh YM. Tracking intravenous adipose-derived mesenchymal stem cells in a model of elastase-induced emphysema. Tuberc Respir Dis 2014;77:116-23. https://doi.org/10.4046/trd.2014.77.3.116
  17. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 2013;45:e54. https://doi.org/10.1038/emm.2013.94
  18. Guan XJ, Song L, Han FF, Cui ZL, Chen X, Guo XJ, et al. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem 2013;114:323-35. https://doi.org/10.1002/jcb.24377
  19. Massaro GD, Massaro D. Retinoic acid treatment partially rescues failed septation in rats and in mice. Am J Physiol Lung Cell Mol Physiol 2000;278:L955-60. https://doi.org/10.1152/ajplung.2000.278.5.L955
  20. Massaro GD, Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nat Med 1997;3:675-7. https://doi.org/10.1038/nm0697-675
  21. Mason RJ, Leslie CC, McCormick-Shannon K, Deterding RR, Nakamura T, Rubin JS, et al. Hepatocyte growth factor is a growth factor for rat alveolar type II cells. Am J Respir Cell Mol Biol 1994;11:561-7. https://doi.org/10.1165/ajrcmb.11.5.7524567
  22. Shigemura N, Sawa Y, Mizuno S, Ono M, Ohta M, Nakamura T, et al. Amelioration of pulmonary emphysema by in vivo gene transfection with hepatocyte growth factor in rats. Circulation 2005;111:1407-14. https://doi.org/10.1161/01.CIR.0000158433.89103.85
  23. Hegab AE, Kubo H, Yamaya M, Asada M, He M, Fujino N, et al. Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema. Mol Ther 2008;16:1417-26. https://doi.org/10.1038/mt.2008.137
  24. Morino S, Nakamura T, Toba T, Takahashi M, Kushibiki T, Tabata Y, et al. Fibroblast growth factor-2 induces recovery of pulmonary blood flow in canine emphysema models. Chest 2005;128:920-6. https://doi.org/10.1378/chest.128.2.920
  25. Lee BJ, Moon HG, Shin TS, Jeon SG, Lee EY, Gho YS, et al. Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon-gamma. Exp Mol Med 2011;43:169-78. https://doi.org/10.3858/emm.2011.43.4.018
  26. Guzy RD, Stoilov I, Elton TJ, Mecham RP, Ornitz DM. Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin. Am J Respir Cell Mol Biol 2015;52:116-28. https://doi.org/10.1165/rcmb.2014-0184OC
  27. Massaro D, Massaro GD. Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice. Am J Physiol Lung Cell Mol Physiol 2004;287:L1154-9. https://doi.org/10.1152/ajplung.00228.2004
  28. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009;54:2277-86. https://doi.org/10.1016/j.jacc.2009.06.055
  29. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest 2013;143:1590-8. https://doi.org/10.1378/chest.12-2094
  30. Ribeiro-Paes JT, Bilaqui A, Greco OT, Ruiz MA, Marcelino MY, Stessuk T, et al. Unicentric study of cell therapy in chronic obstructive pulmonary disease/pulmonary emphysema. Int J Chron Obstruct Pulmon Dis 2011;6:63-71.
  31. Stessuk T, Ruiz MA, Greco OT, Bilaqui A, Ribeiro-Paes MJ, Ribeiro-Paes JT. Phase I clinical trial of cell therapy in patients with advanced chronic obstructive pulmonary disease: follow-up of up to 3 years. Rev Bras Hematol Hemoter 2013;35:352-7.
  32. Mao JT, Goldin JG, Dermand J, Ibrahim G, Brown MS, Emerick A, et al. A pilot study of all-trans-retinoic acid for the treatment of human emphysema. Am J Respir Crit Care Med 2002;165:718-23. https://doi.org/10.1164/ajrccm.165.5.2106123
  33. Roth MD, Connett JE, D'Armiento JM, Foronjy RF, Friedman PJ, Goldin JG, et al. Feasibility of retinoids for the treatment of emphysema study. Chest 2006;130:1334-45. https://doi.org/10.1378/chest.130.5.1334
  34. Jones PW, Rames AD. TESRA (Treatment of Emphysma with a Selective Retinoid Agonist) study results. Am J Respir Crit Care Med 2011;183:A6418.
  35. Stolk J, Stockley RA, Stoel BC, Cooper BG, Piitulainen E, Seersholm N, et al. Randomised controlled trial for emphysema with a selective agonist of the gamma-type retinoic acid receptor. Eur Respir J 2012;40:306-12. https://doi.org/10.1183/09031936.00161911
  36. Lippman SM, Lee JJ, Karp DD, Vokes EE, Benner SE, Goodman GE, et al. Randomized phase III intergroup trial of isotretinoin to prevent second primary tumors in stage I nonsmall- cell lung cancer. J Natl Cancer Inst 2001;93:605-18. https://doi.org/10.1093/jnci/93.8.605
  37. Warrell RP Jr, de The H, Wang ZY, Degos L. Acute promyelocytic leukemia. N Engl J Med 1993;329:177-89. https://doi.org/10.1056/NEJM199307153290307
  38. Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts. Thorax 2015;70:482-9. https://doi.org/10.1136/thoraxjnl-2014-206084
  39. Tashiro J, Elliot SJ, Gerth DJ, Xia X, Pereira-Simon S, Choi R, et al. Therapeutic benefits of young, but not old, adiposederived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis. Transl Res 2015;166:554-67. https://doi.org/10.1016/j.trsl.2015.09.004

Cited by

  1. RARα and RARγ reciprocally control K5+ progenitor cell expansion in developing salivary glands vol.13, pp.4, 2017, https://doi.org/10.1080/15476278.2017.1358336
  2. Stable COPD Treatment: Where are We? vol.15, pp.2, 2017, https://doi.org/10.1080/15412555.2018.1445214
  3. The Role of Cardiopulmonary Exercise Testing (CPET) in Pulmonary Rehabilitation (PR) of Chronic Obstructive Pulmonary Disease (COPD) Patients vol.15, pp.6, 2017, https://doi.org/10.1080/15412555.2018.1550476
  4. Autologous Infusion of Bone Marrow and Mesenchymal Stromal Cells in Patients with Chronic Obstructive Pulmonary Disease: Phase I Randomized Clinical Trial vol.16, pp.None, 2021, https://doi.org/10.2147/copd.s332613
  5. Mesenchymal stromal cells-based therapy in a murine model of elastase-induced emphysema: Simvastatin as a potential adjuvant in cellular homing vol.70, pp.None, 2017, https://doi.org/10.1016/j.pupt.2021.102075