DOI QR코드

DOI QR Code

The Protective Effects of Dangguibohyul-tang (Dangguibuxuetang) against Disuse Muscle Atrophy in Rats

흰쥐의 불용성 근위축에 당귀보혈탕이 미치는 영향과 그 기전에 관한 고찰

  • Kim, Bum Hoi (Department of Anatomy, College of Korean Medicine and Research Institute of Oriental Medicine, Dong-eui University)
  • 김범회 (동의대학교 한의과대학 해부학교실, 동의대학교 한의학연구소)
  • Received : 2017.09.14
  • Accepted : 2017.09.29
  • Published : 2017.10.31

Abstract

Objectives Oxidative stress, in which antioxidant proteins and scavenger protection are overwhelmed by reactive oxygen species (ROS) production, is recognized as one of central causes of disuse muscle atrophy. In this study, the hypothesis that oral treatment with Dangguibohyul-tang (Dangguibuxuetang) could attenuate immobilization-induced skeletal muscle atrophy was tested. Methods The hindlimb immobilization was performed with casting tape to keep the left ankle joint in a fully extended position. The Rats in Dangguibohyul-tang treated group (DGBHT) (n=10) were orally administrated Dangguibohyul-tang water extract, and rats of Control group (n=10) were given with saline only. After 2 weeks of immobilization, the morphology of right and left gastrocnemius muscles in both DGBHT and Control groups were assessed by hematoxylin and eosin staining. Results Dangguibohyul-tang water extract represented the significant protective effects against the reductions of the left gastrocnemius muscles weight and average cross section area to compared with Control group. Moreover, the treatment with Dangguibohyul-tang extract significantly enhanced the Cu/Zn-SOD activities in gastrocnemius muscle compared with Control group. Conclusions Thses results suggest that Dangguibohyul-tang has protective effects against immobilization-induced muscle atrophy by increasing the Cu/Zn-SOD activities in gastrocnemius muscle.

Keywords

References

  1. Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci. 2002;57(10): 359-65. https://doi.org/10.1093/gerona/57.10.B359
  2. Wall BT, van Loon LJ. Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev. 2013;71(4):195-208. https://doi.org/10.1111/nure.12019
  3. Wall BT, Dirks ML, van Loon LJ. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev. 2013;12(4):898-906. https://doi.org/10.1016/j.arr.2013.07.003
  4. Matsumoto Y, Nakano J, Oga S, Kataoka H, Honda Y, Sakamoto J, Okita M. The non-thermal effects of pulsed ultrasound irradiation on the development of disuse muscle atrophy in rat gastrocnemius muscle. Ultrasound Med Biol. 2014;40(7):1578-86. https://doi.org/10.1016/j.ultrasmedbio.2013.12.031
  5. Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA. Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metab. 2012;303(1):31-9. https://doi.org/10.1152/ajpendo.00609.2011
  6. Powers SK, Smuder AJ, Judge AR. Oxidative stress and disuse muscle atrophy: cause or consequence? Curr Opin Clin Nutr Metab Care. 2012;15(3):240-5. https://doi.org/10.1097/MCO.0b013e328352b4c2
  7. Calvani R, Joseph AM, Adhihetty PJ, Miccheli A, Bossola M, Leeuwenburgh C, Bernabei R, Marzetti E. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem. 2013;394(3):393-414.
  8. Marzetti E, Hwang JC, Lees HA, Wohlgemuth SE, Dupont-Versteegden EE, Carter CS, Bernabei R, Leeuwenburgh C. Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim Biophys Acta. 2010;1800(3):235-44. https://doi.org/10.1016/j.bbagen.2009.05.007
  9. Powers SK. Can antioxidants protect against disuse muscle atrophy? Sports Med. 2014;44:155-65. https://doi.org/10.1007/s40279-014-0255-x
  10. Magne H, Savary-Auzeloux I, Remond D, Dardevet D. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutr Res Rev. 2013; 26(2):149-65. https://doi.org/10.1017/S0954422413000115
  11. Desaphy JF, Pierno S, Liantonio A, Giannuzzi V, Digennaro C, Dinardo MM, Camerino GM, Ricciuti P, Brocca L, Pellegrino MA, Bottinelli R, Camerino DC. Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles. Pharmacol Res. 2010;61(6):553-63. https://doi.org/10.1016/j.phrs.2010.01.012
  12. Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil. 2015;36(6):377-93. https://doi.org/10.1007/s10974-015-9438-9
  13. Lee SI. Herbal Formula Science. Seoul: Young Lim Sa; 1990:172.
  14. Chiu PY, Leung HY, Siu AH, Poon MK, Dong TT, Tsim KW, Ko KM. Dang-Gui Buxue Tang protects against oxidant injury by enhancing cellular glutathione in H9c2 cells: role of glutathione synthesis and regeneration. Planta Med. 2007;73(2):134-41. https://doi.org/10.1055/s-2006-957068
  15. Li YD, Ma YH, Zhao JX, Zhao XK. Protection of ultra-filtration extract from Danggui Buxue Decoction on oxidative damage in cardiomyocytes of neonatal rats and its mechanism. Chin J Integr Med. 2011;17(11):854-9. https://doi.org/10.1007/s11655-011-0897-6
  16. Gong AG, Li N, Lau KM, Lee PS, Yan L, Xu ML, et al, Calycosin orchestrates the functions of Danggui Buxue Tang, a Chinese herbal decoction composing of Astragali Radix and Angelica Sinensis Radix: An evaluation by using calycosin-knock out herbal extract. J Ethnopharmacol 2015;168:150-7. https://doi.org/10.1016/j.jep.2015.03.033
  17. Yang Y, Chin A, Zhang L, Lu J, Wong RW. The role of traditional Chinese medicines in osteogenesis and angiogenesis. Phytother Res. 2014;28(1):1-8. https://doi.org/10.1002/ptr.4959
  18. Liu Y, Zhang HG, Li XH. A Chinese herbal decoction, Danggui Buxue Tang, improves chronic fatigue syndrome induced by food restriction and forced swimming in rats. Phytother Res. 2011;25(12):1825-32. https://doi.org/10.1002/ptr.3499
  19. Xu J, E XQ, Liu HY, Tian J, Yan JL. Angelica Sinensis attenuates inflammatory reaction in experimental rat models having spinal cord injury. Int J Clin Exp Pathol. 2015;8(6):6779-85.
  20. Lei T, Li H, Fang Z, Lin J, Wang S, Xiao L, Yang F, Liu X, Zhang J, Huang Z, Liao W. Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress. Neural Regen Res. 2014;9(3):260-7. https://doi.org/10.4103/1673-5374.128218
  21. Yeh TS, Huang CC, Chuang HL, Hsu MC. Angelica sinensis improves exercise performance and protects against physical fatigue in trained mice. Molecules. 2014;19(4):3926-39. https://doi.org/10.3390/molecules19043926
  22. Shahzad M, Shabbir A, Wojcikowski K, Wohlmuth H, Gobe GC. The Antioxidant Effects of Radix Astragali (Astragalus membranaceus and Related Species) in Protecting Tissues from Injury and Disease. Curr Drug Targets. 2016;17(12):1331-40. https://doi.org/10.2174/1389450116666150907104742
  23. Zhang L, Yang Y, Wang Y, Gao X. Astragalus membranaceus extract promotes neovascularisation by VEGF pathway in rat model of ischemic injury. Pharmazie. 2011;66(2):144-50.
  24. Hong CY, Lo YC, Tan FC, Wei YH, Chen CF. Astragalus membranaceus and Polygonum multiflorum protect rat heart mitochondria against lipid peroxidation. Am J Chin Med. 1994;22(1):63-70. https://doi.org/10.1142/S0192415X94000085
  25. Yeh TS, Chuang HL, Huang WC, Chen YM, Huang CC, Hsu MC. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules. 2014;19(3):2793-807. https://doi.org/10.3390/molecules19032793
  26. Lu L, Wang DT, Shi Y, Yin Y, Wei LB, Zou YC, Huang B, Zhao Y, Wang M, Wan H, Li CJ, Diao JX. Astragalus polysaccharide improves muscle atrophy from dexamethasone-and peroxide-induced injury in vitro. Int J Biol Macromol. 2013;61:7-16. https://doi.org/10.1016/j.ijbiomac.2013.06.027
  27. Udaka J, Terui T, Ohtsuki I, Marumo K, Ishiwata S, Kurihara S, Fukuda N. Depressed contractile performance and reduced fatigue resistance in single skinned fibers of soleus muscle after long-term disuse in rats. J Appl Physiol. 2011;111(4):1080-7. https://doi.org/10.1152/japplphysiol.00330.2011
  28. Shibaguchi T, Yamaguchi Y, Miyaji N, Yoshihara T, Naito H, Goto K, Ohmori D, Yoshioka T, Sugiura T. Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats. Physiol Rep. 2016;4(15):1-8.
  29. Midrio M. The denervated muscle: facts and hypotheses. A historical review. Eur J Appl Physiol. 2006;98(1):1-21. https://doi.org/10.1007/s00421-006-0256-z
  30. Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol. 2002; 92(4):1367-77. https://doi.org/10.1152/japplphysiol.00969.2001
  31. Appell HJ, Duarte JA, Soares JM. Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy. Int J Sports Med. 1997;18(3):157-60. https://doi.org/10.1055/s-2007-972612
  32. Fujita R, Tanaka Y, Saihara Y, Yamakita M, Ando D, Koyama K. Effect of molecular hydrogen saturated alkaline electrolyzed water on disuse muscle atrophy in gastrocnemius muscle. J Physiol Anthropol. 2011;30(5):195-201. https://doi.org/10.2114/jpa2.30.195
  33. Lawler JM, Song W, Demaree SR. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med. 2003; 35(1):9-16. https://doi.org/10.1016/S0891-5849(03)00186-2
  34. Dupont-Versteegden EE. Apoptosis in muscle atrophy: relevance to sarcopenia. Exp Gerontol. 2005;40(6):473-81. https://doi.org/10.1016/j.exger.2005.04.003
  35. Luo Z, Zhong L, Han X, Wang H, Zhong J, Xuan Z. Astragalus membranaceus prevents daunorubicin-induced apoptosis of cultured neonatal cardiomyocytes: role of free radical effect of Astragalus membranaceus on daunorubicin cardiotoxicity. Phytother Res. 2009;23(6):761-7. https://doi.org/10.1002/ptr.2575

Cited by

  1. A Review of Complementary and Alternative Medicine Therapies on Muscular Atrophy: A Literature Review of In Vivo/In Vitro Studies vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/8654719