
International Journal of Internet, Broadcasting and Communication Vol.9 No.1 29-34 (2017)

https://doi.org/10.7236/IJIBC.2017.9.1.29

A Study on Efficient Use of Dual Data Memory Banks in Flight Control

Computers

Doosan Cho

Electrical & Electronic Engineering, Sunchon National University, Korea

dscho@scnu.ac.kr

Abstract

Over the past several decades, embedded system and flight control computer technologies have been

evolved to meet the diverse needs of the mobile device market. Current embedded systems are at the heart of

technologies that can take advantage of small-sized specialized hardware while still providing

high-efficiency performance at low cost. One of these key technologies is multiple memory banks. For

example, a dual memory bank can provide two times more memory bandwidth in the same memory space.

This benefit take lower cost to provide the same bandwidth. However, there is still few software technologies

to support the efficient use of multiple memory banks. In this study, we present a technique to efficiently

exploit multiple memory banks by software support. Specifically, our technique use an interference graph to

optimally allocate data to different memory banks by an optimizing compiler. As a result, the execution time

can be improved upto 7% with the proposed technique.

Keywords: Optimization, Low Power, Embedded System, Data Memory, Performance

1. Introduction

Many embedded applications operate in a real-time environment. This means that the embedded system

must provide a certain level of performance to meet the real-time constraint. To satisfy this requirement,

embedded system should be designed to an application-specific hardware including programmability.

Normally, it achieved by a compiler for optimizing the use of such specialized hardware. Optimizing

compilers consist of various hardware-specific optimization techniques such as instruction scheduling and

register allocation, but there are still empty space for optimizing memory system such as multiple memory

banks.

 It is a well-known fact that there are lots of data parallelism in multimedia applications. Figure 1 shows

some frequently used code for multimedia applications. This is DSP56000 assembly code generated from a

TI’s (Texas Instruments) native compiler. On lines 1, 5, and 7, you can see that move operations perform

data accesses like load/store instructions. The x: or y: of the move instructions indicates dual memory banks

IJIBC 17-1-5

Manuscript Received: Dec. 29, 2016 / Revised: Jan. 10, 2017 / Accepted: Jan. 20, 2017

Corresponding Author: dscho@scnu.ac.kr

Tel:+82-61-750-3577, Fax: +82-62-750-3570

Department of Electrical & Electronic Engineering, Sunchon National University

30 International Journal of Internet, Broadcasting and Communication Vol.9 No.1 29-34 (2017)

X, Y included in TI’s DSP56000. The move command moves data from each bank to a register through

directives x: or y :. As shown in the code, the move command can access data from the dual banks (X and Y)

simultaneously.

 move x:(r0)+, x0 y:(r4)+,y0

 mpyr x0,y0,a x:(r0)+, x0 y:(r4)+,y0

 do #N-1, end

 mpyr x0,y0,a a, x:(r1)+ y:(r4)+,y0

 move x:(r0)+,x0

 end

 move a,x:(r1)+

Figure 1. N real multiplies code from DSP56000

Like VLIW (Very Large Instruction Word) architectures, DSP56000 can also execute multiple operations

in a single instruction independently. In Figure 1, the first move instruction reads the data from address of r0

register and address of r4 register in the memory banks, X & Y. They load data into the registers x0 and y0,

and perform operations to increase the address of the registers r0 and r4 by a word. The second instruction

mpyr x0,y0,a multiplies the two loaded values, x0 and y0, and then it stores them. The other operations on

the same line execute reload the next two values x0, y0 from addresses (r0)+, (r4)+. At this point, we focus

the fact that if two values (x0 and y0) are stored in two different memory banks, then the data can be loaded

at the same time. However, if the two values are stored in the same bank, they must be loaded serialized

memory accesses. As a result, it is required two times more memory accesses by the serialization. Dual

memory banks have two read port to support memory accesses. Therefore, optimizing compiler should

efficiently analyze the program code and generate concurrently accessible data placing into different memory

banks to optimize performance.

2. Background

Figure 2. X/Y Data Memory Bank

A Study on Efficient Use of Dual Data Memory Banks in Flight Control Computers 31

A sort of processor architecture performs data load/store operations in parallel for improving memory

system performance [1]. As an example, we choose TI’s DSP56000 describing in this paper. As shown in

Figure 2, the X/Y data memory banks allows two memory accesses concurrently. Due to this point of the

DSP56000 architecture, two memory access operations can be concurrently executed in one instruction cycle.

However, there is lack of compiler support to place such accessible data in parallel onto different memory

bank, since data placement is determined by the compiler’s code generator [2][3]. Thus, the compiler should

be aware such hardware feature to efficiently use that for performance speedup.

3. Utilization of dual memory banks

Ideally, independently accessible data should be allocated to different memory banks for simultaneous

accesses [4][5]. This is possible by dividing such data into n pieces and assigning them to n different

memory banks when the number of memory banks is n. This data partitioning / allocation is possible by

solving the following two problems. First, we have to define some certain relations between independently

accessible data. In other words, we need a criterion that can guide to determine places of such data to

multiple memory banks at the allocation step. The generated decision from the first step, it maximizes

system performance since they exploit the memory port maximally. Second, we need to define the rules so

that as many pieces of partitioned data occur as possible to ensure the best performance.

To that end, we design our data allocation technique based on an undirected interference graph to

determine partitioning/allocation data from/to multiple memory banks in a program. In our graph, a node

means a unique variable used of a target program, and edge means an interference relation, which indicates

simultaneously accessible them. That is, nodes connected to the edge must be allocated to a set of different

memory bank so that they can be simultaneously accessed to maximize system performance. An example of

the construction of an interference graph is shown in Figure 4.

 while(instructions not empty){

 if(operation == move){ //load or store

 nodeBuild(variables);

 if(node_i and node_j access different variables/arrays)

 if(they have the same live-range)

 add edge to graph;

 }

 }

Figure 3. Algorithm for building interference graph

Figure 3 is a pseudocode to describe the construction of an interference graph. Figure 4(a) shows an

example code for concurrently executing instructions that target the TI’s DSP56000 architecture. Figure 4(b)

shows an example of live range for each variable of the example code. Figure 4(c) illustrates the constructed

interference graph for variables that can be simultaneously accessed on separate memory banks, and the

allocation results for the two banks (X, Y). Although we omitted in the illustrated example, the proposed

interference graph includes weights on the edges, and the weights are incremented by 1 according to the

32 International Journal of Internet, Broadcasting and Communication Vol.9 No.1 29-34 (2017)

number of interferences between the variables.

(a) An example code (b) live-range of each variables

(c) A result of interference graph and bank assignment (d) Optimized data placement

Figure 4. An example of building interference graph

Figure 3 is a pseudocode to describe the construction of an interference graph. Figure 4(a) shows an

example code for concurrently executing instructions that target the TI’s DSP56000 architecture. Figure 4(b)

shows an example of live range for each variable of the example code. Figure 4(c) illustrates the constructed

interference graph for variables that can be simultaneously accessed on separate memory banks, and the

allocation results for the two banks (X, Y). Although we omitted in the illustrated example, the proposed

interference graph includes weights on the edges, and the weights are incremented by 1 according to the

number of interferences between the variables.

 Finally, Figure 4(d) shows the result code reflecting the bank allocation result. Our bank assignment

algorithm based on the interference graph is based on the minimum cost partitioning technique. The least

cost partitioning problem is NP-complete, and we applied a heuristic to select the nodes with the largest

weight (cost) first. That is, in the interference graph, nodes are selected with the highest weight. And then the

selected nodes are removed from the graph. It repeats until there is no nodes. At the each step, the selected

nodes are assigned to separated memory banks.

4. Experimental results

To measure the performance of the proposed algorithm, we used DSP kernel codes such as adpcm,

edge_detect, compress, and histogram [6][7]. The results are also measured using a simulator of TI’s

DSP56000 architecture. The comparison code uses the basic technique, thus all data are into a single

memory bank. A dual port memory bank is used for comparison with the ideal performance result (ideal).

As you can see in Figure 5, the result is improved by an average of 7.5%. The results vary greatly

depending on the nature of the code. The degree of parallelism of the memory operation decreases depending

on the distribution of the control code in the loop. Therefore, the effectiveness of the proposed technique is

diminished. On the other hand, it is confirmed that the kernel code with a large memory access operation can

A Study on Efficient Use of Dual Data Memory Banks in Flight Control Computers 33

achieve a large performance improvement. When the performance of the basic technique is taken as 1, the

ideal technique and the results of the proposed technique are shown in Figure 5. It is confirmed that almost

the same result can be obtained compared with the ideal result.

Figure 5. Result of performance improvement

5. Conclusion

Many digital signal processor manufacturers offer dual memory bank systems, which allow applications

to simultaneously use multiple memory banks. Unfortunately, until now there has been no compiler

technique to support the effective use of this hardware feature. In this paper, we propose a software

technique to support the efficient use of these hardware features. Using our proposed scheme, system

performance can be improved by taking full advantage of dual bank memory.

Acknowledgement

This paper was supported by(in part) Sunchon National University Research Fund in 2016.

References

[1] A. Appel, J. Davidson, and N. Ramsey, “The Zephyr Compiler Infrastructure,” Technical Report at

http://www.cs.virgina.edu/zephyr, University of Virginia, 1998.

[2] G. Araujo, S. Devadas, K. Keutzer, S. Liao, S. Malik, A. Sudarsanam, S. Tjiang, and A. Wang, "Challengers in

code generation for embedded processors," Kluwer Academic Publishers, p48-64, 1995.

[3] G. Araujo and S. Malik, “Code Generation for Fixed-point DSPs,” ACM Transactions on Design Automation of

Electronic Systems, 3(2):136–161, April 1998.

[4] J. Cho, J. Kim, and Y. Paek. "Efficient and Fast Allocation of on-chip dual memory banks," IINTERACT, Feb,

2002.

[5] C. Fraser, “A Retargetable Compiler for ANSI C,” ACM SIGPLAN Notices, 26(10):29–43, Oct. 1991.

[6] S. Jung and Y. Paek, “The Very Portable Optimizer for Digital Signal Processors,” In International Conference

0.9 0.95 1 1.05 1.1 1.15 1.2

adpcm

edge_detect

compress

histogram

ideal result proposed technique

http://www.cs.virgina.edu/zephyr

34 International Journal of Internet, Broadcasting and Communication Vol.9 No.1 29-34 (2017)

on Compilers, Architectures and Synthesis for Embedded Systems, pages 84–92, Nov. 2001.

[7] R. Leupers and P. Marwedel, “Algorithms for Address Assignment in DSP Code Generation,” In Internaltional

Conference on Computer-Aided Design, 1996.

