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Abstract 

Over the past several decades, embedded system and flight control computer technologies have been 

evolved to meet the diverse needs of the mobile device market. Current embedded systems are at the heart of 

technologies that can take advantage of small-sized specialized hardware while still providing 

high-efficiency performance at low cost. One of these key technologies is multiple memory banks. For 

example, a dual memory bank can provide two times more memory bandwidth in the same memory space. 

This benefit take lower cost to provide the same bandwidth. However, there is still few software technologies 

to support the efficient use of multiple memory banks. In this study, we present a technique to efficiently 

exploit multiple memory banks by software support. Specifically, our technique use an interference graph to 

optimally allocate data to different memory banks by an optimizing compiler. As a result, the execution time 

can be improved upto 7% with the proposed technique. 
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1. Introduction 

Many embedded applications operate in a real-time environment. This means that the embedded system 

must provide a certain level of performance to meet the real-time constraint. To satisfy this requirement, 

embedded system should be designed to an application-specific hardware including programmability. 

Normally, it achieved by a compiler for optimizing the use of such specialized hardware. Optimizing 

compilers consist of various hardware-specific optimization techniques such as instruction scheduling and 

register allocation, but there are still empty space for optimizing memory system such as multiple memory 

banks. 

  It is a well-known fact that there are lots of data parallelism in multimedia applications. Figure 1 shows 

some frequently used code for multimedia applications. This is DSP56000 assembly code generated from a 

TI’s (Texas Instruments) native compiler. On lines 1, 5, and 7, you can see that move operations perform 

data accesses like load/store instructions. The x: or y: of the move instructions indicates dual memory banks 
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X, Y included in TI’s DSP56000. The move command moves data from each bank to a register through 

directives x: or y :. As shown in the code, the move command can access data from the dual banks (X and Y) 

simultaneously. 
 

   move  x:(r0)+, x0 y:(r4)+,y0 

   mpyr x0,y0,a x:(r0)+, x0 y:(r4)+,y0 

   do    #N-1, end 

   mpyr x0,y0,a a, x:(r1)+ y:(r4)+,y0 

   move  x:(r0)+,x0 

   end 

   move  a,x:(r1)+ 
 

Figure 1. N real multiplies code from DSP56000  

Like VLIW (Very Large Instruction Word) architectures, DSP56000 can also execute multiple operations 

in a single instruction independently. In Figure 1, the first move instruction reads the data from address of r0 

register and address of r4 register in the memory banks, X & Y. They load data into the registers x0 and y0, 

and perform operations to increase the address of the registers r0 and r4 by a word. The second instruction 

mpyr x0,y0,a multiplies the two loaded values, x0 and y0, and then it stores them. The other operations on 

the same line execute reload the next two values x0, y0 from addresses (r0)+, (r4)+. At this point, we focus 

the fact that if two values (x0 and y0) are stored in two different memory banks, then the data can be loaded 

at the same time. However, if the two values are stored in the same bank, they must be loaded serialized 

memory accesses. As a result, it is required two times more memory accesses by the serialization. Dual 

memory banks have two read port to support memory accesses. Therefore, optimizing compiler should 

efficiently analyze the program code and generate concurrently accessible data placing into different memory 

banks to optimize performance. 

 

2. Background 

 

Figure 2. X/Y Data Memory Bank 
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A sort of processor architecture performs data load/store operations in parallel for improving memory 

system performance [1]. As an example, we choose TI’s DSP56000 describing in this paper. As shown in 

Figure 2, the X/Y data memory banks allows two memory accesses concurrently. Due to this point of the 

DSP56000 architecture, two memory access operations can be concurrently executed in one instruction cycle. 

However, there is lack of compiler support to place such accessible data in parallel onto different memory 

bank, since data placement is determined by the compiler’s code generator [2][3]. Thus, the compiler should 

be aware such hardware feature to efficiently use that for performance speedup.  

 

3. Utilization of dual memory banks 

Ideally, independently accessible data should be allocated to different memory banks for simultaneous 

accesses [4][5]. This is possible by dividing such data into n pieces and assigning them to n different 

memory banks when the number of memory banks is n. This data partitioning / allocation is possible by 

solving the following two problems. First, we have to define some certain relations between independently 

accessible data. In other words, we need a criterion that can guide to determine places of such data to 

multiple memory banks at the allocation step. The generated decision from the first step, it maximizes 

system performance since they exploit the memory port maximally. Second, we need to define the rules so 

that as many pieces of partitioned data occur as possible to ensure the best performance. 

To that end, we design our data allocation technique based on an undirected interference graph to 

determine partitioning/allocation data from/to multiple memory banks in a program. In our graph, a node 

means a unique variable used of a target program, and edge means an interference relation, which indicates 

simultaneously accessible them. That is, nodes connected to the edge must be allocated to a set of different 

memory bank so that they can be simultaneously accessed to maximize system performance. An example of 

the construction of an interference graph is shown in Figure 4. 
 

       while(instructions not empty){ 

            if(operation == move){  //load or store 

            nodeBuild(variables); 

         if(node_i and node_j access different variables/arrays) 

                if(they have the same live-range) 

              add edge to graph; 

     } 

        } 

Figure 3. Algorithm for building interference graph 

Figure 3 is a pseudocode to describe the construction of an interference graph. Figure 4(a) shows an 

example code for concurrently executing instructions that target the TI’s DSP56000 architecture. Figure 4(b) 

shows an example of live range for each variable of the example code. Figure 4(c) illustrates the constructed 

interference graph for variables that can be simultaneously accessed on separate memory banks, and the 

allocation results for the two banks (X, Y). Although we omitted in the illustrated example, the proposed 

interference graph includes weights on the edges, and the weights are incremented by 1 according to the 
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number of interferences between the variables. 

                    

(a) An example code           (b) live-range of each variables 

 

                          
(c) A result of interference graph and bank assignment      (d) Optimized data placement 

 

Figure 4. An example of building interference graph 

Figure 3 is a pseudocode to describe the construction of an interference graph. Figure 4(a) shows an 

example code for concurrently executing instructions that target the TI’s DSP56000 architecture. Figure 4(b) 

shows an example of live range for each variable of the example code. Figure 4(c) illustrates the constructed 

interference graph for variables that can be simultaneously accessed on separate memory banks, and the 

allocation results for the two banks (X, Y). Although we omitted in the illustrated example, the proposed 

interference graph includes weights on the edges, and the weights are incremented by 1 according to the 

number of interferences between the variables. 

  Finally, Figure 4(d) shows the result code reflecting the bank allocation result. Our bank assignment 

algorithm based on the interference graph is based on the minimum cost partitioning technique. The least 

cost partitioning problem is NP-complete, and we applied a heuristic to select the nodes with the largest 

weight (cost) first. That is, in the interference graph, nodes are selected with the highest weight. And then the 

selected nodes are removed from the graph. It repeats until there is no nodes. At the each step, the selected 

nodes are assigned to separated memory banks. 

 

4. Experimental results 

To measure the performance of the proposed algorithm, we used DSP kernel codes such as adpcm, 

edge_detect, compress, and histogram [6][7]. The results are also measured using a simulator of TI’s 

DSP56000 architecture. The comparison code uses the basic technique, thus all data are into a single 

memory bank. A dual port memory bank is used for comparison with the ideal performance result (ideal). 

As you can see in Figure 5, the result is improved by an average of 7.5%. The results vary greatly 

depending on the nature of the code. The degree of parallelism of the memory operation decreases depending 

on the distribution of the control code in the loop. Therefore, the effectiveness of the proposed technique is 

diminished. On the other hand, it is confirmed that the kernel code with a large memory access operation can 
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achieve a large performance improvement. When the performance of the basic technique is taken as 1, the 

ideal technique and the results of the proposed technique are shown in Figure 5. It is confirmed that almost 

the same result can be obtained compared with the ideal result. 

 

 

Figure 5. Result of performance improvement 

 

5. Conclusion 
 

Many digital signal processor manufacturers offer dual memory bank systems, which allow applications 

to simultaneously use multiple memory banks. Unfortunately, until now there has been no compiler 

technique to support the effective use of this hardware feature. In this paper, we propose a software 

technique to support the efficient use of these hardware features. Using our proposed scheme, system 

performance can be improved by taking full advantage of dual bank memory. 
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