DOI QR코드

DOI QR Code

Whole-Body Microbiota of Sea Cucumber (Apostichopus japonicus) from South Korea for Improved Seafood Management

  • Kim, Tae-Yoon (Department of Life Science, Multidisciplinary Genome Institute, Hallym University) ;
  • Lee, Jin-Jae (Department of Life Science, Multidisciplinary Genome Institute, Hallym University) ;
  • Kim, Bong-Soo (Department of Life Science, Multidisciplinary Genome Institute, Hallym University) ;
  • Choi, Sang Ho (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University)
  • Received : 2017.07.27
  • Accepted : 2017.08.28
  • Published : 2017.10.28

Abstract

Sea cucumber (Apostichopus japonicus) is a popular seafood source in Asia, including South Korea, and its consumption has recently increased with recognition of its medicinal properties. However, because raw sea cucumber contains various microbes, its ingestion can cause foodborne illness. Therefore, analysis of the microbiota in the whole body of sea cucumber can extend our understanding of foodborne illness caused by microorganisms and help to better manage products. We collected 40 sea cucumbers from four different sites in August and November, which are known as the maximum production areas in Korea. The microbiota was analyzed by an Illumina MiSeq system, and bacterial amounts were quantified by real-time PCR. The diversity and bacterial amounts in sea cucumber were higher in August than in November. Alpha-, Beta-, and Gammaproteobacteria were common dominant classes in all samples. However, the microbiota composition differed according to sampling time and site. Staphylococcus warneri and Propionibacterium acnes were commonly detected potential pathogens in August and November samples, respectively. The effect of experimental Vibrio parahaemolyticus infection on the indigenous microbiota of sea cucumber was analyzed at different temperatures, revealing clear alterations of Psychrobacter and Moraxella; thus, these shifts can be used as indicators for monitoring infection of sea cucumber. Although further studies are needed to clarify and understand the virulence and mechanisms of the identified pathogens of sea cucumber, our study provides a valuable reference for determining the potential of foodborne illness caused by sea cucumber ingestion and to develop monitoring strategies of products using microbiota information.

Keywords

References

  1. Purcell SW, Samyn Y, Conand C. 2012. Commercially important sea cucumbers of the world. FAO Species Catalogue for Fishery Purposes, No. 6. FAO, Rome.
  2. Choo PS. 2008. Population status, fisheries and trade of sea cucumbers in Asia. Sea cucumbers: a global review of fisheries and trade, pp. 81-118. In Toral-Granda V, Lovatelli A, Vasconcellos M (eds.), FAO Fisheries and Aquaculture Technical Paper, No. 516. FAO, Rome.
  3. Na gase H, Kitazato KT, Sasaki E, Hattori M, Kitazato K, Saito H. 1997. Antithrombin III-independent effect of depolymerized holothurian glycosaminoglycan (DHG) on acute thromboembolism in mice. Thromb. Haemost. 77: 399-402. https://doi.org/10.1055/s-0038-1655975
  4. Fan H. 2001. Sea cucumber: research and development on the health care functioning of sea cucumber and its ingredients. Chin. Mar. Med. 4: 37-42.
  5. Hamel JF, Mercier A. 2013. Apostichopus japonicus. Available from http://www.iucnredlist.org/details/full/180424/0. Accessed December 2016.
  6. Lovatelli A, Conand S, Purcell S, Uthicke S, Hamel JF, Mercier A. 2004. Advances in sea cucumber a quaculture and management. FAO Fisheries Technical Paper, No. 463. FAO, Rome.
  7. King GM, J udd C, K uske CR, Smith C. 2012. Analysis of stomach and gut microbiomes of the eastern oyster (Crassostrea virginica) from coastal Louisiana, USA. PLoS One 7: e51475. https://doi.org/10.1371/journal.pone.0051475
  8. Jiang Y, Yao L, Li F, Tan Z, Zhai Y, Wang L. 2014. Characterization of antimicrobial resistance of Vibrio parahaemolyticus from cultured sea cucumbers (Apostichopus japonicas). Lett. Appl. Microbiol. 59: 147-154. https://doi.org/10.1111/lam.12258
  9. J eong U, Jin F, Choi J, Han J, Choi B, Kang S. 2016. A laboratory-scale recirculating aquaculture system for sea cucumber Apostichopus japonicus. Korean J. Fish. Aquat. Sci. 49: 343-350. [In Korean]
  10. Seo J, Shin I, Lee S. 2011. Effect of dietary inclusion of various plant ingredients as an alternative for Sargassum thunbergii on growth and body composition of juvenile sea cucumber Apostichopus japonicus. Aquacult. Nutr. 17: 549-556. https://doi.org/10.1111/j.1365-2095.2010.00849.x
  11. Yang ZP, Sun JM, Xu Z, Zhang CC, Zhou Q. 2014. Beneficial effects of Metschnikowia sp. C14 on growth and intestinal digestive enzymes of juvenile sea cucumber Apostichopus japonicus. Anim. Feed Sci. Technol. 197: 142-147. https://doi.org/10.1016/j.anifeedsci.2014.07.013
  12. Zh ao Y, Zhang W, Xu W, Mai K, Zhang Y, Liufu Z. 2012. Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 32: 750-755. https://doi.org/10.1016/j.fsi.2012.01.027
  13. Gao F, Li F, Tan J, Yan J, Sun H. 2014. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing. PLoS One 9: e100092. https://doi.org/10.1371/journal.pone.0100092
  14. Sha Y, L iu M, Wang B , Jiang K, Sun G, Wang L . 2016. Gut bacterial diversity of farmed sea cucumbers Apostichopus japonicus with different growth rates. Microbiology 85: 109-115. https://doi.org/10.1134/S0026261716010112
  15. Yang G, Xu Z, Tian X, Dong S, Peng M. 2015. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary beta-glucan supplementation. Biochem. Biophys. Res. Commun. 458: 98-103. https://doi.org/10.1016/j.bbrc.2015.01.074
  16. Korean Statistical Information Service (KOSIS). 2017. Fishery production survey. Available from http://kosis.kr/eng/statisticList/. Accessed December 2016.
  17. Interstate Shellfish Sanitation Conference (ISSC). 1997. National Shellfish Sanitation Program: Guide for the Control of Molluscan Shellfish. Washington, DC.
  18. Naravaneni R, Jamil K. 2005. Rapid detection of food-borne pathogens by using molecular techniques. J. Med. Microbiol. 54: 51-54. https://doi.org/10.1099/jmm.0.45687-0
  19. L ee MJ, Lee JJ, Chung HY, Choi SH, Kim BS. 2016. Analysis of microbiota on abalone (Haliotis discus hannai) in South Korea for improved product management. Int. J. Food Microbiol. 234: 45-52. https://doi.org/10.1016/j.ijfoodmicro.2016.06.032
  20. C hang S, Cui X, Guo M, Tian Y, Xu W, Huang K, et al. 2017. Insoluble dietary fiber from pear pomace can prevent highfat diet-induced obesity in rats mainly by improving the structure of the gut microbiota. J. Microbiol. Biotechnol. 27: 856-867. https://doi.org/10.4014/jmb.1610.10058
  21. Vetrovsky T, B aldrian P. 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8: e57923. https://doi.org/10.1371/journal.pone.0057923
  22. Ne ogi SB, Chowdhury N, Asakura M, Hinenoya A, Haldar S, Saidi SM, et al. 2010. A highly sensitive and specific multiplex PCR assay for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus. Lett. Appl. Microbiol. 51: 293-300. https://doi.org/10.1111/j.1472-765X.2010.02895.x
  23. Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998. https://doi.org/10.1038/nmeth.2604
  24. K im OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721. https://doi.org/10.1099/ijs.0.038075-0
  25. Sch loss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  26. Min J, Choi J, Yang H, Lee S, Ryu J. 2014. Monitoring changes in suspended sediment concentration on the southwestern coast of Korea. J. Coastal Res. 70: 133-138. https://doi.org/10.2112/SI70-023.1
  27. D onn S, Kirkegaard JA, Perera G, Richardson AE, Watt M. 2015. Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol. 17: 610-621. https://doi.org/10.1111/1462-2920.12452
  28. P erez-Pantoja D, Donoso R, Agullo L, Cordova M, Seeger M, Pieper DH, et al. 2012. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ. Microbiol. 14: 1091-1117. https://doi.org/10.1111/j.1462-2920.2011.02613.x
  29. Yoon J, Matsuo Y, Matsuda S, Adachi K, Kasai H, Yokota A. 2007. Rubritalea spongiae sp. nov. and Rubritalea tangerina sp. nov., two carotenoid- and squalene-producing marine bacteria of the family Verrucomicrobiaceae within the phylum 'Verrucomicrobia', isolated from marine animals. Int. J. Syst. Evol. Microbiol. 57: 2337-2343. https://doi.org/10.1099/ijs.0.65243-0
  30. Kim HS, Kim PS, Hyun DW, Lee JY, Kang W, Shin NR, et al. 2016. Pseudahrensia todarodis sp. nov., isolated from the gut of a Japanese flying squid, Todarodes pacificus. Int. J. Syst. Evol. Microbiol. 66: 1389-1393. https://doi.org/10.1099/ijsem.0.000888
  31. Jun g YT, Park S, Lee JS, Oh TK, Yoon JH. 2012. Pseudahrensia aquimaris gen. nov., sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 62: 2056-2061. https://doi.org/10.1099/ijs.0.034793-0
  32. Ro manenko LA, Schumann P, Rohde M, Lysenko AM, Mikhailov VV, Stackebrandt E. 2002. Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. Int. J. Syst. Evol. Microbiol. 52: 1291-1297.
  33. Harris JM. 1993. The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb. Ecol. 25: 195-231.
  34. Kamath U, Singer C, Isenberg HD. 1992. Clinical significance of Staphylococcus warneri bacteremia. J. Clin. Microbiol. 30: 261-264.
  35. L egius B, Landuyt KV, Verschueren P, Westhovens R. 2012. Septic arthritis due to Staphylococcus warneri: a diagnostic challenge. Open Rheumatol. J. 6: 310-311.
  36. Ho rii T, Suzuki Y, Kimura T, Kanno T, Maekawa M. 2001. Intravenous catheter-related septic shock caused by Staphylococcus sciuri and Escherichia vulneris. Scand. J. Infect. Dis. 33: 930-932. https://doi.org/10.1080/00365540110076750
  37. Hedin G, Widerstrom M. 1998. Endocarditis due to Staphylococcus sciuri. Eur. J. Clin. Microbiol. Infect. Dis. 17: 673-675.
  38. St epanovic S, Dakic I, Djukic S, Lozuk B, Svabic-Vlahovic M. 2002. Surgical wound infection associated with Staphylococcus sciuri. Scand. J. Infect. Dis. 34: 685-686. https://doi.org/10.1080/00365540110076949a
  39. Ish ige I, Usui Y, Takemura T, Eishi Y. 1999. Quantitative PCR of mycobacterial and propionibacterial DNA in lymph nodes of Japanese patients with sarcoidosis. Lancet 354: 120-123. https://doi.org/10.1016/S0140-6736(98)12310-3
  40. Sti rling A, Worthington T, Rafiq M, Lambert PA, Elliott TS. 2001. Association between sciatica and Propionibacterium acnes. Lancet 357: 2024-2025. https://doi.org/10.1016/S0140-6736(00)05109-6
  41. C hen FL, Wang GC, Teng SO, Ou TY, Yu FL, Lee WS. 2013. Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases. J. Microbiol. Immunol. Infect. 46: 425-432. https://doi.org/10.1016/j.jmii.2012.08.007
  42. McKew G. 2014. Severe sepsis due to Chryseobacterium indologenes in an immunocompetent adventure traveler. J. Clin. Microbiol. 52: 4100-4101. https://doi.org/10.1128/JCM.01691-14
  43. Cerv ino JM, Hayes RL, Polson SW, Polson SC, Goreau TJ, Martinez RJ, et al. 2004. Relationship of Vibrio species infection and elevated temperatures to yellow blotch/band disease in Caribbean corals. Appl. Environ. Microbiol. 70: 6855-6864. https://doi.org/10.1128/AEM.70.11.6855-6864.2004
  44. Fr anco R, Arenal A, Martin L, Martinez Y, Santiesteban D, Sotolongo J, et al. 2016. Psychrobacter sp. 17-1 enhances growth and survival in early postlarvae of white shrimp, Penaeus vannamei Boone, 1931 (Decapoda, Penaeidae). Crustaceana 89: 1467-1484. https://doi.org/10.1163/15685403-00003595
  45. L i H, Qiao G, Gu JQ, Zhou W, Li Q, Woo SH, et al. 2010. Phenotypic and genetic characterization of bacteria isolated from diseased cultured sea cucumber Apostichopus japonicus in northeastern China. Dis. Aquat. Organ. 91: 223-235. https://doi.org/10.3354/dao02254

Cited by

  1. A Novel Pseudoalteromonas xiamenensis Marine Isolate as a Potential Probiotic: Anti-Inflammatory and Innate Immune Modulatory Effects against Thermal and Pathogenic Stresses vol.19, pp.12, 2017, https://doi.org/10.3390/md19120707