DOI QR코드

DOI QR Code

Intensified Low-Temperature Fischer-Tropsch Synthesis Using Microchannel Reactor Block : A Computational Fluid Dynamics Simulation Study

마이크로채널 반응기를 이용한 강화된 저온 피셔-트롭쉬 합성반응의 전산유체역학적 해석

  • Kshetrimatum, Krishnadash S. (Dept. of Chemical and Biological Engineering, Seoul National University) ;
  • Na, Jonggeol (Dept. of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Seongho (Dept. of Chemical and Biological Engineering, Seoul National University) ;
  • Jung, Ikhwan (Dept. of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Yongkyu (Dept. of Chemical and Biological Engineering, Seoul National University) ;
  • Han, Chonghun (Dept. of Chemical and Biological Engineering, Seoul National University)
  • ;
  • 나종걸 (서울대학교 화학생물공학부) ;
  • 박성호 (서울대학교 화학생물공학부) ;
  • 정익환 (서울대학교 화학생물공학부) ;
  • 이용규 (서울대학교 화학생물공학부) ;
  • 한종훈 (서울대학교 화학생물공학부)
  • Received : 2017.05.31
  • Accepted : 2017.08.25
  • Published : 2017.08.30

Abstract

Fischer-Tropsch synthesis reaction converts syngas (mixture of CO and H2) to valuable hydrocarbon products. Simulation of low temperature Fischer -Tropsch Synthesis reaction and heat transfer at intensified process condition using catalyst filled single and multichannel microchannel reactor is considered. Single channel model simulation indicated potential for process intensification (higher GHSV of $30000hr^{-1}$ in presence of theoretical Cobalt based super-active catalyst) while still achieving CO conversion greater than ~65% and $C_{5+}$ selectivity greater than ~74%. Conjugate heat transfer simulation with multichannel reactor block models considering three different combinations of reactor configuration and coolant type predicted ${\Delta}T_{max}$ equal to 23 K for cross-flow configuration with wall boiling coolant, 15 K for co-current flow configuration with subcooled coolant, and 13 K for co-current flow configuration with wall boiling coolant. In the range of temperature maintained (498 - 521 K), chain growth probability calculated is desirable for low-temperature Fisher-Tropsch Synthesis.

피셔-트롭쉬 합성반응은 CO와 H2의 혼합가스로 이루어진 합성가스를 부가가치가 높은 탄화수소 제품으로 변환시킨다. 본 논문에서는 저온 피셔-트롭쉬 합성반응과 단일, 다중 마이크로채널 반응기에 패킹시킨 촉매를 기반으로 강화된 반응조건의 열전달을 고려하여 전산유체역학 기반의 시뮬레이션을 진행하고 분석하였다. 단일채널모델을 통하여 CO 전환률이 ~65% 이상, $C_{5+}$ 선택도가 ~74% 이상을 달성하면서도 Co 기반의 super-active 촉매를 통해 GHSV를 $30000hr^{-1}$을 달성할 수 있음을 보였다. 다중 마이크로채널 반응기모델에서는 열전달 시뮬레이션을 동시에 해석하여, 3가지의 다른 반응기구조에 대해서, 직교류 wall boiling 냉매를 사용시 ${\Delta}T_{max}$가 23 K였으며 평행유동 subcooled 냉매와 평행유동 wall boiling 냉매의 경우 각각 15 K와 13 K의 ${\Delta}T_{max}$를 보였다. 반응기 전체적으로 498 - 521 K에서 온도제어가 가능했으며 계산된 사슬성장 가능성은 저온 피셔-트롭쉬 합성에 적합한 것으로 보인다.

Keywords

References

  1. Lipski, R.,Smaller-scale GTL enters the mainstream. Gas Processing, Velocys Inc., (2012)
  2. Franz, F. and Hans,T., "Process for the production of paraffin-hydrocarbons with more than one carbon atom", U.S. Patent 1746464, February 11,(1930).
  3. Almeida, L.C., Sanz, O., D'olhaberriague, J, Yunes, S., and Montes, M.,"Microchannel reactor for Fischer-Tropsch synthesis: Adaptation of a commercial unit for testing microchannel blocks", Fuel, 110, 171-177, (2013). https://doi.org/10.1016/j.fuel.2012.09.063
  4. Cao, C., Hu, J., Li, S., Wilcox, W., and Wang, Y, "Intensified Fischer-Tropsch synthesis process with microchannel catalytic reactors", Catalysis Today, 140(3), 149-15, (2009). https://doi.org/10.1016/j.cattod.2008.10.016
  5. Deshmukh, S.R., Tonkovich, A.L.Y., Jarosch, K.T., Schrander, L., Fitzgerald, S.P., Kilanowski, D.R., Lerou, J.J., Mazanec, T.J., "Scale-up of microchannel reactors for Fischer- Tropsch synthesis", Industrial & Engineering Chemistry Research, 49(21), 10883-10888, (2010) https://doi.org/10.1021/ie100518u
  6. Holmen, A., Venvik, H.J., Myrstad,R., Zhu,J., and Chen, D., "Monolithic, microchannel and carbon nanofibers/carbon felt reactors for syngas conversion by Fischer-Tropsch synthesis", Catalysis Today, 216, 150-157, (2013). https://doi.org/10.1016/j.cattod.2013.06.006
  7. Myrstad, R., Eri, S., Pfeifer, P., Rytter, E., and Holmen, A.,"Fischer-Tropsch synthesis in a microstructured reactor", Catalysis Today, 147, S301-S304, (2009). https://doi.org/10.1016/j.cattod.2009.07.011
  8. Kshetrimayum, K.S., Jung, I., Na., J., Park, S., Lee, Y., Park, S., Lee, C.-J., and Han, C., "CFD Simulation of Microchannel Reactor Block for Fischer-Tropsch Synthesis: Effect of Coolant Type and Wall Boiling Condition on Reactor Temperature", Industrial & Engineering Chemistry Research, 55(3), 543-554, (2016). https://doi.org/10.1021/acs.iecr.5b03283
  9. Park, S., Jung, I., Lee, U., Na., J., Kshetrimayum, K.S., Lee, Y., Lee, C.-J., and Han, C., "Design and modeling of large-scale crosscurrent multichannel Fischer-Tropsch reactor using channel decomposition and cell-coupling method", Chemical Engineering Science, 134, 448-456, (2015). https://doi.org/10.1016/j.ces.2015.05.057
  10. Harris, R.A., "Commercializing and deploying microchannel FT reactors for smaller scale GTL facilities", AIChE Process Development Symposium Houston ,USA, (2015).
  11. Arzamendi, G., Dieguez, P., Montes, M., Odriozola, J., Sousa-Aguiar, E.F., and Gandia, L, "Computational fluid dynamics study of heat transfer in a microchannel reactor for low-temperature Fischer-Tropsch synthesis", Chemical Engineering Journal, 160(3), 915-922, (2010). https://doi.org/10.1016/j.cej.2009.12.028
  12. Jarosch, K.T., Tonkovich, A.L., Perry, S.T., Kuhlmann, D., and Wang, Y., "Microchannel reactors for intensifying gas-to-liquid technology", ACS Symposium Series, Washington DC, (2005).
  13. Na, J., Jung, I., Kshetrimayum, K.S., Park, S., Park, C., Han, C.,"Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor", Korean Chemical Engineering Research, 52(6), 826-833, (2014). https://doi.org/10.9713/kcer.2014.52.6.826
  14. Lee, Y., Jung, I., Na, J., Park, S., , Kshetrimayum, K.S., and Han, C., "Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics", Korean Chemical Engineering Research, 53(6), 818-823, (2015). https://doi.org/10.9713/kcer.2015.53.6.818
  15. Kshetrimayum, K.S., Park, S., Jung, I., Na, J., and Han, C.,"Simulation Study of Heat Transfer Enhancement due to Wall Boiling Condition in a Microchannel Reactor Block for Fischer-Tropsch Synthesis", Computer Aided Chemical Engineering, 1355-1360, (2015).
  16. Jung, I., Kshetrimayum, K.S., Park, S., Na., J., Lee, Y., An, J., Park, S., Lee, C.-J., and Han, C., "Computational Fluid Dynamics Based Optimal Design of Guiding Channel Geometry in U-Type Coolant Layer Manifold of Large-Scale Microchannel Fischer-Tropsch Reactor" Industrial & Engineering Chemistry Research, 55(2), 505-515, (2016). https://doi.org/10.1021/acs.iecr.5b03313
  17. Na, J., Kshetrimayum, K.S., Lee, U., and Han, C., "Multi-objective optimization of microchannel reactor for Fischer-Tropsch synthesis using computational fluid dynamics and genetic algorithm", Chemical Engineering Journal, 313, 1521-1534, (2017). https://doi.org/10.1016/j.cej.2016.11.040
  18. Park, S., Jung, I., Lee, Y., Kshetrimayum, K.S., Na., J., Park, S.,Lee, Shin, S., Ha, D., Lee, Y., Chung, J., Lee, C.-J., and Han, C.,, "Design of microchannel Fischer-Tropsch reactor using cell-coupling method: Effect of flow configurations and distribution", Chemical Engineering Science, 143, 63-75, (2016). https://doi.org/10.1016/j.ces.2015.12.012
  19. Jung, I., Na, J., Park, S., Jeon, J., Mo, Y., Yi, J., Chung, J., and Han, C., "Optimal design of a large scale Fischer-Tropsch microchannel reactor module using a cell-coupling method", Fuel Processing Technology, 159, 448-459, (2017). https://doi.org/10.1016/j.fuproc.2016.12.004
  20. Tonkovich, A.L., Yuschak, T., Neagle, P.W., Marco, J.L., Marco, J.D., Marchiando, M.A., Keyes, L.W., Deshmukh, S., and Luzenski, R.J.,"Laminated, Leak-Resistant Chemical Processors; Methods of Making, and Methods of Operating", US Patent 0132290 A1, (2011).
  21. Visconti, C.G., Tronconi, E., Lietti, L., Forzatti, P, Rossini, S., and Zennaro, R.,"Detailed kinetics of the Fischer-Tropsch synthesis on cobalt catalysts based on H-assisted CO activation", Topics in Catalysis, 54(13-15), 786-800, (2011). https://doi.org/10.1007/s11244-011-9700-3
  22. Eliason, S. and C. Bartholomew, "Reaction and deactivation kinetics for Fischer-Tropsch synthesis on unpromoted and potassium-promoted iron catalysts", Applied Catalysis A: General, 186(1), 229-243, (1999). https://doi.org/10.1016/S0926-860X(99)00146-5
  23. Iglesia, E., Reyes, S.C., Madon, R.J., and Soled, S.L., "Selectivity Control and Catalyst Design in the Fischer-Tropsch", Advances in Catalysis, 39, 221, (1993).
  24. Yates, I.C. and Satterfield, C.N. "Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst", Energy & Fuels, 5(1), 168-173, (1991). https://doi.org/10.1021/ef00025a029
  25. Marvast, M.A., Sohrabi, M., Zarrinpashne, S., and Baghmisheh, G.,"Fischer-Tropsch Synthesis: Modeling and Performance Study for Fe HZSM5 Bifunctional Catalyst", Chemical engineering & technology, 28(1), 78-86, (2005). https://doi.org/10.1002/ceat.200407013
  26. Shin, M.-S., Park, N., Park, M.-J., Jun, K.-W., and Ha, K.-S., "Modeling a channel-type reactor with a plate heat exchanger for cobalt- based Fischer-Tropsch synthesis" Fuel Processing Technology, 118, 235-243, (2014). https://doi.org/10.1016/j.fuproc.2013.09.006
  27. Shin, M.-S., Park, N., Park, Cheon, J.-Y., Kang, J.K., Jun, K.-W., and Ha, K.-S.,, "Computational fluid dynamics model of a modular multichannel reactor for Fischer-Tropsch synthesis: Maximum utilization of catalytic bed by microchannel heat exchangers", Chemical Engineering Journal, 234, 23-32, (2013) https://doi.org/10.1016/j.cej.2013.08.064
  28. Kurul, N. and M. Podowski. "On the modeling of multidimensional effects in boiling channels" ANS Proceeding of the 27th National Heat Transfer Conference, (1991).
  29. Krepper, E. and R. Rzehak, "CFD for subcooled flow boiling: Simulation of DEBORA experiments", Nuclear Engineering and Design, 2011. 241(9): p. 3851-3866. https://doi.org/10.1016/j.nucengdes.2011.07.003
  30. Perry Robert, H., W. Green Don, and O. Maloney James, Perry's chemical engineers' handbook. Mc Graw-Hills New York, 7th ed., 56-64, (1997).
  31. Song, H.-S., Ramakrishna, D., Trinh, S., and Wright, H., "Operating strategies for Fischer- Tropsch reactors: A model-directed study", Korean Journal of Chemical Engineering, 21(2), 308-317, (2004). https://doi.org/10.1007/BF02705414
  32. Zhu, X., Lu, X., Liu, X., Hildebrandt, D., and Glasser, D., "Heat transfer study with and without Fishcer-Tropsch reaction in a fixed bed reactror with TiO2, SiO2, and SiC supported cobalt catalyst", Chemical Engineering Science, 247, 75-84, (2014) https://doi.org/10.1016/j.cej.2014.02.089