DOI QR코드

DOI QR Code

Antioxidant properties and oxidative stability of celery seeds ethanol extract using in vitro assays and oil-in-water emulsion

샐러리 종자 에탄올 추출물의 산화방지 활성 및 수중유적형 유화계에서의 산화안정성

  • Kim, Min-Ah (Department of Food and Nutrition, College of Health Science, Kangwon National University) ;
  • Han, Chang Hee (Department of Food and Nutrition, College of Health Science, Kangwon National University) ;
  • Lee, Jae-Cheol (Department of Food and Nutrition, College of Health Science, Kangwon National University) ;
  • Kim, Mi-Ja (Department of Food and Nutrition, College of Health Science, Kangwon National University)
  • 김민아 (강원대학교 보건과학대학 식품영양학과) ;
  • 한창희 (강원대학교 보건과학대학 식품영양학과) ;
  • 이재철 (강원대학교 보건과학대학 식품영양학과) ;
  • 김미자 (강원대학교 보건과학대학 식품영양학과)
  • Received : 2017.05.31
  • Accepted : 2017.07.11
  • Published : 2017.10.31

Abstract

This study was conducted to examine the antioxidant activity of 80% ethanol extract of celery seeds and to verify the effectiveness of extracts as a natural antioxidant to improve the stability of oil-in-water emulsions. The radical scavenging activity of 80% ethanol extract of celery seeds was significantly increased at 0.125, 0.25, and 0.5 mg/mL (p<0.05). Additionally, the total phenolic content and FRAP value were equal to $8.2{\pm}2.3mol$ tannic acid equivalent/g extract and $195.0{\pm}12.6mol$ ascorbic acid equivalent/g extract, respectively. The headspace oxygen content was significantly higher in the group treated with 80% ethanol extract of celery seeds than in the control group (p<0.05). The amounts of lipid hydroperoxide and conjugated diene were significantly reduced compared to the control group (p<0.05). The results showed that the extract of celery seeds had excellent antioxidant ability and it could be used as a natural antioxidant owing to the increased oxidative stability of the emulsified product.

본 연구는 생리활성이 우수하다고 알려진 향신료 중 샐러리 종자 80% 에탄올 추출물의 항산화능과 산화안정성을 관찰하였다. 샐러리 종자 80% 에탄올 추출물의 처리에 의해 DPPH 라디칼 소거능은 농도 의존적으로 유의적으로 증가하는 것으로 나타났다. 또한 ABTS 양이온 라디칼 소거활성 역시 농도 의존적으로 라디칼 소거활성이 유의적으로 증가하는 것으로 나타났다. 총 페놀 함량은 $8.2{\pm}2.3mol$ 타닌산 당량/g extract로 나타났고, FRAP 환원력은 $195.0{\pm}12.6mol$ 아스코브산 당량/g extract로 나타났다. 수중유적형 유화계에서의 헤드드스페이스 산소 함량은 대조군의 산소 잔존율 보다 샐러리 종자 80% 에탄올 추출물 처리군 산소 잔존율이 유의적으로 높았고, CDA가는 광산화가 진행됨에 따라 대조군에 비해 지방산화시 발생되는 conjugated dienes의 생성량이 유의적으로 감소하였으며, 지방질 하이드로과산화물의 양 역시 샐러리 종자 80% 에탄올 추출물 처리군이 대조군 보다 유의적으로 감소하는 것으로 나타났다. 이러한 샐러리 종자의 항산화 및 수중유적형에서의 산화안정성은 샐러리 종자 80% 에탄올 추출물에 존재하는 향기성분들에 의해 유래된 것으로 사료된다. 이와 같은 결과로 샐러리 종자 에탄올 추출물은 항산화능이 우수하여 산화안정성이 중시되는 식품에 천연항산화제로서 사용할 수 있을 것으로 사료된다.

Keywords

References

  1. Tapsell LC, Hemphill I, Cobiac L, Patch CS, Sullivan DR, Fenech M, Roodenrys S, Keogh JB, Clifton PM, Williams PG, Fazio VA, Inge KE. Health benefits of herbs and spices: The past, the present, the future. Med. J. Aust. 185: S4-24 (2006)
  2. Murdok L. A busy cook's guide to spices: How to introduce new flavors to everyday meals. Bellwether Books, Englewood, CO, USA. p.14 (2001)
  3. Sowbhagya HB. Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): An overview. Crit. Rev. Food Sci. Nutr. 54: 389-398 (2014) https://doi.org/10.1080/10408398.2011.586740
  4. Zheng GQ, Kenney PM, Zhang J, Lam LK. Chemoprevention of benzo[a]pyrene-induced forestomach cancer in mice by natural phthalides from celery seed oil. Nutr. Cancer 19: 77-86 (1993) https://doi.org/10.1080/01635589309514238
  5. Tsi D, Das NP, Tan BK. Effects of aqueous celery (Apium graveolens) extract on lipid parameters of rats fed a high fat diet. Planta Med. 61: 18-21 (1995) https://doi.org/10.1055/s-2006-957990
  6. Si Y, Guo S, Fang Y, Qin S, Li F, Zhang Y, Jiao P, Zhang C, Gao L. Celery seed extract blocks peroxide injury in macrophages via Notch1/NF-${\kappa}B$ pathway. Am. J. Chin. Med. 43: 443-55 (2015) https://doi.org/10.1142/S0192415X15500287
  7. Kulshrestha VK, Singh N, Saxena RC, Kohli RP. A study of central pharmacological activity of an alkaloid fraction of Apium graveolens. Indian J. Med. Res. 58: 99-102 (1970)
  8. Jain SR, Jain MR. Effects of some common essential oils pathogenic fungi. Planta Med. 24: 127-132 (1973) https://doi.org/10.1055/s-0028-1099479
  9. Madhavi D, Kagan D, Rao V, Murray M. A pilot study to evaluate the antihypertensive effect of a celery extract in mild to moderate hypertensive patients. Nat. Med. J. 4: 1-3 (2013)
  10. Moure A, Cruz JM, Franco D, Dominguez JM, SineiroJ, Dominguez H, Nunez MJ, Parajo JC. Natural antioxidant from residual sources. Food Chem. 72: 145-171 (2001) https://doi.org/10.1016/S0308-8146(00)00223-5
  11. Kim JG, Kang YM, Eum GS, Go YM, Kim TY. Antioxidative activity and antimicrobial activity of extracts from medicinal plants (Akebia quinate Decaisn, Scirusflu-viatilis A. Gray, Gardenia jasminoides for Grandiflora Makino). J. Agr. Life Sci. 37: 69-75 (2003)
  12. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1198-1200 (1958)
  13. van den Berg R, Haenen GR, Van den Berg H, Bast A. Applicability of an improved trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66: 511-517 (1999) https://doi.org/10.1016/S0308-8146(99)00089-8
  14. Folin O, Denis W. On phosphotungasticphospho molybdic compounds as color reagent. J. Biol. Chem. 12: 239-243 (1912)
  15. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 230: 70-79 (1996)
  16. Yi BR, Ka HJ, Kim MJ, Lee JH. Effects of curcumin on the oxidative stability of oils depending on type of matrix, photosensitizer, and temperature. J. Am. Oil Chem. Soc. 92: 685-691 (2015) https://doi.org/10.1007/s11746-015-2639-y
  17. Kim MJ, Park MH, Jeong MK, Yeo JD, Cho WI, Chang PS, Chung JH, Lee JH. Radical scavenging acticity and anti-obesity effects in 3T3-L1 preadipocyte differentiation of ssuk (Artemisia princeps Pamp.) extract. Food Sci. Biotechnol. 19: 535-540 (2010) https://doi.org/10.1007/s10068-010-0074-2
  18. Mei L, McClements DJ, Wu J, Decker EA. Iron-catalyzed lipid oxidation in emulsion as affected by surfactant, pH and NaCl. Food Chem. 61: 307-312 (1998) https://doi.org/10.1016/S0308-8146(97)00058-7
  19. Kim TS, Decker EA, Lee JH. Effects of chlorophyll photosensitisation on the oxidative stability in oil-in-water emulsions. Food Chem. 133: 1449-1455 (2012) https://doi.org/10.1016/j.foodchem.2012.02.033
  20. Yang SO, Chang PS, Lee JH. Effects of riboflavin-photosensitized oxidation on the formation of volatile compounds in oleic acid model system. Korean J. Food Sci. Technol. 37: 717-722 (2005)
  21. Lee JH. Photooxidation and photosensitized oxidation in linoleic acid, milk, and lard. PhD thesis, The Ohio State University, Columbus, OH, USA (2002)
  22. Kim J, Kim SA, Yun WK, Kim EJ, Woo MK, Lee MS. Antioxidantive effect of ethanol extract for 5 kinds of spice. J. Korean Soc. Food Sci. Nutr. 33: 1426-1431 (2004) https://doi.org/10.3746/jkfn.2004.33.9.1426
  23. Ahn CK, Lee YC, Yeom CA. Antioxidant and mixture of curry spice extracts obtained by solvent extraction. Korean J. Food Sci. Technol. 32: 491-499 (2000)
  24. Jung WS, Chung IM, Kim SH, Kim MY, Ahmad A, Praveen N. In vitro antioxidant activity, total phenolics and flavonoids from celery (Apium graveolens) leaves. J. Med. Plants Res. 5: 7022-7030 (2011)
  25. Favre HA, Powell WH. Nomenclature of organic chemistry: IUPAC recommendations and preferred names 2013 (Blue Book). Chem. Sci. 139-597 (2014)
  26. Joerg G. PDR for Herbal Medicines. 3rd ed. Thomson PDR Inc., Montvale, NJ, USA. p. 802 (2004)
  27. Shulgin AT, Sargent T, Naranjo C. The chemistry and psychopharmacology of nutmeg and of several related phenylisopropylamines. Psychopharmacol. Bull. 4: 13 (1967)
  28. Iscan G, Kirimer N, Demirci F, Demirci B, Noma Y, Husnu K. Baser C. Biotransformation of (-)-(R)-${\alpha}$-phellandrene: Antimicrobial activity of Its major metabolite. Chem. Biodivers. 9: 1525-1532 (2012) https://doi.org/10.1002/cbdv.201100283
  29. Lima DF, Brandao MS, Moura JB, Leitao JM, Carvalho FA, Miura LM, Leite JR, Sousa DP, Almeida FR. Antinociceptive activity of the monoterpene ${\alpha}$-phellandrene in rodents: Possible mechanisms of action. J. Pharm. Pharmacol. 64: 283-292 (2012) https://doi.org/10.1111/j.2042-7158.2011.01401.x