DOI QR코드

DOI QR Code

Characterization of Paenibacillus sp. MBT213 Isolated from Raw Milk and Its Ability to Convert Ginsenoside Rb1 into Ginsenoside Rd from Panax ginseng

  • Renchinkhand, Gereltuya (Department of Animal Biosystem Science, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Cho, Soo Hyun (PCPIA BIT CO., Ltd.) ;
  • Urgamal, Magsar (Department of Animal Biosystem Science, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Park, Young W (Agricultural Research Station, Fort Valley State University, Department of Food Science & Technology, University of Georgia) ;
  • Nam, Joong Hyeon (Department of Animal Biosystem Science, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Bae, Hyung Churl (Department of Animal Biosystem Science, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Song, Gyu Yong (College of Pharmacy, Chungnam National University) ;
  • Nam, Myoung Soo (Department of Animal Biosystem Science, College of Agriculture and Life Sciences, Chungnam National University)
  • Received : 2017.07.03
  • Accepted : 2017.09.20
  • Published : 2017.10.31

Abstract

This study was conducted to isolate and characterize Paenibacillus sp. MBT213 possessing ${\beta}$-glucosidase activity from raw milk, and examine the enzymatic capacity on the hydrolysis of a major ginsenoside ($Rb_1$). Strain MBT213 was found to have a high hydrolytic ability on ginsenoside $Rb_1$ by Esculin Iron Agar test. 16S rDNA analysis revealed that MBT213 was Paenibacillu sp. Crude enzyme of MBT213 strain exhibited high conversion capacity on ginsenoside $Rb_1$ into ginsenoside Rd proven by TLC and HPLC analyses. The API ZYM kit confirmed that Paenibacillu sp. MBT213 exerted higher ${\beta}$-glucosidase and ${\beta}$-galactosidase activity than other strains. Optimum pH and temperature for crude enzyme were found at 7.0 and $35^{\circ}C$ in hydrolysis of ginsenoside $Rb_1$. After 10 d of optimal reaction conditions for the crude enzyme, ginsenoside $Rb_1$ fully converted to ginsenoside Rd. Ginseng roots (20%) were fermented for 14 d, and analyzed by HPLC showed that amount of ginsenoside $Rb_1$ significantly decreased, while that of ginsenoside Rd was significantly increased. The study confirmed that the ${\beta}$-glucosidase produced by Paenibacillus sp. MBT213 can hydrolyze the major ginsenoside $Rb_1$ and convert to Rd during fermentation of the ginseng. The ${\beta}$-glucosidase activity of this novel Paenibacillus sp. MBT213 strain may be utilized in development of variety of health foods, dairy foods and pharmaceutical products.

Keywords

References

  1. Ash, C., Farrow, J. A. E., Wallbanks, S., and Collins, M. D. (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequence. Lett. Appl. Microbiol. 13, 2002-2006.
  2. Attele, A. S., Wu, J. A., and Yuan, C. S. (1999) Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  3. Bae, E. A., Han, M. J., Cho, M. K., Park, S. Y., and Kim, D. H. (2002) Metabolism of 20(S) and 20(R) ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull. 25, 58-63. https://doi.org/10.1248/bpb.25.58
  4. Beatty, P. H. and Jensen, S. E. (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol. 48, 159-169. https://doi.org/10.1139/w02-002
  5. Cheng, L. Q., Na, J. R., Bang, M. H., Kim, M. K., and Yang, D. C. (2008) Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 69, 218-224. https://doi.org/10.1016/j.phytochem.2007.06.035
  6. Chung, Y. R., Kim, C. H., Hwang, I., and Chun, J. (2000) Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int. J. Syst. Evol. Microbiol. 50, 1495-1500. https://doi.org/10.1099/00207713-50-4-1495
  7. Daane, L. L., Harjono, I., Barns, S. M. Launen, L. A., Palleroni, N. J., and Haggblom, M. M. (2002) PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int. J. Syst. Evol. Microbiol. 52, 131-139. https://doi.org/10.1099/00207713-52-1-131
  8. Gabriel, P., Farina, L., Barquet, M., and Boido, E. (2010) A quick screening method to identify ${\beta}$-glucosidase activity innative wine yeast strains: application of Esculin Glycerol Agar (EGA) medium. World J. Microbiol. Biotechnol. 27, 47-55.
  9. Han, B. H., Park, M. H., Han, Y. N., Woo, L. K., Sankawa, U., Yahara, S., and Tanaka, O. (1982) Degradation of ginseng saponins under mild acidic conditions. Planta Med. 44, 146-149. https://doi.org/10.1055/s-2007-971425
  10. Han, Y. M. and Rhew, K. Y. (2013) Ginsenoside Rd induces protective anti-Candida albicans antibody through immunological adjuvant activity. Int. Immunopharmacol. 17, 651-657. https://doi.org/10.1016/j.intimp.2013.08.003
  11. Kanazawa, Y., Harada, A., Takeuchi, M., Yokota, A., and Harada, T. (1995) Bacillus curdlanolyticus sp. nov. and Bacillus kobensis sp. nov., which hydrolyze resistant curdlan. Int. J. Syst. Evol. Microbiol. 45, 515-521.
  12. Kim, B. J. (2013) Involvement of melasatin type transient receptor potential 7 channels in ginsenoside Rd-induced apoptosis in gastric and breast cancer. J. Ginseng Res. 37, 201-209. https://doi.org/10.5142/jgr.2013.37.201
  13. Kim, K. K., Lee, J. W., Lee, K. Y., and Yang, D. C. (2005) Microbial conversion of major ginsenoside Rb(1) to pharmaceutically active minor ginsenoside Rd. J. Microbiol. 43, 456-462.
  14. Ko, S. R., Choi, K. J., Uchida, K., and Suzuki, Y. (2003) Enzymatic preparation of ginsenosides Rg2, Rh1, and F1 from proto-panaxatriol-type ginseng saponin mixture. Planta Med. 69, 285-286. https://doi.org/10.1055/s-2003-38476
  15. Martin, N. I., Hu, H., Moake, M. M., Churey, J. J., Whittal, R., Worobo, R. W., and Vederas, J. C. (2003) Isolation, structural characterization, and properties of mattacin (polymyxin M) a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 278, 13124-13132. https://doi.org/10.1074/jbc.M212364200
  16. Palaniyandi, S. A., Damodharan, K., Lee, K. W., Yang, S. H., and Suh, J. W. (2015) Enrichment of ginsenoside Rd in Panax ginseng extract with combination of enzyme treatment and high hydrostatic pressure. Biotechnol. Bioprocess Eng. 20, 608-613. https://doi.org/10.1007/s12257-014-0857-z
  17. Park, S. E., Na, C. S., Yoo, S. A., Seo, S. H., and Son, H. S. (2016) Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J. Ginseng Res. doi:org/10.1016/j.jgr.2015.12.008
  18. Piuri, M., Sanchez-Rivas, C., and Ruzal, S. M. (1998) A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett. Appl. Microbiol. 27, 9-13. https://doi.org/10.1046/j.1472-765X.1998.00374.x
  19. Renchinkhand, G., Park, Y. W., Cho, S. H., Song, G. Y., Bae, H. C., Choi, S. J., and Nam, M. S. (2015) Identification of ${\beta}$-glucosidase activity of Lactobacillus plantarum CRNB22 in Kimchi and its potential to ginsenoside Rb1 from Panax ginseng. J. Food Biochem. 39, 155-163. https://doi.org/10.1111/jfbc.12116
  20. Renchinkhand, G., Park, Y. W., Song, G. Y., Cho, S. H., Choi, S. J., Urgamal, M., Bae, H. C., Choi, J-W., and Nam, M. S. (2016) Identification of ${\beta}$-glucosidase activity of Enterococcus faecalis CRNB-A3 in Airag and its potential to convert ginsenoside Rb1 from Panax ginseng. J. Food Biochem. 40, 120-129. https://doi.org/10.1111/jfbc.12201
  21. Scheldeman, P., Goossens, K., Rodriguez-Diaz, M., Pil, A., Goris, J., Herman, L., Vos, P. D., Logan, N. A., and Heyndrickx, M. (2004) Paenibacillus lactis sp. Nov., isolated from raw and heat-treated milk. Int. J. Syst. Evol. Microbiol. 54, 885-891. https://doi.org/10.1099/ijs.0.02822-0
  22. Shin, Y. W., Bae, E. A., and Kim, D. H. (2006) Inhibitory effect of ginsenoside Rg5 and its metabolite ginsenoside Rh3 in an oxazolone induced mouse chronic dermatitis model. Arch. Pharm. Res. 29, 685-690. https://doi.org/10.1007/BF02968253
  23. Son, J. W., Kim, H. J., and Oh, D. K. (2008) Ginsenoside Rd production from the major ginsenoside Rb1 by ${\beta}$-glucosidase from Thermus caldophilus. Biotechnol. Lett. 30, 713-716. https://doi.org/10.1007/s10529-007-9590-4
  24. Suzuki, Y., Ko, S. R., Choi, K. J., Suzuki, K., Kim, Y. H., Cho, B. G., Nho, K. B., Jang, D. S., Kim, S. C., and Kim, C. M. (2010) Production of minor ginseng saponins and intestine bacterial ginseng saponin metabolites by enzymatic method. The 10th International Symposium on Ginseng. September 13-16, p. 268, Seoul, Korea.
  25. Wang, L., Zhang, Y., Chen, J., Li, S., Wang, Y., Hu, L., Wang, L., and Wu, Y. (2012) Immunosuppressive effects of ginsenoside Rd on skin allograft rejection in rats. J. Surg. Res. 176, 267-274. https://doi.org/10.1016/j.jss.2011.06.038
  26. Yang, X. L., Guo, T. K., Wang, Y. H., Huang, Y. H., Liu, X., Wang, X. X., Li, W., Zhao, X., Wang, L. P., Yan, S., Wu, D., and Wu, Y. J. (2012) Ginsenoside Rd attenuates the inflammatory response via modulating p38 and JNK signaling pathways in rats with TNBS-induced relapsing colitis. Int. Immunopharm. 12, 408-414. https://doi.org/10.1016/j.intimp.2011.12.014
  27. Ziarno, M. and Zareba, D. (2010) Characteristics and occurrence of Paenibacillus bacteria in milk and milk products. Medycyna Weterynaryina 66, 600-603.

Cited by

  1. Cytokine modulation in Raw 264.7 macrophages treated with ginseng fermented by Penibacillus MBT213 vol.45, pp.4, 2018, https://doi.org/10.7744/kjoas.20180057