GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

GYU WHAN CHANG

Abstract. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid Γ, \bar{R} be the integral closure of R, H be the set of nonzero homogeneous elements of R, $C(f)$ be the fractional ideal of R generated by the homogeneous components of $f \in RH$, and $N(H) = \{f \in R \mid C(f)_+ = R\}$. Let RH be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q = fRH \cap R$ for some $f \in R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if $R_{N(H)}$ is a Prüfer domain, if and only if R is a UMT-domain.

0. Introduction

Prüfer-v-multiplication domains (PeMD) are one of the most important research topics in “Multiplicative Ideal Theory” because many essential non-Noetherian integral domains (e.g., Krull domains, Prüfer domains, GCD domains) are PeMDs and an integral domain D is a PeMD if and only if $D[X]$, the polynomial ring over D, is a PeMD. It is known that D is a PeMD if and only if D is an integrally closed UMT-domain; hence UMT-domains can be considered as non-integrally closed PeMDs. UMT-domains were introduced by Houston and Zafrullah [34] and studied in greater detail by Fontana, Gabelli, and Houston [26] and Chang and Fontana [17]. In this paper, we study UMT-domain properties of graded integral domains.

This section consists of three subsections. In Section 0.1, we review the definitions related to the t-operation and in Section 0.2, we review those of

Received September 23, 2016; Accepted March 30, 2017.

2010 Mathematics Subject Classification. 13A02, 13A15, 13F05, 13G05.

Key words and phrases. graded integral domain, (graded) UMT-domain, (graded) Prüfer domain, $D + XK[X]$.

©2017 Korean Mathematical Society
graded integral domains; so the reader who is familiar with these two notions can skip to Section 0.3 where we give the motivation and results of this paper.

0.1. The t-operation

Let D be an integral domain with quotient field K. An overring of D means a subring of K containing D. Let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of D. For $I \in \mathbf{F}(D)$, let $I^{-1} = \{ x \in K \mid xI \subseteq D \}$, $I_v = (I^{-1})^{-1}$, and $I_t = \bigcup \{ J_v \mid J \in \mathbf{F}(D) \text{ is finitely generated and } J \subseteq I \}$. An $I \in \mathbf{F}(D)$ is called a t-ideal (resp., v-ideal) if $I_t = I$ (resp., $I_v = I$). A t-ideal (resp., v-ideal) is a maximal t-ideal (resp., maximal v-ideal) if it is maximal among proper integral t-ideals (resp., v-ideals). Let $\text{t-Max}(D)$ (resp., $\text{v-Max}(D)$) be the set of maximal t-ideals (resp., v-ideals) of D. It may happen that v-$\text{Max}(D) = \emptyset$ even though D is not a field as in the case of a rank-one nondiscrete valuation domain D.

However, it is well known that t-$\text{Max}(D) \neq \emptyset$ if D is not a field; each maximal t-ideal is a prime ideal; each proper t-ideal is contained in a maximal t-ideal; each prime ideal minimal over a t-ideal is a t-ideal; and $D = \bigcap_{P \in \text{t-Max}(D)} D_P$.

We mean by t-$\dim(D) = 1$ that D is not a field and each prime t-ideal of D is a maximal t-ideal of D. Clearly, if $\dim(D) = 1$ (i.e., D is one-dimensional), then t-$\dim(D) = 1$.

An $I \in \mathbf{F}(D)$ is said to be t-invertible if $(II^{-1})_t = D$, and D is a Prüfer v-multiplication domain (PvMD) if each nonzero finitely generated ideal of D is t-invertible. Let $T(D)$ (resp., $\text{Prin}(D)$) be the group of t-invertible fractional t-ideals (resp., nonzero principal fractional ideals) of D under the t-multiplication $I \ast J = (IJ)_t$. It is obvious that $\text{Prin}(D) \subseteq T(D)$. The t-class group of D is the abelian group $C(D) = T(D)/\text{Prin}(D)$. It is clear that if D is a Krull domain (resp., Prüfer domain), then $C(D)$ is the divisor class (resp., ideal class) group of D. Let $\{ D_\alpha \}$ be a set of integral domains such that $D = \bigcap_\alpha D_\alpha$. We say that the intersection $D = \bigcap_\alpha D_\alpha$ is locally finite if each nonzero nonunit of D is a unit of D_α for all but a finite number of D_α.

Let $\{ X_\alpha \}$ be a nonempty set of indeterminates over D, $D[\{ X_\alpha \}]$ be the polynomial ring over D, and $\text{cp}(f)$ (simply $c(f)$) be the fractional ideal of D generated by the coefficients of a polynomial $f \in K[\{ X_\alpha \}]$. It is known that if I is a nonzero fractional ideal of D, then $(ID[\{ X_\alpha \}])_t = I^{-1}D[\{ X_\alpha \}]$, $(ID[\{ X_\alpha \}])_v = I_vD[\{ X_\alpha \}]$, and $(ID[\{ X_\alpha \}])_t = I_tD[\{ X_\alpha \}]$ [32, Lemma 4.1 and Proposition 4.3]; so I is a (prime) t-ideal of D if and only if $ID[\{ X_\alpha \}]$ is a (prime) t-ideal of $D[\{ X_\alpha \}]$.

0.2. Graded integral domains

Let Γ be a (nonzero) torsionless grading monoid, that is, Γ is a torsionless commutative cancellative monoid (written additively), and $\langle \Gamma \rangle = \{ a-b \mid a, b \in \Gamma \}$ be the quotient group of Γ; so $\langle \Gamma \rangle$ is a torsionfree abelian group. It is well known that a cancellative monoid Γ is torsionless if and only if Γ can be given a total order compatible with the monoid operation [39, page 123]. By a $(\Gamma-)
graded integral domain \(R = \bigoplus_{a \in \Gamma} R_a \), we mean an integral domain graded by \(\Gamma \). That is, each nonzero \(x \in R_a \) has degree \(\alpha \), i.e., \(\deg(x) = \alpha \), and \(\deg(0) = 0 \). Thus, each nonzero \(f \in R \) can be written uniquely as \(f = x_{\alpha_1} + \cdots + x_{\alpha_n} \) with \(\deg(x_{\alpha_n}) = \alpha_1 \) and \(\alpha_1 < \cdots < \alpha_n \). Since \(R \) is an integral domain, we may assume that \(R_\alpha \neq \{0\} \) for all \(\alpha \in \Gamma \).

A nonzero \(x \in R_\alpha \) for every \(\alpha \in \Gamma \) is said to be homogeneous. Let \(H \) be the saturated multiplicative set of nonzero homogeneous elements of \(R \), i.e., \(H = \bigcup_{\alpha \in \Gamma} (R_\alpha \setminus \{0\}) \). Then \(R_H \), called the homogeneous quotient field of \(R \), is a graded integral domain whose nonzero homogeneous elements are units. Hence, \(R_H \) is a completely integrally closed GCD-domain \([1, \text{Proposition 2.1]}\) and \(R_H \) is a \((\Gamma)\)-graded integral domain. We say that an overring \(T \) of \(R \) is a homogeneous overring of \(R \) if \(T = \bigoplus_{\alpha \in \Gamma} (T \cap (R_H)_\alpha) \); so \(T \) is a \((\Gamma)\)-graded integral domain such that \(R \subseteq T \subseteq R_H \). Clearly, if \(\Lambda = \{ \alpha \in \Gamma \mid T \cap (R_H)_\alpha \neq \{0\} \} \), then \(\Lambda \) is a torsionless grading monoid such that \(\Gamma \subseteq \Lambda \subseteq (\Gamma) \) and \(T = \bigoplus_{\alpha \in \Lambda} (T \cap (R_H)_\alpha) \). The integral closure of \(R \) is a homogeneous overring of \(R \) by Lemma 1.6. Also, \(R_S \) is a homogeneous overring of \(R \) for a multiplicative set \(S \) of nonzero homogeneous elements of \(R \) (with \(\deg(\frac{1}{x}) = \deg(a) - \deg(b) \) for \(a \in H \) and \(b \in S \)).

For a fractional ideal \(A \) of \(R \) with \(A \subseteq R_H \), let \(A^* \) be the fractional ideal of \(R \) generated by homogeneous elements in \(A \). It is easy to see that \(A^* \subseteq A \); and if \(A \) is a prime ideal, then \(A^* \) is a prime ideal. The \(A \) is said to be homogeneous if \(A^* = A \). A homogeneous ideal (resp., homogeneous t-ideal) of \(R \) is called a homogeneous maximal ideal (resp., homogeneous maximal t-ideal) if it is maximal among proper homogeneous ideals (resp., homogeneous t-ideals) of \(R \). It is known that a homogeneous maximal ideal need not be a maximal ideal, while a homogeneous maximal t-ideal is a maximal t-ideal \([8, \text{Lemma 2.1]}\). Also, it is easy to see that each proper homogeneous ideal (resp., homogeneous t-ideal) of \(R \) is contained in a homogeneous maximal ideal (resp., homogeneous maximal t-ideal) of \(R \).

For \(f \in R_H \), let \(C_R(f) \) denote the fractional ideal of \(R \) generated by the homogeneous components of \(f \). For a fractional ideal \(I \) of \(R \) with \(I \subseteq R_H \), let \(C_R(I) = \sum_{f \in I} C_R(f) \). It is clear that both \(C_R(f) \) and \(C_R(I) \) are homogeneous fractional ideals of \(R \). If there is no confusion, we write \(C(f) \) and \(C(I) \) instead of \(C_R(f) \) and \(C_R(I) \). Let \(N(H) = \{ f \in R \mid C(f)_\alpha = R \} \) and \(S(H) = \{ f \in R \mid C(f) = R \} \). It is well known that if \(f, g \in R_H \), then \(C(f)^n C(g) = C(f)^a C(fg) \) for some integer \(n \geq 1 \) \([39]\); so \(N(H) \) and \(S(H) \) are saturated multiplicative subsets of \(R \) and \(S(H) \subseteq N(H) \). Let \(\Omega \) be the set of maximal t-ideals \(Q \) of \(R \) with \(Q \cap H \neq \emptyset \), i.e., \(\Omega = \{ Q \in t\text{-Max}(R) \mid Q \text{ is homogeneous} \} \) \([8, \text{Lemma 2.1]}\). As in \([9]\), we say that \(R \) satisfies property (\#) if \(C(I)_H = R \) implies \(I \cap N(H) \neq \emptyset \) for all nonzero ideals \(I \) of \(R \); equivalently, \(\text{Max}(R_{N(H)}) = \{ Q_{N(H)} \mid Q \in \Omega \} \) \([9, \text{Proposition 1.4]}\). It is known that \(R \) satisfies property (\#) if \(R \) is one of the following integral domains: (i) \(R \) contains a unit of nonzero degree, (ii) \(R = D[\Gamma] \) is the monoid domain of \(\Gamma \) over an integral domain \(D \), (iii)
R contains a homogeneous prime element of nonzero degree, (iv) $R = D[[X]]$ is the polynomial ring over D, or (v) the intersection $\bigcap_{Q \in \Omega} R_Q$ is locally finite [9, Example 1.6 and Lemma 2.2].

We say that R is a graded-Prüfer domain if each nonzero finitely generated homogeneous ideal of R is invertible. Clearly, invertible ideals are t-invertible, and hence a graded-Prüfer domain is a PeMD [1, Theorem 6.4] but need not be a Prüfer domain [9, Example 3.6]. The reader can refer to [10] or [42] for more on graded-Prüfer domains.

0.3. Motivation and results

Let X be an indeterminate over D and $D[X]$ be the polynomial ring over D. A nonzero prime ideal Q of $D[X]$ is called an upper to zero in $D[X]$ if $Q \cap D = (0)$. We say that D is a UMT-domain if each upper to zero in $D[X]$ is a maximal t-ideal of $D[X]$. (UMT stands for Upper to zero is a Maximal T-ideal.) A quasi-Prüfer domain is a UMT-domain in which every maximal ideal is a t-ideal; equivalently, its integral closure is a Prüfer domain [25, Chapter VI]. The most important properties of UMT-domains are that (i) D is a UMT-domain if and only if every prime ideal of $D[X]_{N_v}$, where $N_v = \{ f \in D[X] \mid c(f)_v = D \}$, is extended from D and (ii) D is an integrally closed UMT-domain if and only if D is a PeMD [34, Theorem 3.1 and Proposition 3.2]. A subring $D[X^2, X^3] = D + X^2D[X]$ of $D[X]$ over a PeMD D is an easy example of a non-integrally closed UMT-domain. In many cases, UMT-domains are used like: $D[X]$ (or $D[X]_{N_v}$) has a ring-theoretic property (P) if and only if D is a UMT-domain with property (P). For example, t-dim$(D[X]) = 1$ if and only if D is a UMT-domain with t-dim$(D) = 1$; and $D[X]_{N_v}$ is a pseudo-valuation domain if and only if D is a pseudo-valuation UMT-domain [13, Lemma 3.7]. (A quasi-local domain D with maximal ideal M is a pseudo-valuation domain if and only if D has a unique valuation overring with maximal ideal M [31, Theorem 2.7].) For more results on UMT-domains, see, for example, [22,23,41,44] including a survey article [33].

Clearly, Q is an upper to zero in $D[X]$ if and only if $Q = fK[X] \cap D[X]$ for some prime element $0 \neq f \in K[X]$, if and only if either $Q = XD[X]$ or $Q = fK[X, X^{-1}] \cap D[X]$ for some prime element $0 \neq f \in K[X]$. Note that $D[X] = \bigoplus_{n \geq 0} DX^n$ is an N_0-graded integral domain, where N_0 is the additive monoid of nonnegative integers, and if H is the set of nonzero homogeneous elements of $D[X]$, then $D[X]_H = K[X, X^{-1}]$ and $K[X, X^{-1}]$ is a unique factorization domain (UFD). In [19, Section 2], the notion of “upper to zero” was generalized to graded integral domains as follows: Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a (nontrivial) graded integral domain graded by an arbitrary torsionless grading monoid Γ and H be the set of nonzero homogeneous elements of R. Assume that R_H is a UFD. Then a nonzero prime ideal Q of R is called an upper to zero in R if $Q = fR_H \cap R$ for some $f \in R_H$. Thus, Q is an upper to zero in $D[X]$ as the original definition if and only if either $Q = XD[X]$ or Q is an upper to zero in
$D[X]$ as a prime ideal of the \mathbb{N}_0-graded integral domain $D[X] = \bigoplus_{n \geq 0} DX^n$.

As a graded integral domain analog, in [19, Theorem 2.5], it was shown that if $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ is a graded integral domain with a unit of nonzero degree such that R_H is a UFD, then R is a Prüfer domain if and only if R is integrally closed and each upper to zero in R is a maximal t-ideal. In this paper, we further study some ring-theoretic properties of graded integral domains R such that R_H is a UFD and each upper to zero in R is a maximal t-ideal.

Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a Γ-graded integral domain. In Section 1, we introduce the notion of graded UMT-domains, and we then study general properties of both UMT-domains and graded UMT-domains. For example, we prove that UMT-domains are graded UMT-domains, and R is a graded UMT-domain if and only if Q is homogeneous for all nonzero prime ideals Q of R with $C(Q) \not\subseteq R$, and R is an graded UMT-domain if and only if every prime ideal of $R_{N[H]}$ is extended from a homogeneous ideal of R, and R is a weakly Krull domain if and only if $R_{N[H]}$ is a weakly Krull domain. We study in Section 3 graded UMT-domains with a unit of nonzero degree. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if R is a UMT-domain, if and only if the integral closure of $R_{N[H]}$ is a graded-Prüfer domain for all homogeneous maximal t-ideals Q of R, if and only if the integral closure of $R_{N[H]}$ is a Prüfer domain. Finally, in Section 4, we use the $D + XK[X]$ construction to give several counterexamples of the results in Sections 2 and 3. Assume that $D \subseteq K$, and let $R = D + XK[X]:= \{ f \in K[X] \mid f(0) \in D \}$. Then R is an \mathbb{N}_0-graded integral domain such that $R_H = K[X, X^{-1}]$ is a UFD. We show that R is a graded UMT-domain, and R is a UMT-domain if and only if D is a UMT-domain. Thus, if D is not a UMT-domain, then $R = D + XK[X]$ is a graded UMT-domain but not a UMT-domain. We also give examples which show that the results of Section 3 do not hold without assuming that R has a unit of nonzero degree.

1. UMT-domains and graded UMT-domains

Let Γ be a nonzero torsionless grading monoid, $\langle \Gamma \rangle = \{ a - b \mid a, b \in \Gamma \}$ be the quotient group of Γ, $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a nontrivial Γ-graded integral domain, and H be the set of nonzero homogeneous elements of R. Throughout this paper, R_H is always assumed to be a UFD.

We begin this section with examples of graded integral domains R such that R_H is a UFD.

Example 1.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a graded integral domain. Then R_H is a UFD if one of the following conditions is satisfied.

1. [7, Proposition 3.5] $\langle \Gamma \rangle$ satisfies the ascending chain condition on its cyclic subgroups.
2. $R = D[[X_\alpha]]$ is the polynomial ring over an integral domain D.
(3) [38, Section A.1.4.] \((\Gamma) = \mathbb{Z} \) is the additive group of integers.

(4) \(R = D[\Gamma] \) is the monoid domain of \(\Gamma \) over \(D \) such that \((\Gamma) \) satisfies the ascending chain condition on its cyclic subgroups.

Let \(\bar{D} \) be the integral closure of an integral domain \(D \). For easy reference, we recall from [37, Theorem 44] that (i) (Lying Over) if \(P \) is a prime ideal of \(D \), then there is a prime ideal \(Q \) of \(\bar{D} \) with \(Q \cap D = P \); (ii) (Going Up) if \(P_1 \subseteq P_2 \) are prime ideals of \(D \) and \(Q_1 \) is a prime ideal of \(\bar{D} \) with \(Q_1 \cap D = P_1 \), then there exists a prime ideal \(Q_2 \) of \(\bar{D} \) such that \(Q_1 \subseteq Q_2 \) and \(Q_2 \cap D = P_2 \); and (iii) (Incomparable) if \(P \subseteq Q \) are prime ideals of \(\bar{D} \) with \(P \cap D = Q \cap D \), then \(P = Q \).

The next result appears in [26, Theorem 1.5], but we include it because our proof is easy and direct without using other results.

Theorem 1.2. An integral domain \(D \) is a UMT-domain if and only if the integral closure of \(D_P \) is a Prüfer domain for all \(P \in t\text{-Max}(D) \).

Proof. Let \(\bar{D} \) be the integral closure of \(D \). Hence, \(\bar{D}_P \) is the integral closure of \(D_P \) for a prime ideal \(P \) of \(D \).

\((\Rightarrow)\) Assume that \(\bar{D}_P \) is not a Prüfer domain for some \(P \in t\text{-Max}(D) \), and let \(T = \bar{D}_P \). Then there are some \(0 \neq a, b \in T \) such that \((a, b)T \) is not invertible, and so if we let \(f = a + bX \), then \(fK[X] \cap T[X] = fct(f)^{-1}[X] \subseteq (ct(f)ct(f)^{-1})[X] \cap M[X] \) for some maximal ideal \(M \) of \(T \) (the first equality follows from \([28, Corollary 34.9]\) because \(T \) is integrally closed). Thus, \(fK[X] \cap D[X] = (fK[X] \cap T[X]) \cap D[X] \subseteq (M[X] \cap D_P[X]) \cap D[X] = P[X] \). Clearly, \(fK[X] \cap D[X] \) is an upper to zero in \(D[X] \), but \(fK[X] \cap D[X] \) is not a maximal \(t \)-ideal, a contradiction.

\((\Leftarrow)\) Assume that \(D \) is not a UMT-domain. Then there are a maximal \(t \)-ideal \(P \) of \(D \) and an upper to zero \(Q \) in \(D[X] \) such that \(Q \subseteq P[X] \) [cf. [34, Proposition 1.1]]. Since \(Q \) is an upper to zero in \(D[X] \), there is an \(f \in D[X] \) such that \(Q = fK[X] \cap D[X] \). Note that \(Q_f := fK[X] \cap \bar{D}_P \) is an upper to zero in \(\bar{D}_P[X], Q_f \cap D_P[X] = Q_{D_P}[X] \), and \(\bar{D}_P[X] \) is integral over \(D_P[X] \). Thus, there is a prime ideal \(M \) of \(D_P[X] \) such that \(Q_f \subseteq M \) and \(M \cap D_P[X] = PD_P[X] \). Clearly, \(M = (M \cap D_P)_P[X] \) because \((M \cap D_P)[X] \cap D_P[X] = PD_P[X] \) and \((M \cap D_P)[X] \subseteq M \). However, since \(\bar{D}_P \) is a Prüfer domain, there is a \(g \in Q_f \) such that \(\bar{D}_P = \langle g \rangle \bar{D}_P \subseteq M \cap \bar{D}_P \), a contradiction. \(\square \)

Bezout domains are Prüfer domains. Hence, if \(\bar{D}_P \) is a Bezout domain for all \(P \in t\text{-Max}(D) \), then \(D \) is a UMT-domain by Theorem 1.2. In [13, Lemma 2.2], it was shown that \(D \) is a UMT-domain if and only if the integral closure of \(D_P \) is a Bezout domain for all \(P \in t\text{-Max}(D) \). Theorem 1.2 also shows that \(D_S \) is a UMT-domain for every multiplicative set \(S \) of a UMT-domain \(D \).

Corollary 1.3 ([34, Proposition 3.2]). \(D \) is a PrMD if and only if \(D \) is an integrally closed UMT-domain.
Proof. It is well known that \(D \) is a \(\text{Prüfer-like domain} \) if and only if \(D_P \) is a valuation domain for all \(P \in \text{Max}(D) \) [30, Theorem 5] and \(D = \bigcap_{P \in \text{Max}(D)} D_P \). Hence, the result follows directly from Theorem 1.2.

Recall that \(D \) is an \(S\)-domain if \(\text{ht}(PD[X]) = 1 \) for every prime ideal \(P \) of \(D \) with \(\text{ht} P = 1 \) [37, p. 26]. It is easy to see that a UMT-domain is an \(S\)-domain; and if \(\text{t-dim}(D) = 1 \) (e.g., \(\text{dim}(D) = 1 \)), then \(D \) is an \(S\)-domain if and only if \(D \) is a UMT-domain (cf. [43, Theorem 8]). However, \(S\)-domains need not be UMT-domains. For example, if \(D = \mathbb{R} + (X,Y)\mathbb{C}[X,Y] \), where \(\mathbb{C}[X,Y] \) is the power series ring over the field \(\mathbb{C} \) of complex numbers and \(\mathbb{R} \) is the field of real numbers, then \(D \) is a 2-dimensional Noetherian domain [12, Theorem 4 and Corollary 9] whose maximal ideal is a \(t\)-ideal. Hence, \(D \) is an \(S\)-domain [37, Theorem 148] but not a UMT-domain [34, Theorem 3.7].

We next introduce the notion of graded UMT-domains.

Definition 1.4. Let \(R = \bigoplus_{\alpha \in \Gamma} R_\alpha \), and assume that \(R_H \) is a UFD.

1. A nonzero prime ideal \(Q \) of \(R \) is an upper to zero in \(R \) if \(Q = fR_H \cap R \) for some \(f \in R_H \). (In this case, \(f \) is a nonzero prime element of \(R_H \) and \(Q \) is a height-one prime \(t\)-ideal of \(R \).)

2. \(R \) is a graded UMT-domain if every upper to zero in \(R \) is a maximal \(t\)-ideal of \(R \).

Recall that if \(Q \) is a maximal \(t\)-ideal of \(R = \bigoplus_{\alpha \in \Gamma} R_\alpha \) with \(Q \cap H \neq \emptyset \), then \(Q \) is homogeneous [8, Lemma 2.1]. We use this result without further citation.

Lemma 1.5. Let \(R = \bigoplus_{\alpha \in \Gamma} R_\alpha \) be a graded UMT-domain and \(Q \) be a nonzero prime ideal of \(R \). Then \(Q \) is a maximal \(t\)-ideal of \(R \) if and only if either \(Q \) is an upper to zero in \(R \) or \(Q \) is a homogeneous maximal \(t\)-ideal.

Proof. Let \(Q \) be a maximal \(t\)-ideal of \(R \). If \(Q \cap H \neq \emptyset \), then \(Q \) is homogeneous. Next, assume that \(Q \cap H = \emptyset \). Then \(Q = Q_H \cap R \), and hence \(Q \) contains an upper to zero in \(R \). Thus, \(Q \) must be an upper to zero in \(R \) because \(R \) is a graded UMT-domain. The converse is clear.

We say that \(R = \bigoplus_{\alpha \in \Gamma} R_\alpha \) is a gr-valuation ring if \(x \in R \) or \(\frac{1}{x} \in R \) for all nonzero homogeneous elements \(x \in R_H \). It is known that if \(R \) is a gr-valuation ring, then there is a valuation overring \(V \) of \(R \) such that \(V \cap R_H = R \) [35, Theorem 2.3]. Hence, a gr-valuation ring is integrally closed.

Lemma 1.6. Let \(\bar{R} \) be the integral closure of \(R = \bigoplus_{\alpha \in \Gamma} R_\alpha \). Then \(\bar{R} \) is a homogeneous overring of \(R \).

Proof. Let \(\{V_\lambda\} \) be the set of all homogeneous gr-valuation overrings of \(R \). Then \(\bar{R} = \bigcap_\lambda V_\lambda \) [35, Theorem 2.10], and since each \(V_\lambda \) is a homogeneous overring of \(R \), \(\bar{R} \) is also a homogeneous overring of \(R \).

We next show that a UMT-domain is a graded UMT-domain, while a graded UMT-domain need not be a UMT-domain (see Example 4.3).
Proposition 1.7. Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a UMT-domain. Then R is a graded UMT-domain.

Proof. Let Q' be a prime t-ideal of R such that $Q' \cap H = \emptyset$. Then Q'_H is a t-ideal of R_H [26, Proposition 1.4], and hence $\text{ht}Q' = \text{ht}(Q'_H) = 1$ because R_H is a UFD.

Let $U_f = fR_H \cap R$ be an upper to zero in R. If U_f is not a maximal t-ideal of R, there is a maximal t-ideal Q of R such that $U_f \subseteq Q$. By the above paragraph, $Q \cap H \neq \emptyset$, and thus Q is homogeneous. Note that $U = fR_H \cap R$ is a prime ideal of R and $U \cap R = U_f$; so there is a prime ideal M of R such that $U \subseteq M$ and $M \cap R = Q$. However, note that R is a graded integral domain by Lemma 1.6; so M^* is a prime ideal of \bar{R} and $M^* \cap R = Q$. Hence, $M^* = M$, and since $U = fC_R(f)^{-1}$ [9, Lemma 1.2(4)], $C_R(f)C_R(f)^{-1} \subseteq M$. By Theorem 1.2, $R_M = (R_Q)_{M_0}$ is a valuation domain, and hence $R_M = (C_R(f)_{M})C_R(f)^{-1}_{M} = (C_R(f)_{M})(C_R(f)^{-1}_{M}) \subseteq M_M$, a contradiction. Thus, U_f is a maximal t-ideal of R. \hfill \square

Let $D[X]$ be the polynomial ring over an integral domain D, and let Q be an upper to zero in $D[X]$. It is known that Q is a maximal t-ideal if and only if $c(Q)_t = D$, if and only if Q is t-invertible [34, Theorem 1.4] (see [27, Theorem 3.3] for the case of arbitrary sets of indeterminates). This was extended to graded integral domains $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ in [8, Corollary 2.2(2)] as follows: If Q is an upper to zero in R, then $C(Q)_t = R$ if and only if Q is t-invertible, if and only if Q is a maximal t-ideal. We next generalize [8, Corollary 2.2(2)] to prime t-ideals Q of R with $Q \cap H = \emptyset$.

Proposition 1.8. Let Q be a prime t-ideal of $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ such that $Q \cap H = \emptyset$. Then the following statements are equivalent.

1. $C(Q)_t = R$.
2. Q is t-invertible.
3. Q is a maximal t-ideal.

In this case, $\text{ht}Q = 1$, and hence Q is an upper to zero in R.

Proof. (1) \Rightarrow (2) Since $C(Q)_t = R$, there are some $f_1, \ldots, f_k \in Q$ such that $(C(f_1) + \cdots + C(f_k))_v = R$. Assume that $\text{ht}Q \geq 2$. Since R_H is a UFD, there is a $g \in Q$ such that gR_H is a prime ideal and $f_1 \notin gR_H$. Clearly, $((f_1, \ldots, f_k, g)R_H)_v = R_H$, and hence if $u \in (f_1, \ldots, f_k, g)^{-1}$, then $u \in R_H$. Also, since $(C(f_1) + \cdots + C(f_k))_v = R, u \in R$. Thus, $R = (f_1, \ldots, f_k, g)^{-1} = (f_1, \ldots, f_k, g)_v \subseteq Q_t = Q \subseteq R$, a contradiction. Hence, $\text{ht}Q = 1$, and so Q is an upper to zero in R. Thus, Q is t-invertible [8, Corollary 2.2(2)].

(2) \Rightarrow (3) [34, Theorem 1.4].

(3) \Rightarrow (1) Note that $Q \subseteq C(Q)_t \subseteq R$ and $C(Q)_t$ is a t-ideal. Hence, if Q is a maximal t-ideal, then $C(Q)_t = R$. \hfill \square

Corollary 1.9. Each homogeneous prime t-ideal of $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ has height-one if and only if $t\text{-dim}(R) = 1$. In this case, R is a graded UMT-domain.
The following statements are equivalent for Theorem 1.11.

It is known that S where dD if for each 0

Assume that each homogeneous prime t-ideal of R has height-one. Thus, $htQ = 1$ by Proposition 1.8. The converse is clear.

The “In this case” part follows because t-dim$(R) = 1$ implies that each prime t-ideal of R is a maximal t-ideal.

Let $A \subseteq B$ be an extension of integral domains. As in [23], we say that B is t-linked over A if $I^{-1} = A$ for a nonzero finitely generated ideal I of A implies $(IB)^{-1} = B$. It is easy to see that B is t-linked over A if and only if $B = \bigcap_{P \in \text{Max}(A)} BP$ [14, Lemma 3.2], if and only if either $Q \cap A = (0)$ or $Q \cap A \neq (0)$ and $(Q \cap A)_t \subseteq A$ for all $Q \in t$-Max(B) [4, Propositions 2.1].

Corollary 1.10. Let T be a homogeneous overing of $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$, and assume that T is t-linked over R (e.g., $T = R_S$ for some multiplicative set $S \subseteq H$). If R is a graded UMT-domain, then T is a graded UMT-domain.

Proof. Let U be an upper to zero in T. If U is not a maximal t-ideal, then $C_T(U)_t \subsetneq T$ by Proposition 1.8. Hence, there is a homogeneous maximal t-ideal Q of T such that $U \subsetneq Q$. Note that $U \cap R$ is an upper to zero in R, $Q \cap R$ is homogeneous, $(Q \cap R)_t \subsetneq R$ because T is t-linked over R, and $U \cap R \subseteq Q \cap R$. Thus, $U \cap R \subseteq (Q \cap R)_t$, a contradiction because $U \cap R$ is a maximal t-ideal by assumption. Hence, U is a maximal t-ideal of T.

Following [3], we say that a multiplicative subset S of D is a t-splitting set if for each $0 \neq d \in D$, $dD = (AB)_t$ for some integral ideals A and B of D, where $A_t \cap sD = sA_t$ (equivalently, $(A, s)_t = D$) for all $s \in S$ and $B_t \cap S \neq \emptyset$. It is known that S is a t-splitting set of D if and only if $dd_S \cap D$ is t-invertible for all $0 \neq d \in D$ [3, Corollary 2.3]. Also, D is a UMT-domain if and only if $D - \{0\}$ is a t-splitting set in $D[X]$ [16, Corollary 2.9].

Theorem 1.11. The following statements are equivalent for $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$.

1. R is a graded UMT-domain.
2. Let Q be a nonzero prime ideal of R such that $C(Q)_t \subsetneq R$. Then Q is homogeneous.
3. Let Q be a nonzero prime ideal of R such that $Q \subsetneq M$ for some homogeneous maximal t-ideal M of R. Then Q is homogeneous.
4. $C(Q)_t = R$ for every upper to zero Q in R.
5. If $I = fR_H \cap R$ for $0 \neq f \in R$, then $C(I)_t = R$.
6. H is a t-splitting set of R.
7. Every prime t-ideal of R disjoint from H is t-invertible.
8. Every prime t-ideal of R disjoint from H is a maximal t-ideal.

Proof. (1) \Rightarrow (2) Suppose that Q is not homogeneous. Clearly, there is an $f \in Q \setminus H$ such that $C(f) \subsetneq Q$. Let P be a prime ideal of R such that P is minimal over fR and $P \subseteq Q$. If $P \cap H \neq \emptyset$, then $PR_{H \setminus P}$ must be a homogeneous
maximal t-ideal of $R_H \cdot P$ (cf. [8, Lemma 2.1]); so P is homogeneous. Hence, $C(f) \subseteq P \subseteq Q$, a contradiction. Thus, $P \cap H = \emptyset$ and PR_H is a prime t-ideal because PR_H is minimal over fR_H, whence P is an upper to zero in R. Thus, $P = Q$ by (1), and so $C(Q) = R$ by Proposition 1.8, a contradiction. Thus, Q is homogeneous.

(2) \iff (3) Clear.

(2) \implies (4) Let Q be an upper to zero in R. Then Q is not homogeneous and $Q \subseteq C(Q)$. However, if $C(Q) \subseteq R$, then Q is homogeneous by (2), a contradiction. Thus, $C(Q) = R$.

(4) \implies (1) Proposition 1.8.

(1) \implies (5) Let $f = f_1^{e_1} \cdots f_n^{e_n}$ be the prime factorization of f in R_H, where $f_i \in R_H$ is a prime element. Then

$$I = (f_1^{e_1} \cdots f_n^{e_n})R_H \cap R,$$

$$= (f_1^{e_1}R_H \cap R) \cdots (f_n^{e_n}R_H \cap R)$$

$$= (f_1^{e_1}R_H \cap R) \cap \cdots \cap (f_n^{e_n}R_H \cap R)$$

$$= ((f_1R_H \cap R)^{e_1}) \cap \cdots \cap ((f_nR_H \cap R)^{e_n}).$$

(For the last equality, note that each $f_iR_H \cap R$ is a maximal t-ideal by (1) and $\sqrt{(f_iR_H \cap R)^{e_i}} = f_iR_H \cap R = f_iR_H \cap R = \sqrt{((f_iR_H \cap R)^{e_i})}$; so $((f_iR_H \cap R)^{e_i})$ is primary. Clearly, $((f_iR_H \cap R)^{e_i}) \cap R_H = f_i^{e_i}R_H$, and thus $((f_iR_H \cap R)^{e_i}) \cap R_H = f_i^{e_i}R_H \cap R_H$.) If $C(I) \subseteq R$, then $I \subseteq C(I) \subseteq M$ for some homogeneous maximal t-ideal M of R. Since M is a prime ideal, $f_iR_H \cap R \subseteq M$ for some i, and hence $R = C(f_iR_H \cap R) \subseteq C(M) = M$ by the equivalence of (1) and (4) above, a contradiction. Thus, $C(I) = R$.

(5) \implies (1) Let Q be an upper to zero in R. Then $Q = fR_H \cap R$ for some $f \in R$, and hence $C(Q) = R$ by (5). Thus, Q is a maximal t-ideal by Proposition 1.8.

(1) \implies (6) Let Q be a prime t-ideal of R such that $Q \cap H = \emptyset$. Then Q_H is a prime ideal of R_H, and hence $fR_H \subseteq Q_H$ for some nonzero prime element f of R_H. Hence, $fR_H \cap R \subseteq Q$, and since $fR_H \cap R$ is a maximal t-ideal of R by (1), $Q = fR_H \cap R$ and $C(Q) = R$. Thus, H is a t-splitting set [8, Theorem 2.1].

(6) \implies (4) Let Q be an upper to zero in R. Then Q is a prime t-ideal of R with $Q \cap H = \emptyset$, and thus $C(Q) = R$ [8, Theorem 2.1].

(6) \iff (7) [8, Corollary 2.2].

(7) \iff (8) Proposition 1.8.

Let $D[X]$ be the polynomial ring over an integral domain D and $f \in D[X]$ be such that $c(f)_v = D$. If A is an ideal of $D[X]$ with $f \in A$, then A is t-invertible [34, Proposition 4.1] and $fD[X] = (Q_1^{e_1} \cdots Q_n^{e_n})_v$, for some uppers to zero Q_i in $D[X]$ and integers $e_i \geq 1$ [29, p. 144]. We end this section with an extension of these results to graded integral domains.

Proposition 1.12. Let A be a nonzero ideal of $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ such that $C(A)_v = R$. If A contains a nonzero $f \in R$ with $C(f)_v = R$ (e.g., R satisfies
property (#)), then \(A_t = (Q_1^{e_1} \cdots Q_n^{e_n})_t \) for some \(t \)-invertible uppers to zero \(Q_i \) in \(R \) and integers \(e_i \geq 1 \). In particular, \(A \) is \(t \)-invertible.

Proof. If \(A_t = R \), then \(A \) is \(t \)-invertible; so assume that \(A_t \subseteq R \). Let \(Q \) be a maximal \(t \)-ideal of \(R \) with \(A \subseteq Q \); then \(f \in Q \). If \(Q \cap H \neq \emptyset \), then \(Q \) is homogeneous, and hence \(R = C(A)_t \subseteq Q_t = Q \), a contradiction. Hence, \(Q \cap H = \emptyset \), and so \(Q \) contains an upper to zero \(U \) in \(R \) containing \(f \). Clearly, \(C(U)_t = R \); so by Proposition 1.8, \(U \) is a maximal \(t \)-ideal, and thus \(Q = U \), i.e., \(Q \) is an upper to zero in \(R \) that is \(t \)-invertible. Hence, each prime \(t \)-ideal of \(R \) containing \(A \) is an upper to zero in \(R \) that is also \(t \)-invertible. Thus, \(A_t = (Q_1^{e_1} \cdots Q_n^{e_n})_t \) for some uppers to zero \(Q_i \) in \(R \) and integers \(e_i \geq 1 \) (cf. the proof of [29, Theorem 1.3]) and \(A \) is \(t \)-invertible. \(\square \)

Corollary 1.13. Let \(f \in R = \bigoplus_{a \in I} R_a \) be nonzero. If \(C(f)_v = R \), then \(fR = (Q_1^{e_1} \cdots Q_n^{e_n})_t \), for some uppers to zero \(Q_i \) in \(R \) and integers \(e_i \geq 1 \).

Proof. Clearly, \(C(f)_R \) is \(R \) and \(f \in fR \). Thus, the result is an immediate consequence of Proposition 1.12. \(\square \)

A careful reading of the proof of Proposition 1.12 also shows:

Corollary 1.14. Let \(A \) be a nonzero ideal of a graded UMT-domain \(R = \bigoplus_{a \in I} R_a \) such that \(C(A)_t = R \). Then \(A_t = (Q_1^{e_1} \cdots Q_n^{e_n})_t \), for some uppers to zero \(Q_i \) in \(R \) and integers \(e_i \geq 1 \), and \(A \) is \(t \)-invertible.

Let \(D \) be an integral domain, \(S \) be a \(t \)-splitting set of \(D \), \(\mathfrak{S} = \{ A_1 \cdots A_n \} \) \(A_i = d_iD_S \cap D \) for some \(0 \neq d_i \in D \), and \(D_{\mathfrak{S}} = \{ x \in K \mid xA \subseteq D \text{ for some } A \in \mathfrak{S} \} \). Then \(D_{\mathfrak{S}} = \cap \{ D_P \mid P \in \text{t-}\text{Max}(D) \text{ and } P \cap S \neq \emptyset \} \) [3, Lemma 4.2 and Theorem 4.3]. The \(S \) is said to be \(t \)-lcm if \(sD \cap dD \) is \(t \)-invertible for all \(s \in S \) and \(0 \neq d \in D \); and \(S \) is called a \(t \)-complemented \(t \)-splitting set if \(D_{\mathfrak{S}} = D_T \) for some multiplicative set \(T \) of \(D \) and the saturation of \(T \) is the \(t \)-complement of \(S \).

Corollary 1.15 (cf. [16, Proposition 3.7]). Let \(R = \bigoplus_{a \in I} R_a \) and \(N(H) = \{ f \in R \mid C(f)_v = R \} \). Then \(N(H) \) is a \(t \)-lcm \(t \)-complemented \(t \)-splitting set of \(R \).

Proof. Let \(0 \neq f \in R \) and \(A = fR_{N(H)} \cap R \). For the \(t \)-splitting set property of \(N(H) \), it suffices to show that \(A \) is \(t \)-invertible [3, Corollary 2.3]. Let \(Q \) be a maximal \(t \)-ideal of \(R \). If \(Q \cap N(H) \neq \emptyset \), then \(A_Q = fR_Q \). Next, assume that \(Q \cap N(H) = \emptyset \). Then \(C(Q)_t = R \), and hence \(Q \) is an upper to zero in \(R \) and \(R_Q \) is a rank-one DVR by Proposition 1.8. Now, note that if \(Q' \) is an upper to zero in \(R \) containing \(A \), then \(f \in Q'_R \) and \(Q'_R \) is a height-one prime ideal of \(R_H \); so there are only finitely many uppers to zero in \(R \) containing \(A \), say \(Q_1, \ldots, Q_n \). Hence, if \(S = R \setminus \bigcup_{i=1}^n Q_i \), then \(R_S \) is a principal ideal domain, and thus \(AR_S = gR_S \) for some \(g \in A \). Let \(I = (f,g)_v \). Then \(IR_Q = fR_Q \) when \(Q \cap N(H) = \emptyset \), and \(IR_Q = gR_Q \) when \(Q \cap N(H) \neq \emptyset \). Thus, \(I = A \) [36, Proposition 2.8(3)]; so \(A \) is \(t \)-invertible [36, Corollary 2.7].
Next, note that every t-ideal of R intersecting $N(H)$ is t-invertible by Proposition 1.12. Thus, $N(H)$ is a t-lcm t-splitting set [16, Theorem 3.4]. Also, if $\mathcal{S} = \{A_1 \cdots A_n | A_i = d_iR_{N(H)} \cap R \text{ for some } 0 \neq d_i \in R\}$, then $R_{H} \leq R_{\mathcal{S}}$ because $aR_{N(H)} \cap R = aR$ for all $a \in H$. Hence, $R_{\mathcal{S}}$ is t-linked over R_{H} [4, Proposition 2.3], and since R_{H} is a UFD, $R_{\mathcal{S}} = (R_{H})T$ for some saturated multiplicative set T of R_{H} [24, Theorem 1.3]. Thus, if $N = T \cap R$, then $R_{\mathcal{S}} = R_N$. □

An integral domain is called a Mori domain if it satisfies the ascending chain condition on its (integral) v-ideals. Clearly, Krull domains are Mori domains.

Corollary 1.16. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ and $N(H) = \{f \in R \mid C(f)_v = R\}$. Then R is a Mori domain (resp., UMT-domain) if and only if $R_{N(H)}$ is a Mori domain (resp., UMT-domain).

Proof. By Corollary 1.15, $N(H)$ is a t-lcm t-complemented t-splitting set of R. Let N be the t-complement of $N(H)$; then $R_{H} \subseteq R_{N}$, and hence R_{N} is a UFD and $R = R_{N(H)} \cap R_{N}$. Thus, $R_{N(H)}$ is a Mori domain if and only if R is a Mori domain [40, Theorem 1]. The UMT-domain property follows directly from [16, Corollary 3.6] and Corollary 1.15. □

2. Graded integral domains with property (#)

Let Γ be a nonzero torsionless grading monoid, $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a nontrivial Γ-graded integral domain, H be the set of nonzero homogeneous elements of R, and $N(H) = \{f \in R \mid C(f)_v = R\}$. Let Ω be the set of all homogeneous maximal t-ideals of R, i.e., $\Omega = \{Q \in t\text{-Max}(R) \mid Q \cap H \neq \emptyset\}$, and recall that R satisfies property (#) if and only if $\text{Max}(R_{N(H)}) = \{Q_{N(H)} \mid Q \in \Omega\}$ [9, Proposition 1.4].

Lemma 2.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with property (#), and let Q be an upper to zero in R.

1. Q is a maximal t-ideal if and only if $C(g)_v = R$ for some $g \in Q$.
2. If Q is a maximal t-ideal of R, then $Q = (f,g)_v$ for some $f,g \in R$.

Proof. (1) Q is a maximal t-ideal if and only if $C(Q)_t = R$ by Proposition 1.8, if and only if $Q \cap N(H) \neq \emptyset$ by property (#).

(2) Since Q is an upper to zero in R, there is an $f \in R$ such that $Q = fR_{H} \cap R$. Also, there is a $g \in Q$ with $C(g)_v = R$ by (1). Clearly, $(f,g)_v \subseteq Q$. For the reverse containment, let $h \in Q$. Then $ah \in fR$ for some $a \in H$, and thus $h(\alpha) \subseteq (f,g)$. Hence, $h(\alpha)g \subseteq (f,g)_v \subseteq Q$. If $\xi \in (\alpha,g)^{-1}$, then $\alpha \in H$ implies $\xi \in R_{H}$, and since $C(g)_v = R$, $\xi g \in R$ implies $\xi \in R$. Hence, $(\alpha,g)^{-1} = R$, and thus $hR = h(\alpha)g \subseteq (f,g)_v$. Thus, $Q \subseteq (f,g)_v$. □

We next give a characterization of graded UMT-domains $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ with property (#).
Theorem 2.2. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with property (\#). Then the following statements are equivalent.

1. R is a graded UMT-domain.
2. If Q is an upper to zero in R, then there is an $f \in Q$ such that $C(f)_{\alpha} = R$.
3. Every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R.
4. $N(H)$ is a t-lcm t-complemented t-splitting set of R with t-complement H.

Proof. (1) \Leftrightarrow (2) This follows directly from Lemma 2.1.

(1) \Rightarrow (3) Let Q' be a nonzero prime ideal of $R_{N(H)}$. Then $Q' = Q_{N(H)}$ for some nonzero prime ideal Q of R. Note that $Q \subseteq M$ for some homogeneous maximal t-ideal M of R because R satisfies property (\#). Thus, Q is homogeneous by Theorem 1.11.

(3) \Rightarrow (1) Let Q be an upper to zero in R, and assume that Q is not a maximal t-ideal of R. Then $Q \cap N(H) = \emptyset$ by Lemma 2.1(1), and so $Q_{N(H)}$ is a proper ideal of $R_{N(H)}$. Hence, by (3), there is a homogeneous ideal P of R such that $Q_{N(H)} = PR_{N(H)}$. Thus, $P \subseteq PR_{N(H)} \cap R = Q_{N(H)} \cap R = Q$, and so $Q_H = R_H$, a contradiction. Thus, Q is a maximal t-ideal of R.

(1) \Rightarrow (4) By Corollary 1.15, $N(H)$ is a t-lcm t-complemented t-splitting set of R. Also, note that $\{Q \in t\text{-Max}(R) \mid Q \cap N(H) \neq \emptyset\}$ is the set of uppers to zero in R by property (\#) and assumption; so $R_H = R_{\emptyset} = \emptyset$, where $\emptyset = \{A_1, \ldots, A_n \mid A_i = d_i R_{N(H)} \cap R$ for some $0 \neq d_i \in R\}$. Thus, H is the t-complement of $N(H)$.

(4) \Rightarrow (1) Let Q be an upper to zero in R. Then $Q \cap H = \emptyset$, and hence $Q \cap N(H) \neq \emptyset$ [3, Theorem 4.3] because H is the t-complement of $N(H)$. Thus, Q is a maximal t-ideal of R by Proposition 1.8.

The next result is an immediate consequence of Corollary 1.9, but we use Theorem 2.2 to give another proof.

Corollary 2.3. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with property (\#). Then $t\text{-dim}(R) = 1$ if and only if $\dim(R_{N(H)}) = 1$. In this case, R is a graded UMT-domain.

Proof. Assume $t\text{-dim}(R) = 1$, and note that $\text{Max}(R_{N(H)}) = \{Q_{N(H)} \mid Q \in \Omega\}$. Thus, $\dim(R_{N(H)}) = 1$. Conversely, suppose $\dim(R_{N(H)}) = 1$, and let Q be a maximal t-ideal of R. If $Q \cap H \neq \emptyset$, then Q is homogeneous, and thus $\text{ht}Q = \text{ht}(Q_{N(H)}) = 1$. Next, if $Q \cap H = \emptyset$, then $Q_H \subseteq R_H$, and hence Q contains an upper to zero Q_0 in R. However, note that since R satisfies property (\#), $\dim(R_{N(H)}) = 1$ implies $(Q_0)_{N(H)} = R_{N(H)}$. Thus, $Q_0 \cap N(H) \neq \emptyset$, and so Q_0 is a maximal t-ideal of R by Lemma 2.1. Hence, $Q = Q_0$ and $\text{ht}Q = 1$.

For “In this case”, note that $\dim(R_{N(H)}) = 1$ implies that every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R. Thus, R is a graded UMT-domain by Theorem 2.2.
An integral domain D is called an almost Dedekind domain (resp., t-almost Dedekind domain) if D_P is a rank-one DVR for all maximal ideals (resp., maximal t-ideals) P of D. Clearly, Dedekind domains are almost Dedekind domains; Krull domains are t-almost Dedekind domains; and if D is an almost (resp., a t-almost) Dedekind domain, then $\dim(D) = 1$ (resp., t-$\dim(D) = 1$).

Corollary 2.4 (cf. [20, Corollary 9]). Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a graded integral domain with property $(\#)$. Then R is a t-almost Dedekind domain if and only if $R_{N(H)}$ is an almost Dedekind domain.

Proof. (\Rightarrow) By Corollary 2.3, $\dim(R_{N(H)}) = 1$. Note that $\Max(R_{N(H)}) = \{Q_{N(H)} \mid Q \in \Omega\}$ and R_Q is a rank-one DVR for all $Q \in \Omega$. Thus, $R_{N(H)}$ is an almost Dedekind domain.

(\Leftarrow) If $R_{N(H)}$ is an almost Dedekind domain, then $\dim(R_{N(H)}) = 1$, and thus t-$\dim(R) = 1$ by Corollary 2.3. Let Q be a maximal t-ideal of R. If $Q \cap H = \emptyset$, then $ht(Q_H) = htQ = 1$, and since R_H is a UFD, R_Q is a rank-one DVR. Next, if $Q \cap H \neq \emptyset$, then Q is homogeneous, and hence $Q_{N(H)} \subsetneq R_{N(H)}$. Thus, R_Q is a rank-one DVR by assumption.\qed

An integral domain D is called a weakly Krull domain if (i) $D = \bigcap_{P \in X^1(D)} D_P$, where $X^1(D)$ is the set of height-one prime ideals of D, and (ii) the intersection $D = \bigcap_{P \in X^1(D)} D_P$ is locally finite. It is easy to see that if D is a weakly Krull domain, then t-$\dim(D) = 1$, i.e., $X^1(D) = t$-$\Max(D)$, and D_S is a weakly Krull domain for a multiplicative set S of D. Also, D is a Krull domain if and only if D is a weakly Krull domain and D_P is a rank-one DVR for all $P \in X^1(D)$.

Corollary 2.5. The following statements are equivalent for $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$.

1. R is a weakly Krull domain.
2. R is a graded UMT-domain and $R_{N(H)}$ is a weakly Krull domain.
3. $R_{N(H)}$ is a weakly Krull domain.
4. $R_{N(H)}$ is an one-dimensional weakly Krull domain.

Proof. Note that $R_{N(H)}$ is a weakly Krull domain in this corollary. Also, $Q_{N(H)}$ is a prime t-ideal of $R_{N(H)}$ for all $Q \in \Omega$ [9, Proposition 1.3]. Hence, the intersection $\bigcap_{Q \in \Omega} R_Q$ is locally finite, and thus R satisfies property $(\#)$ [9, Lemma 2.2].

(1) \Rightarrow (2) If R is a weakly Krull domain, then t-$\dim(R) = 1$, and hence R is a graded UMT-domain by Corollary 2.3. Also, since $N(H)$ is a multiplicative subset of R, $R_{N(H)}$ is a weakly Krull domain.

(2) \Rightarrow (3) Clear.

(3) \Rightarrow (4) If $R_{N(H)}$ is a weakly Krull domain, then $ht(Q_{N(H)}) = 1$ for all $Q \in \Omega$. Thus, t-$\dim(R_{N(H)}) = 1$ because R satisfies property $(\#)$.

(4) \Rightarrow (1) By Corollary 2.3, t-$\dim(R) = 1$, and thus $R = \bigcap_{Q \in X^1(R)} R_Q$. Next, let $f \in R$ be a nonzero nonunit. Since $R_{N(H)}$ is a weakly Krull domain, f is contained in only finitely many homogeneous maximal t-ideals of R. Also,
since \(R_H \) is a UFD, \(f \) is contained in only finitely many uppers to zero in \(R \). Therefore, \(R \) is a weakly Krull domain.

It is clear that \(D \) is a Krull domain if and only if \(D \) is a \(t \)-almost Dedekind weakly Krull domain and that a Krull domain \(D \) is a Dedekind domain if and only if \(\dim(D) = 1 \). Hence, by Corollaries 2.4 and 2.5, we have:

Corollary 2.6 ([9, Corollary 2.4]). Let \(R = \bigoplus_{\alpha \in \Gamma} R_{\alpha} \). Then \(R \) is a Krull domain if and only if \(R_{N(H)} \) is a Dedekind domain.

An integral domain \(D \) is a weakly factorial domain if each nonzero nonunit of \(D \) can be written as a finite product of primary elements of \(D \). (A nonzero element \(x \in D \) is said to be primary if \(xD \) is a primary ideal.) Since a prime ideal is a primary ideal, prime elements are primary, and thus UFDs are weakly factorial domains. It is known that \(D \) is a weakly factorial domain if and only if \(D \) is a weakly Krull domain and \(Cl(D) = \{0\} \) [6, Theorem]. Note that \(X \) is a prime element of the polynomial ring \(D[X] \); so \(D[X] \) is a weakly factorial domain if and only if \(D[X, X^{-1}] \) is a weakly factorial domain. Thus, the next result is a generalization of [5, Theorem 17] that \(D \) is a weakly factorial GCD-domain if and only if \(D[X] \) is a weakly factorial domain.

Corollary 2.7. Let \(R = \bigoplus_{\alpha \in \Gamma} R_{\alpha} \) be a graded integral domain with a unit of nonzero degree. Then the following statements are equivalent.

1. \(R \) is a weakly factorial domain.
2. \(R \) is a weakly factorial GCD-domain.
3. \(R \) is a weakly factorial \(PrMD \).

Proof. (1) \(\Rightarrow \) (2) If \(R \) is a weakly factorial domain, then \(R \) is a weakly Krull domain and \(Cl(R) = \{0\} \). Hence, each upper to zero \(Q \) in \(R \) is \(t \)-invertible by Corollary 2.5 and Proposition 1.8, and so \(Q \) is principal. Thus, every upper to zero in \(R \) contains a (nonzero) prime element, and hence \(R \) is a GCD-domain [19, Theorem 2.2].

(2) \(\Rightarrow \) (3) \(\Rightarrow \) (1) Clear.

3. Graded integral domains with a unit of nonzero degree

Let \(R = \bigoplus_{\alpha \in \Gamma} R_{\alpha} \) be an integral domain graded by a nonzero torsionless grading monoid \(\Gamma \), \(H \) be the set of nonzero homogeneous elements of \(R \), \(N(H) = \{ f \in R \mid C(f)_{v} = R \} \), and \(\bar{R} \) be the integral closure of \(R \). Note that \(\bar{R} \) is a graded integral domain by Lemma 1.6 such that \(R \subseteq \bar{R} \subseteq R_H = R_H \). In this section, we study a graded UMT-domain property of \(R \) with a unit of nonzero degree.

Lemma 3.1. Let \(R = \bigoplus_{\alpha \in \Gamma} R_{\alpha} \) be a graded integral domain with a unit of nonzero degree, and let \(Q \) be a nonzero homogeneous prime ideal of \(R \). If \(Q \) is not a \(t \)-ideal, then there is an upper to zero \(U \) in \(R \) such that \(U \subseteq Q \).
Since Q is not a t-ideal, there are some $a_0, a_1, \ldots, a_n \in Q \cap H$ such that $(a_0, a_1, \ldots, a_n)_o \not\subseteq Q$. Let
\[
f = a_0 + a_1x^{k_1} + \cdots + a_nx^{k_n},
\]
where $x \in R$ is a unit of nonzero degree and $k_i \geq 1$ is an integer such that $C(f) = (a_0, a_1, \ldots, a_n)$, and let $U \subseteq Q$ be a prime ideal of R minimal over fR. Then U is a t-ideal. We claim that U is an upper to zero in R.

Let $S = H \setminus Q$. Then Q_S is a unique homogeneous maximal ideal of R_S, and so $(C(f)R_S)_t = R_S$ because $(C(f)R_S)_t = (C(f)_tR_S)_t \not\subseteq Q_S$. Also, note that U_S is a t-ideal of R_S; hence if $a \in U \cap H(\neq \emptyset)$, then $R_S = ((a, f)R_S)_t \subseteq (U_S)_t = U_S$, a contradiction. Thus, $U \cap H = \emptyset$, and so U_H is a prime t-ideal because U_H is minimal over fR_H. Since R_H is a UFD, $U_H = gR_H$ for some $g \in R$. Thus, $U = U_H \cap R = gR_H \cap R$ is an upper to zero in R. \square

Proposition 3.2. Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a graded UMT-domain with a unit of nonzero degree, T be a homogeneous overring of R, and Q be a homogeneous prime t-ideal of R. If M is a homogeneous prime ideal of T such that $M \cap R = Q$, then M is a t-ideal of T.

Proof. If M is not a t-ideal of T, then there is an upper to zero U in T such that $U \subseteq M$ by Lemma 3.1. Clearly, $U \cap R \subseteq M \cap R = Q$. Thus, $U \cap R$ is not a maximal t-ideal of R, a contradiction. \square

Corollary 3.3. Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a graded UMT-domain with a unit of nonzero degree. If Q is a homogeneous prime t-ideal of R, then $R_{H \setminus Q}$ is a graded UMT-domain with a unique homogeneous maximal ideal that is a t-ideal.

Proof. Clearly, $R_{H \setminus Q}$ is a homogeneous t-linked overring of R, and hence $R_{H \setminus Q}$ is a graded UMT-domain by Corollary 1.10. Also, $Q_{H \setminus Q}$ is a unique homogeneous maximal ideal of $R_{H \setminus Q}$, and by Proposition 3.2, $Q_{H \setminus Q}$ is a t-ideal. \square

Lemma 3.4. Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a graded integral domain. Then R is a graded-Prüfer domain if and only if R_Q is a valuation domain for all homogeneous maximal ideals Q of R.

Proof. This follows from the following two observations: (i) R is a (graded) PeMD if and only if R_Q is a valuation domain for all homogeneous maximal t-ideals Q of R [18, Lemma 2.7] and (ii) R is a graded-Prüfer domain if and only if R is a graded PeMD whose homogeneous maximal ideals are t-ideals. \square

We next give the main result of this section which provides characterizations of graded UMT-domains with a unit of nonzero degree.

Theorem 3.5. Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a graded integral domain with a unit of nonzero degree. Then the following statements are equivalent.

1. R is a graded UMT-domain.
(2) If \(Q \) is an upper to zero in \(R \), then there is an \(f \in Q \) such that \(C(f)_e = R \).

(3) Every prime ideal of \(R_{N(I)} \) is extended from a homogeneous ideal of \(R \).

(4) \(R_{H \setminus Q} \) is a graded-Pr"ufer domain for all homogeneous maximal \(t \)-ideals \(Q \) of \(R \).

(5) \(R \) is a UMT-domain.

(6) \(R_{N(I)} \) is a Pr"ufer domain.

(7) \(R_{N(I)} \) is a UMT-domain.

(8) \(R_{N(I)} \) is a quasi-Pr"ufer domain.

Proof. (1) \(\Leftrightarrow \) (2) \(\Leftrightarrow \) (3) Since \(R \) has a unit of nonzero degree, \(R \) satisfies property (\#). Thus, the results follow directly from Theorem 2.2.

(1) \(\Rightarrow \) (4) Let \(Q \) be a homogeneous maximal \(t \)-ideal of \(R \). Replacing \(R \) and \(Q \) with \(R_{H \setminus Q} \) and \(Q_{H \setminus Q} \) respectively, by Corollary 3.3, we may assume that \(R \) has a unique homogeneous maximal ideal \(Q \) and \(Q \) is a \(t \)-ideal.

Assume to the contrary that \(\bar{R} \) is not a graded-Pr"ufer domain. Then there are some \(a_0, a_1, \ldots, a_k \in H \) such that \(I = (a_0, a_1, \ldots, a_k) \bar{R} \) is not invertible. Let \(f = a_0 + a_1x^{m_1} + \cdots + a_kx^{m_k} \), where \(x \in R \) is a unit of nonzero degree and \(m_i \geq 1 \) is an integer such that \(C_R(f) = I \). Then \(fR_H \cap \bar{R} = fC_R(f)^{-1} \) [9, Lemma 1.2(4)], and since \(I \) is not invertible and \(C_R(f)C_R(f)^{-1} \) is homogeneous, we have \(U = fC_R(f)^{-1} \subseteq C_R(f)C_R(f)^{-1} \subseteq M \) for some homogeneous maximal ideal \(M \) of \(\bar{R} \). Note that \(R_H \) is a UFD; so \(f = f_1^{\epsilon_1} \cdots f_n^{\epsilon_n} \) for some prime elements \(f_i \in R_H \) and integers \(\epsilon_i \geq 1 \). Thus,

\[
fR_H \cap \bar{R} = ((f_1R_H)^{\epsilon_1} \cdots (f_nR_H)^{\epsilon_n}) \cap \bar{R} \\
= ((f_1R_H)^{\epsilon_1} \cap \bar{R}) \cdots (f_nR_H)^{\epsilon_n} \cap \bar{R} \\
= (f_1R_H)^{\epsilon_1} \cap \bar{R} \cdots (f_nR_H)^{\epsilon_n} \cap \bar{R} \\
\supseteq (f_iR_H \cap \bar{R})^{\epsilon_i} \cdots (f_nR_H \cap \bar{R})^{\epsilon_n}.
\]

Thus, \(M \supseteq f_iR_H \cap \bar{R} \) for some \(i \), and so

\[Q = M \cap R \supseteq (f_iR_H \cap \bar{R}) \cap R = f_iR_H \cap R, \]

which is contrary to the fact that \(Q \) is a \(t \)-ideal. Therefore, \(\bar{R} \) is a graded-Pr"ufer domain.

(4) \(\Rightarrow \) (1) Assume that \(R \) is not a graded UMT-domain, and let \(Q_f = fR_H \cap R \) be an upper to zero in \(R \) such that \(Q_f \subseteq Q \) for some homogeneous maximal \(t \)-ideal \(Q \) of \(R \) (cf. Theorem 1.11). Let \(T = R_{H \setminus Q} \). Then by (4), \(T \) is a graded-Pr"ufer domain, and hence \(U_f = fR_H \cap T = fC_T(f)^{-1} \subseteq M_0 \) for all homogeneous maximal ideals \(M_0 \) of \(T \). Note that \(U_f \cap R_{H \setminus Q} = (Q_f)_{H \setminus Q}, \) \((Q_f)_{H \setminus Q} \subseteq Q_{H \setminus Q} \), and \(T \) is integral over \(R_{H \setminus Q} \). Thus, there is a prime ideal \(M \) of \(T \) such that \(U_f \subseteq M \) and \(M \cap R_{H \setminus Q} = Q_{H \setminus Q} \). Since \(Q \) is homogeneous, \(M' \cap R_{H \setminus Q} = Q_{H \setminus Q} \). Thus, \(M = M' \) is homogeneous, a contradiction.

(1) \(\Rightarrow \) (5) Let \(Q \) be a maximal \(t \)-ideal of \(R \). If \(Q \cap H \neq \emptyset \), then \(Q \) is homogeneous, and thus \(R_{H \setminus Q} \) is a graded-Pr"ufer domain by the equivalence of
(1) and (4). Note that if \(M \) is a prime ideal of \(\bar{R}_{H \backslash Q} \) such that \(M \cap R_{H \backslash Q} = Q_{H \backslash Q} \), then \(M \) is homogeneous because \(Q \) is homogeneous; hence \((\bar{R}_{H \backslash Q})_M \) is a valuation domain by Lemma 3.4. Clearly, \(R_{R \backslash Q} = (\bar{R}_{H \backslash Q})_R \). Thus, \(R_{R \backslash Q} \) is a Prüfer domain. Next, assume \(Q \cap H = \emptyset \). Then \(Q = Q_H \cap R \), and so if \(hQ \geq 2 \), then there is an \(0 \neq f \in R \) such that \(fR_H \subseteq Q_H \) is a prime ideal of \(R_H \). Hence, \(fR_H \cap R \subsetneq Q_H \cap R = Q \), a contradiction. Thus, \(hQ = 1 \) and so \(R_Q = (R_H)_{Q_H} \) is a rank-one DVR. Therefore, by Theorem 1.2, \(R \) is a UMT-domain.

(5) \(\Rightarrow \) (6) Let \(M \) be a prime ideal of \(\bar{R} \) such that \(M_{N(H)} \) is a maximal ideal of \(\bar{R}_{N(H)} \). Then \((M \cap R) \cap N(H) = \emptyset \), and hence \(M \cap R \) is a homogeneous maximal \(t \)-ideal of \(R \). Since \(R \) is a UMT-domain, \(\bar{R}_{M \cap R} \) is a Prüfer domain by Theorem 1.2. Note that \(\bar{R}_{M \cap R} = (\bar{R}_{N(H)})_{M_{N(H)}} \); so \((\bar{R}_{N(H)})_{M_{N(H)}} \) is a valuation domain. Thus, \(\bar{R}_{N(H)} \) is a Prüfer domain.

(6) \(\Rightarrow \) (4) Let \(M \) be a homogeneous prime ideal of \(\bar{R} \) such that \(M_{H \backslash Q} \) is a homogeneous maximal ideal of \(\bar{R}_{H \backslash Q} \). Then \(M \cap R \subseteq Q \), and so \(M \cap N(H) = \emptyset \). Thus, \(M_{N(H)} \) is a proper prime ideal of \(\bar{R}_{N(H)} \), and so \(\bar{R}_M = (\bar{R}_{N(H)})_{M_{N(H)}} \) is a valuation domain. Thus, by Lemma 3.4, \(\bar{R}_{H \backslash Q} \) is a graded-Prüfer domain.

(6) \(\Leftrightarrow \) (8) [25, Corollary 6.5.14].

(7) \(\Leftrightarrow \) (8) This follows because each maximal ideal of \(R_{N(H)} \) is a \(t \)-ideal [9, Propositions 1.3 and 1.4].

Corollary 3.6 ([19, Theorem 2.5]). Let \(R = \bigoplus_{\alpha \in \Gamma} R_{\alpha} \) be a graded integral domain with a unit of nonzero degree. Then \(R \) is an integrally closed graded UMT-domain if and only if \(R \) is a PeMD.

Proof. \(R \) is an integrally closed graded UMT-domain if and only if \(R \) is an integrally closed UMT-domain (by Theorem 3.5), if and only if \(R \) is a PeMD (by Corollary 1.3).

Corollary 3.7. Let \(R = \bigoplus_{\alpha \in \Gamma} R_{\alpha} \) be a graded integral domain with a unit of nonzero degree. Then \(R \) is a graded-Prüfer domain if and only if \(R \) is a graded UMT-domain whose homogeneous maximal ideals are \(t \)-ideals.

Proof. (\(\Rightarrow \)) Clearly, \(\bar{R}_{H \backslash Q} \) is a graded-Prüfer domain for all homogeneous maximal \(t \)-ideals \(Q \) of \(R \). Thus, by Theorem 3.5, \(R \) is a graded UMT-domain. Next, let \(f \in R \) be nonzero such that \(fR_H \) is a prime ideal. Note that \(fR_H \cap R = fC_R(f)^{-1} \) \([9, \text{Lemma 1.2}(4)]\); so if \(h \in R_H \) with \(C_R(h) = C_R(f)^{-1} \) (such \(h \) exists because \(R \) has a unit of nonzero degree), then \(fh \in fC_R(f)^{-1} \) and \(C_R(fh) = R \). Thus, \(C(fC_R(f)^{-1}) = \bar{R} \). Note also that \(fR_H \cap R = fC_R(f)^{-1} \cap R \) and \(\bar{R} \) is integral over \(R \). Hence, \(C(fR_H \cap R) = R \). Thus, by Lemma 3.1, each homogeneous maximal ideal of \(R \) is a \(t \)-ideal.

(\(\Leftarrow \)) Let \(M \) be a homogeneous maximal ideal of \(\bar{R} \). Then \(M \cap R \) is a homogeneous ideal of \(R \); so \((M \cap R) \cap N(H) = \emptyset \) by assumption. Hence, \(M \cap N(H) = \emptyset \), and thus \(\bar{R}_M = (\bar{R}_{N(H)})_{M_{N(H)}} \) is a valuation domain by Theorem 3.5. Thus, by Lemma 3.4, \(\bar{R} \) is a graded-Prüfer domain.
It is well known that each overring of a Prüfer domain is a Prüfer domain [28, Theorem 26.1]. The next result is the graded-Prüfer domain analog.

Lemma 3.8 ([10, Theorem 2.5(2)]). Let T be a homogeneous overring of a graded-Prüfer domain $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$. Then T is a graded-Prüfer domain.

Proof. Let A be a nonzero finitely generated homogeneous ideal of T. Since $R \subseteq T \subseteq \bar{R}_H$, there are an $\alpha \in H$ and a finitely generated homogeneous ideal I of R such that $A = \frac{1}{\alpha} IT$. Since R is a graded-Prüfer domain, I is invertible, and thus $A = \frac{1}{\alpha} IT$ is invertible. Hence, T is a graded-Prüfer domain. □

Let D be a UMT-domain, and recall that if P is a nonzero prime ideal of D with $P \subseteq D$, then P is a t-ideal [26, Corollary 1.6]. We next give the graded UMT-domain analog.

Corollary 3.9. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded UMT-domain with a unit of nonzero degree, and let M be a homogeneous maximal t-ideal of R. If $P \subseteq M$ is a nonzero prime ideal of R, then P is a homogeneous prime t-ideal.

Proof. Since M is homogeneous, $C(P)_t \subseteq M_t = M \subseteq R$. Thus, P is homogeneous by Theorem 1.11. Next, note that $\bar{R}_H \setminus M$ is a graded-Prüfer domain and $\bar{R}_H \setminus P$ is a homogeneous overring of $\bar{R}_H \setminus M$; so by Lemma 3.8, $\bar{R}_H \setminus P$ is a graded-Prüfer domain. Thus, by Corollary 3.7, $\bar{P} \setminus P$ is a prime t-ideal, and hence P is a prime t-ideal of R. □

We next give another characterization of graded UMT-domains.

Corollary 3.10. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree. Then the following statements are equivalent.

1. R is a graded UMT-domain.
2. Let Q be a nonzero prime ideal of R with $C(Q)_t \subseteq R$. Then Q is a homogeneous prime t-ideal.
3. Let Q be a nonzero prime ideal of R such that $Q \subseteq M$ for some homogeneous maximal t-ideal M of R. Then Q is a homogeneous prime t-ideal.

Proof. (1) \Rightarrow (2) Let Q be a nonzero prime ideal of R with $C(Q)_t \subseteq R$. Clearly, there is a homogeneous maximal t-ideal M of R such that $Q \subseteq M$. Hence, by Corollary 3.9, Q is a homogeneous prime t-ideal.

(2) \iff (3) Clear.

(3) \Rightarrow (1) This follows from Theorem 1.11. □

An integral domain D is called a generalized Krull domain if (i) $D = \bigcap_{P \in X^1(D)} D_P$, (ii) the intersection $D = \bigcap_{P \in X^1(D)} D_P$ is locally finite, and (iii) D_P is a (rank-one) valuation domain for all $P \in X^1(D)$. Clearly, D is a generalized Krull domain if and only if D is a weakly Krull domain and D_P is a valuation domain for all $P \in X^1(D)$, if and only if D is a weakly Krull PeMD, and a generalized Krull domain D is a Krull domain, if and only if D_P is a DVR for all $P \in X^1(D)$.

PRÜFER-LIKE DOMAINS 1751
Lemma 3.12. Let \(D \) be a Prüfer domain [26, Theorems 2.4 and 2.5], if and only if every prime ideal of \(D \) is a height-one prime ideal of \(R \), and since \(R \) is a UFD, \(R \) is a Prüfer domain.

Corollary 2.5 and [2, Proposition 2.6 and Corollary 3.5].

\(\square \)

Proof. (1) \(\Rightarrow \) (2) It suffices to show that \(R \) is a valuation domain for all \(Q \in X^1(R) \). Let \(Q \) be a height-one prime ideal of \(R \). If \(Q \cap H = \emptyset \), then \(Q = \emptyset \) is a valuation domain.

(2) \(\Rightarrow \) (3) \(\Rightarrow \) (1) This follows from Corollary 2.5 because \(R = R_H \cap R_N(H) \).

R \(\varnothing \) is an integrally closed weakly Krull domain.

\(\square \)

Corollary 2.6 and [2, Proposition 2.6 and Corollary 3.5]. Thus, \(R \) is a proper prime ideal of \(R \).

Let \(\bar{D} \) be the integral closure of an integral domain \(D \), \(\{X_\alpha\} \) be a nonempty set of indeterminates over \(D \), and \(N_v = \{f \in D[X_\alpha] \mid v(f) = D\} \). It is known that \(D \) is a UMT-domain if and only if \(D[X_\alpha] \) is a UMT-domain, if and only if \(D[X_\alpha]_{N_v} \) is a UMT-domain, and if and only if \(D[X_\alpha]_{N_v} \) is a Prüfer domain [26, Theorems 2.4 and 2.5], if and only if every prime ideal of \(D[X_\alpha]_{N_v} \) is extended from \(D \) (cf. [34, Theorem 3.1]). We next recover this result as a corollary of Theorem 3.5, and for this we first need a simple lemma.

Lemma 3.12. Let \(R = \bigoplus_{\alpha \in \Gamma} R_\alpha \) be a graded integral domain with a set \(\{p_\beta\} \) of non-zero homogeneous prime elements such that (i) \(\text{ht}(p_\beta R) = 1 \) for each \(\beta \) and (ii) \(\bigcap_{\beta=1}^{\infty} p_\beta R = (0) \) for any sequence \(\{p_{\beta_n}\} \) of nonassociate members of \(\{p_\beta\} \), and let \(S \) be the saturated multiplicative set of \(R \) generated by \(\{p_\beta\} \).

(1) \(R_S \) is a homogeneous overring of \(R \).

(2) \(R \) is a graded UMT-domain if and only if \(R_S \) is a graded UMT-domain.

(3) \(R \) is a UMT-domain if and only if \(R_S \) is a UMT-domain.

Proof. (1) Clear.

(2) It is clear that each upper to zero in \(R \) not comparable with \(p_\beta R \) under inclusion for all \(\beta \). Also, \(Q \) is an upper to zero in \(R \) if and only if \(Q_S \) is an upper to zero in \(R_S \). Note that \(t\text{-Max}(R_S) = \{Q_S \mid Q \in t\text{-Max}(R) \} \).

(3) Clearly, \(R_{p_\beta R} \) is a rank-one DVR for all \(\beta \). Also, if \(Q \) is a prime ideal of \(R \) with \(Q \cap S = \emptyset \), then \(Q \) is a maximal \(t \)-ideal if and only if each upper to zero in \(R_S \) is maximal \(t \)-ideal.

The result follows from Theorem 1.2 and [2, Proposition 2.6 and Corollary 3.5].

\(\square \)
Corollary 3.13. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a nonzero homogeneous prime element p such that $ht(pR) = 1$ and $\deg(p) \neq 0$. Then R is a graded UMT-domain if and only if R is a UMT-domain.

Proof. Clearly, $\{\}$ satisfies the conditions (i) and (ii) of Lemma 3.12. Also, if $S = \{up^n \mid u$ is a unit of R and $n \geq 0\}$, then R_S has a unit of nonzero degree. Thus, R is a graded UMT-domain if and only if R_S is a graded UMT-domain, and if and only if R_S is a UMT-domain by Lemma 3.12 and Theorem 3.5. □

For each α, let $\mathbb{Z}_\alpha = \mathbb{Z}$ be the additive group of integers; so if $G = \bigoplus_{\alpha \in \Gamma} \mathbb{Z}_\alpha$, then G is a torsionfree abelian group and the group ring $D[G]$ of G over D is isomorphic to $D[[X_\alpha, X_\alpha^{-1}]]$. Thus, if $R = D[[X_\alpha, X_\alpha^{-1}]]$, then R has a unit of nonzero degree and $R_{\nu(H)} = D[[X_\alpha]]$. [9, Proposition 3.1] and every homogeneous ideal of R has the form IR for an ideal I of D.

Corollary 3.14. Let D be an integral domain, $\{X_\alpha\}$ be a nonempty set of indeterminates over D, and $N_\nu = \{f \in D[[X_\alpha]] \mid c(f)_\nu = D\}$. Then the following statements are equivalent.

1. D is a UMT-domain.
2. $D[[X_\alpha]]$ is a UMT-domain.
3. $D[[X_\alpha]]$ is a graded UMT-domain.
4. $D[[X_\alpha, X_\alpha^{-1}]]$ is a UMT-domain.
5. $D[[X_\alpha, X_\alpha^{-1}]]$ is a graded UMT-domain.
6. $D[[X_\alpha]]_{N_\nu}$ is a Prüfer domain.
7. $D[[X_\alpha]]_{N_\nu}$ is a UMT-domain.
8. $D[[X_\alpha]]_{N_\nu}$ is a quasi-Prüfer domain.
9. Every prime ideal of $D[[X_\alpha]]_{N_\nu}$ is extended from D.

Proof. (1) \iff (5) Let $R = D[[X_\alpha, X_\alpha^{-1}]]$. Then $R_{\nu(H)} = D[[X_\alpha]]_{N_\nu}$ and $\{PR \mid P \in t\text{-Max}(D)\}$ is the set of homogeneous maximal t-ideals of R. Note that $R_{H\smallsetminus PR} = D[[X_\alpha, X_\alpha^{-1}]]$; and $D[[X_\alpha, X_\alpha^{-1}]]$ is a graded-Prüfer domain if and only if D_P is a Prüfer domain for all $P \in t\text{-Max}(D)$ (cf. [9, Example 3.6]). Thus, the result follows from Theorems 1.2 and 3.5.

(2) \iff (3) This follows from Corollary 3.13 because each X_β is a height-one homogeneous prime element of nonzero degree.

(3) \iff (5) Clearly, $\{X_\alpha\}$ is a set of nonzero homogeneous prime elements of $D[[X_\alpha]]$ satisfying the two conditions of Lemma 3.12. Also, if S is the multiplicative set of $D[[X_\alpha]]$ generated by $\{X_\alpha\}$, then $D[[X_\alpha]]_S = D[[X_\alpha, X_\alpha^{-1}]]$. Thus, the result is an immediate consequence of Lemma 3.12(2).

(4) \iff (5) \iff (6) \iff (7) \iff (8) \iff (9) Theorem 3.5. □

4. Counterexamples via the $D + XK[X]$ construction

In this section we use the $D + XK[X]$ construction to show that a graded UMT-domain need not be a UMT-domain in general. For this, let D be an
integral domain with quotient field K and $D \subseteq K$, X be an indeterminate over D, $K[X]$ be the polynomial ring over K, and $R = D + XK[X]$ be a subring of $K[X]$, i.e., $R = \{ f \in K[X] \mid f(0) \in D \}$; so $D[X] \subseteq R \subseteq K[X]$ and R is an \mathbb{N}_0-graded integral domain with $\text{deg}(aX^n) = n$ for $0 \neq a \in K$ and integer $n \geq 0$ ($a \in D$ when $n = 0$). Let H be the set of nonzero homogeneous elements of R and $N(H) = \{ f \in R \mid C(f)_v = R \}$; then $N(H) = \{ f \in R \mid f(0) \text{ is a unit of } R \}$ [15, Lemma 6] and $R_H = K[X, X^{-1}]$.

Lemma 4.1. If Q is an upper to zero in $R = D + XK[X]$, then $Q = fR$ for some $f \in R$ with $f(0) = 1$, and hence Q is a maximal t-ideal of R.

Proof. Note that $R_H = K[X, X^{-1}]$; so $Q = fK[X, X^{-1}] \cap R$ for some $f \in K[X, X^{-1}]$. Since X is a unit of $K[X, X^{-1}]$ and K is the quotient field of D, we may assume that $f \in R$ with $f(0) = 1$. Hence, if $g \in K[X, X^{-1}]$ is such that $fg \in R$, then $g \in K[X]$, and since $f(0) = 1$, we have $g(0) \in D$; so $g \in R$. Thus, $Q = fR$. □

It is known that $R = D + XK[X]$ is a PrMD if and only if D is a PrMD [21, Theorem 4.43]. We next give a UMT-domain analog.

Proposition 4.2. Let $R = D + XK[X]$.

(1) R is a graded UMT-domain.

(2) R is a UMT-domain if and only if D is a UMT-domain.

Proof. (1) Lemma 4.1.

(2) Note that $K[X]$ is a UMT-domain and $XK[X]$ is a maximal t-ideal of $K[X]$. Thus, R is a UMT-domain if and only if D is a UMT-domain [26, Proposition 3.5]. □

We end this paper with some counterexamples.

Example 4.3. Let $R = D + XK[X]$. Then R is a graded UMT-domain.

(i) Counterexample to Proposition 1.7, Theorem 3.5, Corollary 3.6, and Corollary 3.7: Let R be the field of real numbers, \mathbb{Q} be the algebraic closure of the field \mathbb{Q} of rational numbers in \mathbb{R}, $R[y]$ be the power series ring over \mathbb{R}, and $D = \mathbb{Q} + gR[y]$. Then D is an integrally closed one-dimensional local integral domain that is not a valuation domain [11, Theorem 2.1] (hence D is not a UMT-domain). Hence, R satisfies property $(\#)$ [15, Corollary 9]. R is an integrally closed graded UMT-domain, but R is not a UMT-domain (so not a PrMD). (i) Thus, the converse of Proposition 1.7 does not hold in general. (ii) Moreover, this shows that Theorem 3.5 is not true if $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ does not contain a unit of nonzero degree. (iii) This also shows that Corollary 3.6 is not true in general. (iv) Finally, $R = D + XK[X]$ is an integrally closed domain but not a graded-Prüfer domain, while $R = D + XK[X]$ has a unique homogeneous maximal t-ideal (which must be a unique homogeneous maximal ideal). Thus, Corollary 3.7 does not hold in general.
(2) Let D be an integral domain with a prime ideal P such that $P \subseteq P_t \subseteq D$. (For example, let $D = \mathbb{R} + (X, Y, Z)\mathbb{C}[X, Y, Z]$, where \mathbb{C} is the field of complex numbers and $\mathbb{C}[X, Y, Z]$ is the power series ring, and let $P = (X, Y)\mathbb{C}[X, Y, Z]$. Then P is a prime ideal of D such that $P \subseteq P_t \subseteq P_t$. Then $PR = P + XK[X] \subseteq P_t + XK[X] = (P + XK[X])t \subseteq R = D + XK[X]$, and hence PR is a prime ideal of R contained in a homogeneous maximal t-ideal but PR is not a t-ideal. Thus, Corollary 3.9 does not hold if $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ does not contain a unit of nonzero degree.

Acknowledgements. The author would like to thank the referee for his/her several valuable comments.

References

GYU WHAN CHANG
DEPARTMENT OF MATHEMATICS EDUCATION
INCHEON NATIONAL UNIVERSITY
INCHEON 22012, KOREA
E-mail address: whan@inu.ac.kr