KYUNGPOOK Math. J. 57(2017), 361-369 https://doi.org/10.5666/KMJ.2017.57.3.361 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Int-soft Ideals of Pseudo MV-algebras Generated by a Soft Set

Young Bae Jun

Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea e-mail: skywine@gmail.com

HEE SIK KIM Department of Mathematics, Hanyang University, Seoul 04763, Korea e-mail: heekim@hanyang.ac.kr

SEOK-ZUN SONG* Department of Mathematics, Jeju National University, Jeju 63243, Korea e-mail: szsong@jejunu.ac.kr

ABSTRACT. A characterization of int-soft ideal is considered, and an int-soft ideal generated by a soft set is discussed. A new int-soft ideal from old one is constructed.

1. Introduction

The pseudo MV-algebra, which is a non-commutative generalization of MValgebra, has been introduced by Georgescu et al. [3] and Rachunek [9], respectively. Walendziak [10] has studied (implicative) ideals in pseudo MV-algebras. A soft set theory has been introduced by Molodtsov [8], and Çağman et al. [1] have provided new definitions and various results on soft set theory. Jun et al. [4] have discussed soft set theory in residuated lattices. Jun et al. [6, 7] have introduced the notion of intersectional soft sets, and have considered its applications to BCK/BCI-algebras. Jun et al. [5] have studied (implicative) int-soft ideals in pseudo MV-algebras.

In this paper, we discuss a characterization of int-soft ideal of a pseudo MValgerba. We construct a new int-soft ideal from old one. We also consider an int-soft

^{*} Corresponding Author.

Received May 18, 2016; accepted July 18, 2017.

²⁰¹⁰ Mathematics Subject Classification: 06F35, 03G25, 06D72.

Key words and phrases: int-soft ideal, inclusive ideal.

This research was supported by the 2017 scientific promotion program funded by Jeju National University.

ideal generated by a soft set.

2. Preliminaries

Let $\mathcal{M} := (M, \oplus, -, \sim, 0, 1)$ be an algebra of type (2, 1, 1, 0, 0). We set a new binary operation \odot on M via $x \odot y = (y^- \oplus x^-)^{\sim}$ for all $x, y \in M$. We will write $x \oplus y \odot z$ instead of $x \oplus (y \odot z)$, that is, the operation " \odot " is prior to the operation " \oplus ".

A $pseudo\ MV-algebra$ is an algebra $\mathcal{M}:=(M,\oplus,{}^-\,,{}^\sim\,,0,1)$ of type (2,1,1,0,0) such that

(2.1)	$x \oplus (y \oplus z) = (x \oplus y) \oplus z,$
(2.2)	$x \oplus 0 = 0 \oplus x = x,$
(2.3)	$x \oplus 1 = 1 \oplus x = x,$
(2.4)	$1^{\sim} = 0, \ 1^{-} = 0,$
(2.5)	$(x^- \oplus y^-)^{\sim} = (x^{\sim} \oplus y^{\sim})^-,$
(2.6)	$x \oplus x^{\sim} \odot y = y \oplus y^{\sim} \odot x = x \odot y^{-} \oplus y = y \odot x^{-} \oplus x,$
(2.7)	$x\odot(x^-\oplus y)=(x\oplus y^\sim)\odot y,$
(2.8)	$(x^-)^\sim = x$

for all $x, y, z \in M$. If we define

(2.9)
$$(\forall x, y \in M) (x \le y \iff x^- \oplus y = 1),$$

then \leq is a partial order such that M is a bounded distributive lattice with the join $x \lor y$ and the meet $x \land y$ given by

(2.10)
$$x \lor y = x \oplus x^{\sim} \odot y = x \odot y^{-} \oplus y,$$

(2.11)
$$x \wedge y = x \odot (x^- \oplus y) = (x \oplus y^{\sim}) \odot y,$$

respectively.

For any pseudo MV-algebra \mathcal{M} , the following properties are valid (see [3]).

$$(2.12) x \odot x^- = 0 = x^{\sim} \odot x,$$

(2.13)
$$(x \oplus y)^- = y^- \odot x^-, \ (x \oplus y)^\sim = y^\sim \odot x^\sim.$$

A subset I of a pseudo MV-algebra \mathcal{M} is called an *ideal* of \mathcal{M} (see [10]) if it satisfies:

$$(2.14) 0 \in I,$$

(2.15)
$$(\forall x, y \in M) (x, y \in I \implies x \oplus y \in I),$$

(2.16)
$$(\forall x, y \in M) (x \in I, y \le x \Rightarrow y \in I).$$

362

A nonempty subset I of a pseudo $MV\text{-algebra}\ {\mathcal M}$ is an ideal of ${\mathcal M}$ if and only if it satisfies (2.15) and

(2.17)
$$(\forall x, y \in M) (x \in I \implies x \land y \in I).$$

A soft set theory is introduced by Molodtsov [8], and Çağman et al. [1] provided new definitions and various results on soft set theory.

Let $\mathcal{P}(U)$ denote the power set of an initial universe set U and $A, B, C, \dots \subseteq E$ where E is a set of parameters.

A soft set (\tilde{f}, A) over U in E (see [1, 8]) is defined to be the set of ordered pairs

$$(\tilde{f}, A) := \left\{ \left(x, \tilde{f}(x)\right) : x \in E, \ \tilde{f}(x) \in \mathcal{P}(U) \right\},\$$

where $\tilde{f}: E \to \mathcal{P}(U)$ such that $\tilde{f}(x) = \emptyset$ if $x \notin A$.

The function \tilde{f} is called the approximate function of the soft set (\tilde{f}, A) .

For a soft set (\tilde{f}, A) over U in E, the set

$$(\tilde{f},A)_{\gamma} = \left\{ x \in A \mid \gamma \subseteq \tilde{f}(x) \right\}$$

is called the γ -inclusive set of (\tilde{f}, A) .

Assume that E has a binary operation \hookrightarrow . For any non-empty subset A of E, a soft set (\tilde{f}, A) over U in E is said to be *intersectional* over U (see [6, 7]) if its approximate function \tilde{f} satisfies:

(2.18)
$$(\forall x, y \in A) \left(x \hookrightarrow y \in A \Rightarrow \tilde{f}(x) \cap \tilde{f}(y) \subseteq \tilde{f}(x \hookrightarrow y) \right).$$

3. Int-soft Ideals on Pseudo MV-algebras

In what follows, we take a pseudo MV-algebra \mathcal{M} as a set of parameters.

Definition 3.1.([5]) A soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} is called an *int-soft ideal* of \mathcal{M} if the following conditions hold.

(3.1)
$$(\forall x, y \in M) \left(\tilde{f}(x \oplus y) \supseteq \tilde{f}(x) \cap \tilde{f}(y) \right),$$

(3.2)
$$(\forall x, y \in M) \left(y \le x \Rightarrow \tilde{f}(y) \supseteq \tilde{f}(x) \right).$$

It is easily seen that (3.2) implies

(3.3)
$$(\forall x \in M) \left(\tilde{f}(0) \supseteq \tilde{f}(x) \right).$$

Theorem 3.2. Let (\tilde{f}, M) be a soft set over U in a pseudo MV-algebra \mathcal{M} . Then (\tilde{f}, M) is an int-soft ideal of \mathcal{M} if and only if the γ -inclusive set $(\tilde{f}, M)_{\gamma}$ of (\tilde{f}, M) is an ideal of \mathcal{M} for all $\gamma \in \mathcal{P}(U)$ with $(\tilde{f}, M)_{\gamma} \neq \emptyset$.

We say that $(\tilde{f}, M)_{\gamma}$ is called an inclusive ideal of \mathcal{M} based on (\tilde{f}, M) .

Proof. Suppose that (\tilde{f}, M) is an int-soft ideal of \mathcal{M} . Let $\gamma \in \mathcal{P}(U)$ be such that $(\tilde{f}, M)_{\gamma} \neq \emptyset$. Then there exists $x \in (\tilde{f}, M)_{\gamma}$, and so $\tilde{f}(x) \supseteq \gamma$. It follows from (3.3) that $\tilde{f}(0) \supseteq \tilde{f}(x) \supseteq \gamma$. Hence $0 \in (\tilde{f}, M)_{\gamma}$. Let $x, y \in (\tilde{f}, M)_{\gamma}$ for $x, y \in M$. Then $\tilde{f}(x) \supseteq \gamma$ and $\tilde{f}(y) \supseteq \gamma$, which imply from (3.1) that $\tilde{f}(x \oplus y) \supseteq \tilde{f}(x) \cap \tilde{f}(y) \supseteq \gamma$. Thus $x \oplus y \in (\tilde{f}, M)_{\gamma}$. Let $x, y \in M$ be such that $x \in (\tilde{f}, M)_{\gamma}$ and $y \leq x$. Then $\tilde{f}(y) \supseteq \tilde{f}(x) \supseteq \gamma$ by (3.2), and so $y \in (\tilde{f}, M)_{\gamma}$. Hence $(\tilde{f}, M)_{\gamma}$ is an ideal of \mathcal{M} .

Conversely, assume that the nonempty γ -inclusive set $(\tilde{f}, M)_{\gamma}$ is an ideal of \mathcal{M} for all $\gamma \in \mathcal{P}(U)$. For any $x \in M$, let $\tilde{f}(x) = \gamma$. Then $x \in (\tilde{f}, M)_{\gamma}$. Since $(\tilde{f}, M)_{\gamma}$ is an ideal of \mathcal{M} , we have $0 \in (\tilde{f}, M)_{\gamma}$ and so $\tilde{f}(0) \supseteq \gamma = \tilde{f}(x)$. For any $x, y \in M$, let $\tilde{f}(x) \cap \tilde{f}(y) = \gamma$. Then $x, y \in (\tilde{f}, M)_{\gamma}$, and so $x \oplus y \in (\tilde{f}, M)_{\gamma}$ by (2.15). Hence $\tilde{f}(x \oplus y) \supseteq \gamma = \tilde{f}(x) \cap \tilde{f}(y)$. Let $x, y \in M$ be such that $y \leq x$ and $\tilde{f}(x) = \gamma$. Then $x \in (\tilde{f}, M)_{\gamma}$, and so $y \in (\tilde{f}, M)_{\gamma}$ by (2.16). Thus $\tilde{f}(y) \supseteq \gamma = \tilde{f}(x)$. Hence (\tilde{f}, M) is an int-soft ideal of \mathcal{M} .

Lemma 3.3.([5]) Let (f, M) be a soft set over U in a pseudo MV-algebra \mathcal{M} . Then (\tilde{f}, M) is an int-soft ideal of \mathcal{M} if and only if it satisfies (3.1) and

(3.4)
$$(\forall x, y \in M) \left(\tilde{f}(x \land y) \supseteq \tilde{f}(x) \right)$$

Theorem 3.4. Given a soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} , let $(\tilde{f}, M)^* := (\tilde{f}^*, M)$ be a soft set over U in \mathcal{M} which is given as follows:

where $\gamma, \delta \in \mathcal{P}(U)$ with $\delta \subsetneq \tilde{f}(x)$. If (\tilde{f}, M) is an int-soft ideal of \mathcal{M} , then so is $(\tilde{f}, M)^*$.

Proof. If (\tilde{f}, M) is an int-soft ideal of \mathcal{M} , then $(\tilde{f}, M)_{\gamma}$ is an ideal of \mathcal{M} for all $\gamma \in \mathcal{P}(U)$ with $(\tilde{f}, M)_{\gamma} \neq \emptyset$. Let $x, y \in M$. If $x, y \in (\tilde{f}, M)_{\gamma}$, then $x \oplus y \in (\tilde{f}, M)_{\gamma}$. Thus

$$\tilde{f}^*(x \oplus y) = \tilde{f}(x \oplus y) \supseteq \tilde{f}(x) \cap \tilde{f}(y) = \tilde{f}^*(x) \cap \tilde{f}^*(y).$$

If $x \notin (\tilde{f}, M)_{\gamma}$ or $y \notin (\tilde{f}, M)_{\gamma}$, then $\tilde{f}^*(x) = \delta$ or $\tilde{f}^*(y) = \delta$. Hence

$$\tilde{f}^*(x \oplus y) \supseteq \delta = \tilde{f}^*(x) \cap \tilde{f}^*(y).$$

For any $x, y \in M$, if $x \in (\tilde{f}, M)_{\gamma}$, then $x \wedge y \in (\tilde{f}, M)_{\gamma}$. Thus

$$\tilde{f}^*(x \wedge y) = \tilde{f}(x \wedge y) \supseteq \tilde{f}(x) = \tilde{f}^*(x).$$

If $x \notin (\tilde{f}, M)_{\gamma}$, then $\tilde{f}^*(x) = \delta \subseteq \tilde{f}^*(x \wedge y)$. It follows from Lemma that $(\tilde{f}, M)^*$ is an int-soft ideal of \mathcal{M} .

Theorem 3.5. Every ideal of a pseudo MV-algebra \mathcal{M} can be realized as an inclusive ideal of \mathcal{M} based on some int-soft ideal of \mathcal{M} .

Proof. Let I be an ideal of \mathcal{M} . For any $\gamma \neq \emptyset \in \mathcal{P}(U)$, let (\tilde{f}_I, M) be a soft set over U in \mathcal{M} defined by

(3.6)
$$\tilde{f}_I: M \to \mathcal{P}(U), \ x \mapsto \begin{cases} \gamma & \text{if } x \in I, \\ \emptyset & \text{otherwise} \end{cases}$$

Let $x, y \in M$. If $x, y \in I$, then $x \oplus y \in I$ since I is an ideal of \mathcal{M} . Thus

$$\tilde{f}_I(x \oplus y) = \gamma = \tilde{f}_I(x) \cap \tilde{f}_I(y).$$

If $x \notin I$ or $y \notin I$, then $\tilde{f}_I(x) = \emptyset$ or $\tilde{f}_I(y) = \emptyset$. Hence $\tilde{f}_I(x \oplus y) \supseteq \emptyset = \tilde{f}_I(x) \cap \tilde{f}_I(y)$. For any $x, y \in M$, if $x \in I$, then $x \wedge y \in I$. Thus

$$\tilde{f}_I(x \wedge y) = \gamma = \tilde{f}_I(x).$$

If $x \notin I$, then $\tilde{f}_I(x) = \emptyset \subseteq \tilde{f}_I(x \wedge y)$. It follows from Lemma that (\tilde{f}_I, M) is an int-soft ideal of \mathcal{M} . It is clear that $(\tilde{f}_I, M)_{\gamma} = I$. \Box

Lemma 3.6.([5]) Every int-soft ideal (\tilde{f}, M) of a pseudo MV-algebra \mathfrak{M} satisfies the following inclusions:

(3.7)
$$(\forall x, y \in M) \left(\tilde{f}(y) \supseteq \tilde{f}(x) \cap \tilde{f}(x^{\sim} \odot y) \right).$$

(3.8)
$$(\forall x, y \in M) \left(\tilde{f}(y) \supseteq \tilde{f}(x) \cap \tilde{f}(y \odot x^{-}) \right)$$

Lemma 3.7.([5]) For a soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} , the following are equivalent:

- (1) (\tilde{f}, M) is an int-soft ideal of \mathcal{M} .
- (2) (\tilde{f}, M) satisfies the conditions (3.3) and (3.7).
- (3) (\tilde{f}, M) satisfies the conditions (3.3) and (3.8).

Lemma 3.8.([3]) In a pseudo MV-algebra \mathcal{M} , the following are equivalent:

- (1) $(\forall x, y \in M) (x^- \oplus y = 1).$
- (2) $(\forall x, y \in M) (x \odot y^- = 0).$
- (3) $(\forall x, y \in M) (y^{\sim} \odot x = 0).$

We provide a characterization of an int-soft ideal.

Theorem 3.9. For a soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} , the following are equivalent:

(1) (\tilde{f}, M) is an int-soft ideal of \mathcal{M} .

Y. B. Jun, H. S. Kim and S.-Z. Song

 $(2) \quad (\forall x, y, z \in M) \left(z \odot x^{-} \odot y^{-} = 0 \Rightarrow \tilde{f}(z) \supseteq \tilde{f}(x) \cap \tilde{f}(y) \right).$ $(3) \quad (\forall x, y, z \in M) \left(x^{\sim} \odot y^{\sim} \odot z = 0 \Rightarrow \tilde{f}(z) \supseteq \tilde{f}(x) \cap \tilde{f}(y) \right).$

Proof. (1) \Rightarrow (2): Assume that (\tilde{f}, M) is an int-soft ideal of \mathcal{M} . Let $x, y, z \in M$ be such that $z \odot x^- \odot y^- = 0$. Putting $y = z \odot x^-$ and x = y in (3.8) induces

$$\tilde{f}(z \odot x^-) \supseteq \tilde{f}(y) \cap \tilde{f}(z \odot x^- \odot y^-).$$

It follows from (3.8), (3.3) and hypothesis that

$$\begin{split} \hat{f}(z) &\supseteq \hat{f}(x) \cap \hat{f}(z \odot x^{-}) \\ &\supseteq \tilde{f}(x) \cap \tilde{f}(y) \cap \tilde{f}(z \odot x^{-} \odot y^{-}) \\ &= \tilde{f}(x) \cap \tilde{f}(y) \cap \tilde{f}(0) \\ &= \tilde{f}(x) \cap \tilde{f}(y). \end{split}$$

(2) \Rightarrow (3): Let $x, y, z \in M$ be such that $x^{\sim} \odot y^{\sim} \odot z = 0$. Then

$$(3.9) (y \oplus x)^{\sim} \odot z = x^{\sim} \odot y^{\sim} \odot z = 0$$

by (2.13). It follows from (2.13), (3.9) and Lemma that

$$z \odot x^- \odot y^- = z \odot (y \oplus x)^- = 0$$

and so that $\tilde{f}(z) \supseteq \tilde{f}(x) \cap \tilde{f}(y)$ by (2).

(3) \Rightarrow (1): Since $x^{\sim} \odot x^{\sim} \odot 0 = 0$ for all $x \in M$, we have $\tilde{f}(0) \supseteq \tilde{f}(x) \cap \tilde{f}(x) = \tilde{f}(x)$ for all $x \in \mathcal{M}$. Note that $(x^{\sim} \odot y)^{\sim} \odot x^{\sim} \odot y = 0$ for all $x, y \in M$ by (2.12). Hence $\tilde{f}(y) \supseteq \tilde{f}(x) \cap \tilde{f}(x^{\sim} \odot y)$ for all $x, y \in M$. It follows from Lemma that (\tilde{f}, M) is an int-soft ideal of \mathcal{M} .

Corollary 3.10. A soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} is an int-soft ideal of \mathcal{M} if and only if it satisfies the following condition:

$$\left(\forall x,y,z\in M \right) \left(z\leq x\oplus y \; \Rightarrow \; \tilde{f}(z)\supseteq \tilde{f}(x)\cap \tilde{f}(y) \right).$$

By the mathematical induction, we have the following result.

Corollary 3.11. A soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} is an int-soft ideal of \mathcal{M} if and only if it satisfies the following condition:

$$(\forall x, y_1, y_2, \cdots, y_n \in M) \left(x \le y_1 \oplus y_2 \oplus \cdots \oplus y_n \Rightarrow \tilde{f}(x) \supseteq \bigcap_{i=1}^n \tilde{f}(y_i) \right).$$

366

For two soft sets (\tilde{f}, M) and (\tilde{g}, M) over U in a pseudo MV-algebra \mathcal{M} , we define the meet $(\tilde{f}, M) \sqcap (\tilde{g}, M)$ of (\tilde{f}, M) and (\tilde{g}, M) by $(\tilde{f}, M) \sqcap (\tilde{g}, M) = (\tilde{f} \cap \tilde{g}, M)$, where

$$\tilde{f} \cap \tilde{g} : M \to \mathcal{P}(U), \ x \mapsto \tilde{f}(x) \cap \tilde{g}(x).$$

Theorem 3.12. If (\tilde{f}, M) and (\tilde{g}, M) are int-soft ideals of a pseudo MV-algebra \mathcal{M} , then the meet $(\tilde{f}, M) \sqcap (\tilde{g}, M)$ of (\tilde{f}, M) and (\tilde{g}, M) is an int-soft ideal of \mathcal{M} .

Proof. For any $x, y, z \in M$ with $z \odot x^- \odot y^- = 0$, we have $\tilde{f}(z) \supseteq \tilde{f}(x) \cap \tilde{f}(y)$ and $\tilde{g}(z) \supseteq \tilde{g}(x) \cap \tilde{g}(y)$ by Theorem . Thus

$$\begin{split} (\tilde{f} \cap \tilde{g})(z) &= \tilde{f}(z) \cap \tilde{g}(z) \supseteq (\tilde{f}(x) \cap \tilde{f}(y)) \cap (\tilde{g}(x) \cap \tilde{g}(y)) \\ &= (\tilde{f}(x) \cap \tilde{g}(x)) \cap (\tilde{f}(y) \cap \tilde{g}(y)) \\ &= (\tilde{f} \cap \tilde{g})(x) \cap (\tilde{f} \cap \tilde{g})(y). \end{split}$$

It follows from Theorem that $(\tilde{f}, M) \sqcap (\tilde{g}, M)$ is an int-soft ideal of \mathcal{M} .

Given a soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} , an int-soft ideal (\tilde{g}, M) of \mathcal{M} is said to be *generated* by (\tilde{f}, M) if it is the smallest int-soft ideal of \mathcal{M} which contains (\tilde{f}, M) , that is, it satisfies the following conditions:

(a)
$$(\tilde{f}, M) \subseteq (\tilde{g}, M)$$

(b) If (\tilde{h}, M) is an int-soft ideal of \mathcal{M} and $(\tilde{f}, M) \subseteq (\tilde{h}, M)$, then $(\tilde{g}, M) \subseteq (\tilde{h}, M)$.

Given a soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} , we define a soft set (\tilde{g}, M) over U in \mathcal{M} as follows:

(3.10)
$$\tilde{g}(x) = \bigcup \left\{ \bigcap_{k=1}^{n} \tilde{f}(a_k) \mid \begin{array}{c} x \leq a_1 \oplus a_2 \oplus \dots \oplus a_n, \\ a_1, a_2, \dots, a_n \in M \end{array} \right\}$$

for all $x \in M$. It is clear that $\tilde{g}(0) \supseteq \tilde{g}(x)$ for all $x \in M$. For any $x, y \in M$, take $c_1, c_2, \dots, c_n, d_1, d_2, \dots, d_m \in M$ such that

$$x \le c_1 \oplus c_2 \oplus \dots \oplus c_n,$$

$$x^{\sim} \odot y \le d_1 \oplus d_2 \oplus \dots \oplus d_m$$

$$\tilde{g}(x) = \bigcap_{k=1}^n \tilde{f}(c_k),$$

$$\tilde{g}(x^{\sim} \odot y) = \bigcap_{j=1}^m \tilde{f}(d_j).$$

Then $y \leq x \lor y = x \oplus x^{\sim} \odot y \leq c_1 \oplus c_2 \oplus \cdots \oplus c_n \oplus d_1 \oplus d_2 \oplus \cdots \oplus d_m$, and so

$$\tilde{g}(y) \supseteq \tilde{f}(c_1) \cap \tilde{f}(c_2) \cap \dots \cap \tilde{f}(c_n) \cap \tilde{f}(d_1) \cap \tilde{f}(d_2) \cap \dots \cap \tilde{f}(d_m)$$
$$= \left(\bigcap_{k=1}^n \tilde{f}(c_k)\right) \cap \left(\bigcap_{j=1}^m \tilde{f}(d_j)\right)$$
$$= \tilde{g}(x) \cap \tilde{g}(x^\sim \odot y).$$

Therefore (\tilde{g}, M) is an int-soft ideal of \mathfrak{M} by Lemma . Since $x \leq x \oplus x$ for all $x \in M$, we have $\tilde{g}(x) \supseteq \tilde{f}(x) \cap \tilde{f}(x) = \tilde{f}(x)$ for all $x \in M$ by Corollary . Thus $(\tilde{f}, M) \subseteq (\tilde{g}, M)$. Now, let (\tilde{h}, M) be an int-soft idal of \mathfrak{M} such that $(\tilde{f}, M) \subseteq (\tilde{h}, M)$. Then

$$\tilde{g}(x) = \bigcup \left\{ \bigcap_{k=1}^{n} \tilde{f}(a_k) \middle| \begin{array}{l} x \leq a_1 \oplus a_2 \oplus \dots \oplus a_n, \\ a_1, a_2, \dots, a_n \in M \end{array} \right\}$$
$$\subseteq \bigcup \left\{ \bigcap_{k=1}^{n} \tilde{h}(a_k) \middle| \begin{array}{l} x \leq a_1 \oplus a_2 \oplus \dots \oplus a_n, \\ a_1, a_2, \dots, a_n \in M \end{array} \right\}$$
$$\subseteq \bigcup \tilde{h}(x) = \tilde{h}(x)$$

by Corollary . Hence $(\tilde{g}, M) \subseteq (\tilde{h}, M)$.

We summarize this as follows:

Theorem 3.13. Given a soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} , we define a soft set (\tilde{g}, M) over U in \mathcal{M} as follows:

$$\tilde{g}(x) = \bigcup \left\{ \bigcap_{k=1}^{n} \tilde{f}(a_k) \mid \begin{array}{c} x \leq a_1 \oplus a_2 \oplus \dots \oplus a_n, \\ a_1, a_2, \dots, a_n \in M \end{array} \right\}$$

for all $x \in M$. Then (\tilde{g}, M) is the int-soft ideal of \mathfrak{M} which is generated by (\tilde{f}, M) . The following example illustrate Theorem .

Example 3.14. Let $M = \{(1, y) \in \mathbb{R}^2 \mid y \ge 0\} \cup \{(2, y) \in \mathbb{R}^2 \mid y \le 0\}$. For any $(a, b), (c, d) \in M$, we define operations \oplus , - and \sim as follows:

$$(a,b) \oplus (c,d) = \begin{cases} (1,b+d) & \text{if } a = c = 1, \\ (2,ad+b) & \text{if } ac = 2 \text{ and } ad + b \le 0, \\ (2,0) & \text{otherwise,} \end{cases}$$
$$(a,b)^{-} = \left(\frac{2}{a}, -\frac{2b}{a}\right) \text{ and } (a,b)^{\sim} = \left(\frac{2}{a}, -\frac{b}{a}\right).$$

Then $\mathcal{M} := (M, \oplus, \bar{}, \bar{}, 0, \mathbf{1})$ is a pseudo *MV*-algebra where $\mathbf{0} = (1, 0)$ and $\mathbf{1} = (2, 0)$ (see [2]). Let $A = \{(1, y) \in \mathbb{R}^2 \mid y > 0\}$ and $B = \{(2, y) \in \mathbb{R}^2 \mid y < 0\}$. Define

a soft set (\tilde{f}, M) over $U = \mathbb{R}$ in \mathcal{M} by

$$\tilde{f}: M \to \mathcal{P}(U), \ x \mapsto \begin{cases} 2\mathbb{R} & \text{if } x = \mathbf{0}, \\ 4\mathbb{Z} & \text{if } x \in A \cup B, \\ 4\mathbb{N} & \text{if } x = \mathbf{1}. \end{cases}$$

Then the int-soft ideal (\tilde{g}, M) of \mathcal{M} generated by (\tilde{f}, M) is described as follows:

$$\tilde{g}: M \to \mathcal{P}(U), \ x \mapsto \begin{cases} 2\mathbb{R} & \text{if } x = \mathbf{0}, \\ 4\mathbb{Z} & \text{if } x \in A \cup B \cup \{\mathbf{1}\}. \end{cases}$$

References

- N. Çağman, F. Çitak and S. Enginoğlu, Soft set theory and uni-int decision making, Eur. J. Oper. Res., 207(2010), 848–855.
- [2] A. Dvurečenskij, States on pseudo MV-algebras, Studia Logica, 68(2001), 301–327.
- [3] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras, Mult.-Valued Log., 6(1-2)(2001), 95–135.
- [4] Y. B. Jun, S. S. Ahn and K. J. Lee, Classes of int-soft filters in residuated lattices, The Scientific World Journal, Volume 2014, Article ID 595160, 12 pages.
- [5] Y. B. Jun, S. Z. Song and H. Bordbar, Int-soft ideals of pseudo MV-algebras, Inform. Sci.(submitted).
- [6] Y. B. Jun, K. J. Lee and M. S. Kang, Intersectional soft sets and applications to BCK/BCI-algebras, Commun. Koean Math. Soc., 28(1)(2013), 11–24.
- [7] Y. B. Jun, K. J. Lee and E. H. Roh, Intersectional soft BCK/BCI-ideals, Ann. Fuzzy Math. Inform., 4(1)(2012), 1–7.
- [8] D. Molodtsov, Soft set theory First results, Comput. Math. Appl., 37(1999) 19-31.
- [9] J. Rachunek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J., 52(127)(2002), no. 2, 255–273.
- [10] A. Walendziak, On implicative ideals of pseudo MV-algebras, Sci. Math. Jpn., 62(2)(2005), 281–287.