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Abstract. In this paper, we study the notion of zJ - ideals of posets and explore the vari-

ous properties of zJ -ideals in posets. The relations between topological space on Sspec(P ),

the set IQ = {x ∈ P : L(x, y) ⊆ I for some y ∈ P\Q} for an ideal I and a strongly prime

ideal Q of P and zJ -ideals are discussed in poset P .

1. Introduction

Throughout this paper (P , ≤) denotes a poset with smallest element 0 and
all prime ideals are assumed to be proper. For basic terminology and notation for
posets, we refer [6] and [5]. For M ⊆ P, let L(M) = {x ∈ P : x ≤ m for all m ∈ M}
denotes the lower cone of M in P and dually, let U(M) = {x ∈ P : m ≤ x for
all m ∈ M} be the upper cone of M in P. Let A,B ⊆ P , we shall write L(A,B)
instead of L(A∪B) and dually for the upper cones. If M = {x1, x2, ..., xn} is finite,
then we use the notation L(x1, x2, ..., xn) instead of L({x1, x2, ..., xn})(and dually).
It is clear that for any subset A of P , we have A ⊆ L(U(A)) and A ⊆ U(L(A)).
If A ⊆ B, then L(B) ⊆ L(A) and U(B) ⊆ U(A). Moreover, LUL(A) = L(A) and
ULU(A) = U(A). Following [8], a non-empty subset I of P is called semi-ideal if
b ∈ I and a ≤ b, then a ∈ I. A subset I of P is called ideal if a, b ∈ I implies
L(U((a, b)) ⊆ I[6]. A proper semi-ideal(ideal) I of P is called prime if L(a, b) ⊆ I
implies that either a ∈ I or b ∈ I [5]. An ideal I of P is called semi-prime if
L(a, b) ⊆ I and L(a, c) ⊆ I together imply L(a, U(b, c))) ⊆ I[6]. For any semi-ideal
I of P and a subset A of P , we define < A, I >= {z ∈ P : L(a, z) ⊆ I for all

a ∈ A} =
∩
a∈A

< a, I >[2]. If A = {x}, then we write < {x}, I >=< x, I > .
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Following [2], an ideal I of P is called strongly prime if L(A∗, B∗) ⊆ I implies that
either A ⊆ I or B ⊆ I for different proper ideals A,B of P, where A∗ = A\{0}.
For an ideal I of P , a strongly prime ideal Q of P is said to be a minimal strongly
prime ideal of I if I ⊆ Q and there exists no strongly prime ideal R of P such that
I ⊂ R ⊂ Q. The set of all strongly prime ideal of P is denoted by Sspec(P ) and
the set of minimal strongly prime ideals of P is denoted by Smin(P ). For any ideal
I of P , P (I) denotes the intersection of all strongly prime ideals of P containing
I and P (P ) denotes the intersection all strongly prime ideals of P . If I = {0},
then we denote P (I) = P (P ). From [5], the intersection of all prime semi-ideal of P
containing I is I for any semi-ideal I of P . But the following example shows that
the intersection of all strongly prime ideal of P containing I need not to be I for
any ideal I of P .

Example 1.1. Consider P = {0, a, b, c, d, e} and define a relation ≤ on P as follows.

b b

b b

b

b 0

b

cd

a

ee

Then (P,≤) is a poset and I1 = {0, a, b, c} is the only strongly prime ideal of P .
For I = {0, a}, we have P (I) = {0, a, b, c} ̸= I. 2

Following [3], a non-empty sub-set M of P is called m-system if for any x1, x2 ∈
M , there exists t ∈ L(x1, x2) such that t ∈ M . As a generalization of m-system, we
define the notion of strongly m-system as follows, a non-empty subset M of P is
called strongly m-system if A∩M ̸= ϕ and B ∩M ̸= ϕ implies L(A∗, B∗)∩M ̸= ϕ
for different proper ideals A,B of P . It is clear that an ideal I of P is strongly
prime if and only if P\I is a strongly m- system of P . Also every strongly m-
system is m-system. But the converse need not be true in general. Consider the
poset P depicted in Example 1.1 and for I = {0, a, b, c}, P\I is a m-system of P ,
but not a strongly m-system of P as for A = {0, b} and B = {0, a, b, c}, we have
A ∩ P\I ̸= ϕ and B ∩ P\I ̸= ϕ, but L(A∗, B∗) ∩ P\I = ϕ. For any subset X of P,
we define V (X) = {Q ∈ Sspec(P ) : X ⊆ Q}, D(X) = Sspec(P )\V (X), V

′
(X) =

V (X) ∩ Smin(P ), D
′
(X) = D(X) ∩ Smin(P ) and [X] is the smallest ideal of P

containing X. It is easy to check that D(A) = D(L(U(A))) and V (A) = V (L(U(A)))
for any subset A of P . Following [4], let τ denotes the collection of all subsets V (I)
of Sspec(P ) for any ideal I of P . Then τ is closed under finite unions and arbitrary
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intersections, so that there is a topology on Sspec(P ) for which τ is the family of
closed sets. This is called the Zariski topology. Also the collection of open sets
ξ = {D(a) : a ∈ P} forms a basis for a topology on Sspec(P ). It is clear that
V (0) = Sspec(P ), V (P ) = ϕ and D(0) = ϕ. A topological space is called T0-space
if for any two distinct points there is an open set that contains one of them and not
the other. A topological space is called T2 or Hausdorff if for any two distinct points
x and y there are disjoint open sets U and V such that x ∈ U and y ∈ V . For each
a ∈ P and an ideal I of P , we define Pa(I) = ∩{Q ∈ Sspec(P ) : Q ∈ V

′
(I)∩V

′
(a)}.

Gorden Mason studied z-ideals of commutative rings [7] and F. Azarpanah, et.al.,
[1] studied z0-ideals for a commutative reduced rings. Following [1] and [7], let J
be an ideal of P. An ideal I of P containing J is called zJ -ideal if for each a ∈ I,
we have Pa(J) ⊆ I. Also if I is a zJ - ideal of P , then Pa(J) ̸= P for any a ∈ I.
Clearly every strongly prime ideal of P is zJ - ideal. But there exists a zJ -ideal in
P which is not strongly prime ideal of P shows in the following example.

Example 1.2. Consider P = {0, a, b, c, d} and define a relation ≤ on P as follows.

b

b

b

b

b 00

a

b

d

a

c

Then (P,≤) is a poset and I1 = {0, a, b} and I2 = {0, a, c, d} are the strongly prime
ideals of P. If we take I = {0, a} and J = {0}, then Pa(J) ⊆ I for all a ∈ I which
implies I is a zJ -ideal, but not a strongly prime ideal of P . 2

2. Main Results

Theorem 2.1. Let J be an ideal of P and for a ∈ P\J, M be a strongly m-system of
P with < a, J > ∩M = ϕ. Then V

′
(a) = D

′
(< a, J >) and D

′
(a) = V

′
(< a, J >).

Proof. Let Q ∈ V
′
(a) and suppose that Q /∈ D

′
(< a, J >). Let S = {I : I is an

ideal of P and J ⊆ I ⊂ Q with I ∩M = ϕ}. Then S ̸= ϕ as J ∈ S and by Zorn’s
lemma, there exists a maximal element R in S with R ⊂ Q and R ∩M = ϕ. We
now claim that R is a strongly prime ideal of P . Let A and B be ideals of P with
A * R and B * R.

Case 1: If A * Q and B * Q, then L(A∗, B∗) * Q. So L(A∗, B∗) * R.
Case 2: If A ⊆ Q and B ⊆ Q. Then A ∩M ̸= ϕ and B ∩M ̸= ϕ. Since M is
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strongly m-system, we have L(A∗, B∗) ∩M ̸= ϕ which implies L(A∗, B∗) * R.
Case 3: Let A ⊆ Q and Q ⊆ B. Then A ∩ M ̸= ϕ and Q ∩ M ̸= ϕ. Since M

is strongly m-system, we have L(A∗, Q∗) ∩ M ̸= ϕ which implies L(A∗, B∗) * R.
So R is a strongly prime ideal of P with R ⊂ Q, which is again a contradiction to
the minimality of Q. Thus V

′
(a) ⊆ D

′
(< a, J >). Let Q ∈ D

′
(< a, J >). Then

there exists t ∈< a, J > \Q with L(L(a)∗, L(t)∗) ⊆ L(a, t) ⊆ J ⊆ Q which implies
a ∈ L(a) ⊆ Q. Thus Q ∈ V

′
(a). �

Lemma 2.2. Let I and J be ideals of P with J ⊆ I. If I is zJ - ideal, then I is
zP (J)-ideal. If P (J) ⊆ I, then I is zJ - ideal if and only if I is zP (J)-ideal.

Proof. It follows from ∩{Q ∈ Sspec(P ) : J ⊆ Q and a ∈ Q} = ∩{Q ∈ Sspec(P ) :
P (J) ⊆ Q and a ∈ Q} �
Theorem 2.3. Let I and J be proper ideals of P with P (J) ⊆ I and for a ∈ P\J ,
M be a strongly m-system of P with < a, J > ∩M = ϕ. Then the following are
equivalent.

(i) I is zJ - ideal.

(ii) Pa(J) = Pb(J) and b ∈ I imply that a ∈ I.

(iii) V
′
(a) ∩ V

′
(J) = V

′
(b) ∩ V

′
(J) and a ∈ I imply that b ∈ I.

(iv) < a,P (J) >=< b, P (J) > and a ∈ I\P (J) imply b ∈ I.

(v) a ∈ I\P (J) implies << a, P (J) >,P (J) >⊆ I.

(vi) I is a zP (J)-ideal of P.

Proof. (i) ⇒ (ii) Let I be a zJ - ideal of P and Pa(J) = Pb(J) with b ∈ I. Then
Pa(J) = Pb(J) ⊆ I. So a ∈ I.

(ii) ⇒ (iii) Let V
′
(a)∩ V

′
(J) = V

′
(b)∩ V

′
(J) and a ∈ I. Then Pa(J) = Pb(J),

by hypothesis, b ∈ I.
(iii) ⇒ (iv) Let < a, P (J) >=< b, P (J) > and a ∈ I\J. Then D

′
(< a, P (J) >

) ∩ V
′
(J) = D

′
(< b, P (J) >) ∩ V

′
(J). By Theorem 2.1, we have V

′
(a) ∩ V

′
(J) =

V
′
(b) ∩ V

′
(J). So by hypothesis, b ∈ I.

(iv) ⇒ (v) For a ∈ I\P (J), let x ∈<< a, P (J) >,P (J) >. Then L(x, t) ⊆
P (J) for all t ∈< a,P (J) > which implies < a,P (J) >⊆< x,P (J) > . Let s /∈<
a,P (J) >. Then << a, P (J) >,P (J) >*< s, P (J) >. Suppose s ∈< x,P (J) >,
we have x ∈< t, P (J) > and << a, P (J) >,P (J) >⊆< t, P (J) >, a contradiction.
So s /∈< x,P (J) > and < a,P (J) >=< x,P (J) >. By hypothesis, x ∈ I.

(v) ⇒ (vi) For each a ∈ I, we have V
′
(a) ∩ V

′
(P (J)) ⊆<< a, P (J) >,P (J) >.

By hypothesis Pa(P (J)) ⊆ I.
(vi) ⇒ (i) It follows from Lemma 2.2. �

Lemma 2.4. Let J be an ideal of P and a ∈ P\P (J). Then Pa(J) ⊆ {b ∈ P :<
a,P (J) >⊆< b, P (J) >}.
Proof. It is trivial. �



zJ -Ideals and Strongly Prime Ideals in Posets 389

Theorem 2.5. Let I and J be ideals of P with J ⊆ I and S be a subset of P with
S * I. If I is zJ -ideal, then < S, I > is a zJ - ideal of P .

Proof: Let a ∈< S, I > . Then L(a, s) ⊆ I for all s ∈ S. Since I is a zJ - ideal of P , we
have Pr(J) ⊆ I for all r ∈ L(a, s). Let t ∈ Pa(J). Then L(t, s) ⊆ Pa(J) ⊆ Pr(J) ⊆ I
which implies t ∈< s, I > for all s ∈ S. Hence < S, I > is a zJ -ideal of P . �
Theorem 2.6. Let I be a strongly prime ideal of P and C a subset of P . Then
< C, I > is a strongly prime ideal of P .

Proof. Let A and B be strongly prime ideals of P with L(A∗, B∗) ⊆< C, I >. Then
< C, I >= P whenever C ⊆ I, hence in this case < C, I > is strongly prime. If
C * I, then by Theorem 2.10 of [2], < C, I >= I, is a strongly prime ideal of P . �

Theorem 2.7. Let I and J be ideals of P with J ⊆ I, and A a subset of P . Then
< A,P (J) > is a zJ -ideal of P .

Proof. We have < A,P (J) >=< A,
∩

Q∈Sspec(P )∩V (J)

Q >=
∩

Q∈Sspec(P )∩V (J)

<

A,Q > . It follows from Theorem 2.6. �
Theorem 2.8. Let I1, I2, I3, ... be zJ -ideals of P . If K = ∪Ii is an ideal of P , then
K is a zJ -ideal of P .

Proof. Let a ∈ K. Then a ∈ Ii for some i. Since each Ii is a zJ - ideal of P , we have
Pa(J) ⊆ Ii ⊆ K. �

For an ideal I and a strongly prime ideal Q of P, we define IQ = {x ∈ P :

L(x, y) ⊆ I for some y ∈ P\Q} =
∪

y∈P\Q

< y, I > . It is clear that IQ is a semi-ideal

of P containing I. If I is a prime ideal of P , then IQ = I.

Lemma 2.9. Let I be an ideal of P and Q be a strongly prime ideal of P containing
I. Then I ⊆ IQ ⊆ Q.

Proof. Let x ∈ IQ. Then L(x, t) ⊆ I ⊆ Q for some t ∈ P\Q which implies
L(L(x)∗, L(t)∗) ⊆ Q. Since Q is strongly prime ideal, we have x ∈ Q. �
Theorem 2.10. Let I be an ideal of P and Q be a strongly prime ideal of P
containing I. If R is a strongly prime ideal of P with I ⊆ R ⊆ Q, then IQ ⊆ R.

Proof. By Lemma 2.9, I ⊆ IQ ⊆ Q. Let R be a strongly prime ideal of P such that
I ⊆ R ⊆ Q and x ∈ IQ. Then L(x, t) ⊆ I ⊆ R for some t ∈ P\Q which implies
L(L(x)∗, L(t)∗) ⊆ R. Since R is a strongly prime ideal of P and t /∈ R, we have
x ∈ R. �
Corollary 2.11. Let I be an ideal of P and Q be a strongly prime ideal of P
containing I. Then IQ ⊆ ∩{Qi : Qi is a minimal strongly prime ideal of I}.

Theorem 2.12. Let I be a zJ -ideal of P with J ⊆ I and Q be a strongly prime
ideal of P . If I is semi-prime, then IQ is a zJ -ideal of P .
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Proof. Let I be a semi-prime ideal of P . Then by Theorem 15 of [6], < t, I > is an
ideal of P for any t ∈ P . We now claim IQ is an ideal of P . Let x, y ∈ IQ. Then
L(x, t1) ⊆ I and L(y, t2) ⊆ I for some t1, t2 /∈ Q. Since Q is prime ideal, there exists
t ∈ L(t1, t2)\Q with L(x, t) ⊆ I and L(y, t) ⊆ I which imply x, y ∈< t, I > and
L(U(x, y)) ⊆< t, I > . Since < t, I >⊆ IQ, we have L(U(x, y)) ⊆ IQ. So IQ is an
ideal of P . Since I is zJ - ideal and by Theorem 2.5, we have < s, I > is zJ -ideal of

P . By Theorem 2.8, IQ =
∪

s∈P\Q

< s, I > is a zJ -ideal. �

Theorem 2.13. Let I be an ideal of P and Q be a strongly prime ideal of P
containing I. If I is strongly prime, then IQ is a strongly prime ideal of P .

Proof. By Theorem 2.10, it is clear that IQ =
∪

s∈P\Q

< s, I > is a union of strongly

prime ideal and IQ is an ideal of P . Hence IQ is a strongly prime ideal of P . �

Theorem 2.14. Let I and J be ideals of P with J ⊆ I. If I is a prime ideal and Q
is a strongly prime ideal of P , then IQ is a prime zJ - ideal of P and < r, I >= IQ
for all r ∈ P\Q.

Proof. Let I be a prime ideal of P . Then IQ = I and by Theorem 2.12, IQ is a
zJ -ideal of P which implies IQ = I ⊆< r, I > for all r ∈ P. By the definition of IQ,
< r, I >⊆ IQ for all r ∈ P\Q. Hence < r, I >= IQ for all r ∈ P\Q. �

Theorem 2.15. Let I and J be ideals of P with J ⊆ I, and R ⊆ P. If I is a semi-
prime and < R, I > is the maximal element among the set {< S, I >:< S, I > ̸= P
and S ⊆ P}, then IQ is a prime zJ - ideal of P for some strongly prime ideal Q of
P and < r, I >= IQ for some r ∈ P\Q.

Proof. By Theorem 2.4 of [3], there exists r ∈ R\I such that < r, I >=< R, I > is a
minimal strongly prime ideal of P containing ideal I. Since we have I ⊆< r, I >⊆ Q
for some strongly prime ideal Q of P with r /∈ Q. By Theorem 2.10, IQ ⊆< r, I > .
Also by the definition of IQ, < r, I >⊆ IQ. Hence < r, I >= IQ. �

Lemma 2.16. Let P be a poset. Then Sspec(P ) is a T0- space.

Proof. Let R and Q be two distinct points in Sspec(P ). Then R * Q and Q * R.
Since R * Q, we have a ∈ R such that a /∈ Q which implies Q ∈ D(a) and R /∈ D(a).
So there is an open set D(a) containing Q, but not R. Similarly there exists an
open set D(b) containing P , but not Q for some b ∈ Q\R. �

Theorem 2.17. Let Q be a strongly prime ideal of P . Then Sspec(P ) is a Haus-
dorff space if and only if Q is a unique strongly prime ideal containing P (P )Q.

Proof Let Sspec(P ) be a Hausdorff space. Let Q and S be distinct strongly prime
ideals of P such that P (P )Q ⊆ S. Then by Lemma 2.16, there exists disjoint sets
D(x) ⊇ Q and D(y) ⊇ S for some y ∈ Q\S and x ∈ S\Q. Since Sspec(P ) is Haus-
dorff, we have D(x) ∩D(y) = ϕ which implies every strongly prime ideal of P con-
tains either x or y. Then L(x, y) ⊆ ∩{R : R ∈ Sspec(P )} and L(x, y) ⊆ P (P ) which
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implies y ∈ P (P )Q ⊆ S, a contradiction. Thus P (P )Q * S. Let Q be the unique
strongly prime ideal containing P (P )Q. If S ̸= Q is a strongly prime ideal of P ,
then there exists x ∈ P (P )Q\S which implies L(x, y) ⊆ P (P ) for some y /∈ Q. Since
S is strongly prime, we have y ∈ S and D(x) and D(y) are the open neighborhoods
of S and Q respectively. Then D(x)∩D(y) = D(L(x)∩L(y)) ⊆ D(L(x, y)) = ϕ. �
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