KYUNGPOOK Math. J. 57(2017), 385-391 https://doi.org/10.5666/KMJ.2017.57.3.385 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

z^{J} -Ideals and Strongly Prime Ideals in Posets

CATHERINE GRACE JOHN AND BALASUBRAMANIAN ELAVARASAN* Department of Mathematics, Karunya University, Coimbatore-641114, Tamil Nadu, India

e-mail: catherine@karunya.edu and belavarasan@gmail.com

ABSTRACT. In this paper, we study the notion of z^J - ideals of posets and explore the various properties of z^J -ideals in posets. The relations between topological space on Sspec(P), the set $I_Q = \{x \in P : L(x, y) \subseteq I \text{ for some } y \in P \setminus Q\}$ for an ideal I and a strongly prime ideal Q of P and z^J -ideals are discussed in poset P.

1. Introduction

Throughout this paper (P, \leq) denotes a poset with smallest element 0 and all prime ideals are assumed to be proper. For basic terminology and notation for posets, we refer [6] and [5]. For $M \subseteq P$, let $L(M) = \{x \in P : x \leq m \text{ for all } m \in M\}$ denotes the lower cone of M in P and dually, let $U(M) = \{x \in P : m \leq x \text{ for}$ all $m \in M$ be the upper cone of M in P. Let $A, B \subseteq P$, we shall write L(A, B)instead of $L(A \cup B)$ and dually for the upper cones. If $M = \{x_1, x_2, ..., x_n\}$ is finite, then we use the notation $L(x_1, x_2, ..., x_n)$ instead of $L(\{x_1, x_2, ..., x_n\})$ (and dually). It is clear that for any subset A of P, we have $A \subseteq L(U(A))$ and $A \subseteq U(L(A))$. If $A \subseteq B$, then $L(B) \subseteq L(A)$ and $U(B) \subseteq U(A)$. Moreover, LUL(A) = L(A) and ULU(A) = U(A). Following [8], a non-empty subset I of P is called semi-ideal if $b \in I$ and $a \leq b$, then $a \in I$. A subset I of P is called ideal if $a, b \in I$ implies $L(U((a,b)) \subseteq I[6]$. A proper semi-ideal(ideal) I of P is called prime if $L(a,b) \subseteq I$ implies that either $a \in I$ or $b \in I$ [5]. An ideal I of P is called semi-prime if $L(a,b) \subseteq I$ and $L(a,c) \subseteq I$ together imply $L(a,U(b,c))) \subseteq I[6]$. For any semi-ideal I of P and a subset A of P, we define $\langle A, I \rangle = \{z \in P : L(a, z) \subseteq I \text{ for all }$ $a \in A$ = $\bigcap < a, I > [2]$. If $A = \{x\}$, then we write $< \{x\}, I > = < x, I > .$ $a \in A$

385

 $[\]ast$ Corresponding Author.

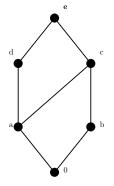
Received May 26, 2015; accepted May 17, 2017.

²⁰¹⁰ Mathematics Subject Classification: 06D60.

Key words and phrases: Poset, ideals, strongly prime ideal, minimal prime ideal, Zariski topology.

Following [2], an ideal I of P is called strongly prime if $L(A^*, B^*) \subseteq I$ implies that either $A \subseteq I$ or $B \subseteq I$ for different proper ideals A, B of P, where $A^* = A \setminus \{0\}$. For an ideal I of P, a strongly prime ideal Q of P is said to be a minimal strongly prime ideal of I if $I \subseteq Q$ and there exists no strongly prime ideal R of P such that $I \subset R \subset Q$. The set of all strongly prime ideal of P is denoted by Sspec(P) and the set of minimal strongly prime ideals of P is denoted by Smin(P). For any ideal I of P, P(I) denotes the intersection of all strongly prime ideals of P containing I and P(P) denotes the intersection all strongly prime ideals of P. If $I = \{0\}$, then we denote P(I) = P(P). From [5], the intersection of all prime semi-ideal of Pcontaining I is I for any semi-ideal I of P. But the following example shows that the intersection of all strongly prime ideal of P containing I need not to be I for any ideal I of P.

Example 1.1. Consider $P = \{0, a, b, c, d, e\}$ and define a relation \leq on P as follows.

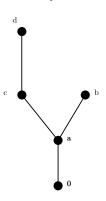


Then (P, \leq) is a poset and $I_1 = \{0, a, b, c\}$ is the only strongly prime ideal of P. For $I = \{0, a\}$, we have $P(I) = \{0, a, b, c\} \neq I$.

Following [3], a non-empty sub-set M of P is called m-system if for any $x_1, x_2 \in M$, there exists $t \in L(x_1, x_2)$ such that $t \in M$. As a generalization of m-system, we define the notion of strongly m-system as follows, a non-empty subset M of P is called strongly m-system if $A \cap M \neq \phi$ and $B \cap M \neq \phi$ implies $L(A^*, B^*) \cap M \neq \phi$ for different proper ideals A, B of P. It is clear that an ideal I of P is strongly prime if and only if $P \setminus I$ is a strongly m-system of P. Also every strongly m-system is m-system. But the converse need not be true in general. Consider the poset P depicted in Example 1.1 and for $I = \{0, a, b, c\}, P \setminus I$ is a m-system of P, but not a strongly m-system of P as for $A = \{0, b\}$ and $B = \{0, a, b, c\}$, we have $A \cap P \setminus I \neq \phi$ and $B \cap P \setminus I \neq \phi$, but $L(A^*, B^*) \cap P \setminus I = \phi$. For any subset X of P, we define $V(X) = \{Q \in Sspec(P) : X \subseteq Q\}, D(X) = Sspec(P) \setminus V(X), V'(X) = V(X) \cap Smin(P), D'(X) = D(X) \cap Smin(P)$ and [X] is the smallest ideal of P containing X. It is easy to check that D(A) = D(L(U(A))) and V(A) = V(L(U(A))) for any subset A of P. Then τ is closed under finite unions and arbitrary

intersections, so that there is a topology on Sspec(P) for which τ is the family of closed sets. This is called the Zariski topology. Also the collection of open sets $\xi = \{D(a) : a \in P\}$ forms a basis for a topology on Sspec(P). It is clear that $V(0) = Sspec(P), V(P) = \phi$ and $D(0) = \phi$. A topological space is called T_0 -space if for any two distinct points there is an open set that contains one of them and not the other. A topological space is called T_2 or Hausdorff if for any two distinct points x and y there are disjoint open sets U and V such that $x \in U$ and $y \in V$. For each $a \in P$ and an ideal I of P, we define $P_a(I) = \cap \{Q \in Sspec(P) : Q \in V'(I) \cap V'(a)\}$. Gorden Mason studied z-ideals of commutative rings [7] and F. Azarpanah, et.al., [1] studied z^0 -ideals for a commutative reduced rings. Following [1] and [7], let J be an ideal of P. An ideal I of P containing J is called z^J -ideal if for each $a \in I$, we have $P_a(J) \subseteq I$. Also if I is a z^J - ideal of P, then $P_a(J) \neq P$ for any $a \in I$. Clearly every strongly prime ideal of P shows in the following example.

Example 1.2. Consider $P = \{0, a, b, c, d\}$ and define a relation \leq on P as follows.



Then (P, \leq) is a poset and $I_1 = \{0, a, b\}$ and $I_2 = \{0, a, c, d\}$ are the strongly prime ideals of P. If we take $I = \{0, a\}$ and $J = \{0\}$, then $P_a(J) \subseteq I$ for all $a \in I$ which implies I is a z^J -ideal, but not a strongly prime ideal of P. \Box

2. Main Results

Theorem 2.1. Let J be an ideal of P and for $a \in P \setminus J$, M be a strongly m-system of P with $\langle a, J \rangle \cap M = \phi$. Then $V'(a) = D'(\langle a, J \rangle)$ and $D'(a) = V'(\langle a, J \rangle)$. Proof. Let $Q \in V'(a)$ and suppose that $Q \notin D'(\langle a, J \rangle)$. Let $S = \{I : I \text{ is an ideal of } P \text{ and } J \subseteq I \subset Q \text{ with } I \cap M = \phi\}$. Then $S \neq \phi$ as $J \in S$ and by Zorn's lemma, there exists a maximal element R in S with $R \subset Q$ and $R \cap M = \phi$. We now claim that R is a strongly prime ideal of P. Let A and B be ideals of P with $A \notin R$ and $B \notin R$.

Case 1: If $A \nsubseteq Q$ and $B \nsubseteq Q$, then $L(A^*, B^*) \nsubseteq Q$. So $L(A^*, B^*) \nsubseteq R$.

Case 2: If $A \subseteq Q$ and $B \subseteq Q$. Then $A \cap M \neq \phi$ and $B \cap M \neq \phi$. Since M is

strongly m-system, we have $L(A^*, B^*) \cap M \neq \phi$ which implies $L(A^*, B^*) \nsubseteq R$.

Case 3: Let $A \subseteq Q$ and $Q \subseteq B$. Then $A \cap M \neq \phi$ and $Q \cap M \neq \phi$. Since M is strongly m-system, we have $L(A^*, Q^*) \cap M \neq \phi$ which implies $L(A^*, B^*) \nsubseteq R$. So R is a strongly prime ideal of P with $R \subset Q$, which is again a contradiction to the minimality of Q. Thus $V'(a) \subseteq D'(\langle a, J \rangle)$. Let $Q \in D'(\langle a, J \rangle)$. Then there exists $t \in \langle a, J \rangle \setminus Q$ with $L(L(a)^*, L(t)^*) \subseteq L(a, t) \subseteq J \subseteq Q$ which implies $a \in L(a) \subseteq Q$. Thus $Q \in V'(a)$.

Lemma 2.2. Let I and J be ideals of P with $J \subseteq I$. If I is z^{J} - ideal, then I is $z^{P(J)}$ -ideal. If $P(J) \subseteq I$, then I is z^{J} - ideal if and only if I is $z^{P(J)}$ -ideal.

Proof. It follows from $\cap \{Q \in Sspec(P) : J \subseteq Q \text{ and } a \in Q\} = \cap \{Q \in Sspec(P) : P(J) \subseteq Q \text{ and } a \in Q\}$

Theorem 2.3. Let I and J be proper ideals of P with $P(J) \subseteq I$ and for $a \in P \setminus J$, M be a strongly m-system of P with $\langle a, J \rangle \cap M = \phi$. Then the following are equivalent.

- (i) I is z^J ideal.
- (ii) $P_a(J) = P_b(J)$ and $b \in I$ imply that $a \in I$.
- (iii) $V^{'}(a) \cap V^{'}(J) = V^{'}(b) \cap V^{'}(J)$ and $a \in I$ imply that $b \in I$.
- (iv) $\langle a, P(J) \rangle = \langle b, P(J) \rangle$ and $a \in I \setminus P(J)$ imply $b \in I$.
- (v) $a \in I \setminus P(J)$ implies $\langle \langle a, P(J) \rangle, P(J) \rangle \subseteq I$.
- (vi) I is a $z^{P(J)}$ -ideal of P.

Proof. (i) \Rightarrow (ii) Let I be a z^{J} - ideal of P and $P_{a}(J) = P_{b}(J)$ with $b \in I$. Then $P_{a}(J) = P_{b}(J) \subseteq I$. So $a \in I$.

(ii) \Rightarrow (iii) Let $V'(a) \cap V'(J) = V'(b) \cap V'(J)$ and $a \in I$. Then $P_a(J) = P_b(J)$, by hypothesis, $b \in I$.

(iii) \Rightarrow (iv) Let $\langle a, P(J) \rangle = \langle b, P(J) \rangle$ and $a \in I \setminus J$. Then $D'(\langle a, P(J) \rangle) \cap V'(J) = D'(\langle b, P(J) \rangle) \cap V'(J)$. By Theorem 2.1, we have $V'(a) \cap V'(J) = V'(b) \cap V'(J)$. So by hypothesis, $b \in I$.

 $\begin{array}{l} (\mathbf{iv}) \Rightarrow (\mathbf{v}) \mbox{ For } a \in I \backslash P(J), \mbox{ let } x \in << a, P(J) >, P(J) >. \mbox{ Then } L(x,t) \subseteq \\ P(J) \mbox{ for all } t \in < a, P(J) > \mbox{ which implies } < a, P(J) > \subseteq < x, P(J) >. \mbox{ Let } s \notin < \\ a, P(J) >. \mbox{ Then } << a, P(J) >, P(J) > \notin < s, P(J) >. \mbox{ Suppose } s \in < x, P(J) >, \\ \mbox{ we have } x \in < t, P(J) > \mbox{ and } << a, P(J) >, P(J) > \subseteq < t, P(J) >, \mbox{ a contradiction.} \\ \mbox{ So } s \notin < x, P(J) > \mbox{ and } < a, P(J) >=< x, P(J) >. \mbox{ By hypothesis, } x \in I. \end{array}$

 $(\mathbf{v}) \Rightarrow (\mathbf{vi})$ For each $a \in I$, we have $V'(a) \cap V'(P(J)) \subseteq \langle \langle a, P(J) \rangle, P(J) \rangle$. By hypothesis $P_a(P(J)) \subseteq I$.

 $(\mathbf{vi}) \Rightarrow (\mathbf{i})$ It follows from Lemma 2.2.

Lemma 2.4. Let J be an ideal of P and $a \in P \setminus P(J)$. Then $P_a(J) \subseteq \{b \in P : < a, P(J) > \subseteq < b, P(J) > \}$.

Proof. It is trivial.

Theorem 2.5. Let I and J be ideals of P with $J \subseteq I$ and S be a subset of P with $S \not\subseteq I$. If I is z^J -ideal, then $\langle S, I \rangle$ is a z^J -ideal of P.

Proof: Let $a \in \langle S, I \rangle$. Then $L(a, s) \subseteq I$ for all $s \in S$. Since I is a z^{J} -ideal of P, we have $P_r(J) \subseteq I$ for all $r \in L(a, s)$. Let $t \in P_a(J)$. Then $L(t, s) \subseteq P_a(J) \subseteq P_r(J) \subseteq I$ which implies $t \in \langle s, I \rangle$ for all $s \in S$. Hence $\langle S, I \rangle$ is a z^{J} -ideal of P. \square

Theorem 2.6. Let I be a strongly prime ideal of P and C a subset of P. Then < C, I > is a strongly prime ideal of P.

Proof. Let A and B be strongly prime ideals of P with $L(A^*, B^*) \subseteq \langle C, I \rangle$. Then $\langle C, I \rangle = P$ whenever $C \subseteq I$, hence in this case $\langle C, I \rangle$ is strongly prime. If $C \not\subseteq I$, then by Theorem 2.10 of [2], $\langle C, I \rangle = I$, is a strongly prime ideal of P. \Box

Theorem 2.7. Let I and J be ideals of P with $J \subseteq I$, and A a subset of P. Then $\langle A, P(J) \rangle$ is a z^{J} -ideal of P.

Proof. We have
$$\langle A, P(J) \rangle = \langle A, \bigcap_{Q \in Sspec(P) \cap V(J)} Q \rangle = \bigcap_{Q \in Sspec(P) \cap V(J)} \langle A, Q \rangle$$
. It follows from Theorem 2.6.

Theorem 2.8. Let $I_1, I_2, I_3, ...$ be z^J -ideals of P. If $K = \bigcup I_i$ is an ideal of P, then K is a z^J -ideal of P.

Proof. Let $a \in K$. Then $a \in I_i$ for some *i*. Since each I_i is a z^J - ideal of *P*, we have $P_a(J) \subseteq I_i \subseteq K.$

For an ideal I and a strongly prime ideal Q of P, we define $I_Q = \{x \in P : L(x, y) \subseteq I \text{ for some } y \in P \setminus Q\} = \bigcup_{\substack{y \in P \setminus Q \\ y \in P \setminus Q}} \langle y, I \rangle$. It is clear that I_Q is a semi-ideal of P containing I. If I is a prime ideal of P, then $I_Q = I$.

Lemma 2.9. Let I be an ideal of P and Q be a strongly prime ideal of P containing I. Then $I \subseteq I_Q \subseteq Q$.

Proof. Let $x \in I_Q$. Then $L(x,t) \subseteq I \subseteq Q$ for some $t \in P \setminus Q$ which implies $L(L(x)^*, L(t)^*) \subseteq Q$. Since Q is strongly prime ideal, we have $x \in Q$.

Theorem 2.10. Let I be an ideal of P and Q be a strongly prime ideal of Pcontaining I. If R is a strongly prime ideal of P with $I \subseteq R \subseteq Q$, then $I_Q \subseteq R$.

Proof. By Lemma 2.9, $I \subseteq I_Q \subseteq Q$. Let R be a strongly prime ideal of P such that $I \subseteq R \subseteq Q$ and $x \in I_Q$. Then $L(x,t) \subseteq I \subseteq R$ for some $t \in P \setminus Q$ which implies $L(L(x)^*, L(t)^*) \subseteq R$. Since R is a strongly prime ideal of P and $t \notin R$, we have $x \in R$.

Corollary 2.11. Let I be an ideal of P and Q be a strongly prime ideal of Pcontaining I. Then $I_Q \subseteq \cap \{Q_i : Q_i \text{ is a minimal strongly prime ideal of } I\}$.

Theorem 2.12. Let I be a z^J -ideal of P with $J \subseteq I$ and Q be a strongly prime ideal of P. If I is semi-prime, then I_Q is a z^J -ideal of P.

Proof. Let I be a semi-prime ideal of P. Then by Theorem 15 of [6], $\langle t, I \rangle$ is an ideal of P for any $t \in P$. We now claim I_Q is an ideal of P. Let $x, y \in I_Q$. Then $L(x,t_1) \subseteq I$ and $L(y,t_2) \subseteq I$ for some $t_1, t_2 \notin Q$. Since Q is prime ideal, there exists $t \in L(t_1, t_2) \setminus Q$ with $L(x, t) \subseteq I$ and $L(y, t) \subseteq I$ which imply $x, y \in \langle t, I \rangle$ and $L(U(x,y)) \subseteq \langle t,I \rangle$. Since $\langle t,I \rangle \subseteq I_Q$, we have $L(U(x,y)) \subseteq I_Q$. So I_Q is an ideal of P. Since I is z^{J} - ideal and by Theorem 2.5, we have $\langle s, I \rangle$ is z^{J} -ideal of P. By Theorem 2.8, $I_Q = \bigcup_{s \in P \setminus Q} \langle s, I \rangle$ is a z^J -ideal.

Theorem 2.13. Let I be an ideal of P and Q be a strongly prime ideal of Pcontaining I. If I is strongly prime, then I_Q is a strongly prime ideal of P.

Proof. By Theorem 2.10, it is clear that $I_Q = \bigcup_{s \in P \setminus Q} \langle s, I \rangle$ is a union of strongly prime ideal and I_Q is an ideal of P. Hence I_Q is a strongly prime ideal of P. \Box

Theorem 2.14. Let I and J be ideals of P with $J \subseteq I$. If I is a prime ideal and Q is a strongly prime ideal of P, then I_Q is a prime z^J - ideal of P and $\langle r, I \rangle = I_Q$ for all $r \in P \setminus Q$.

Proof. Let I be a prime ideal of P. Then $I_Q = I$ and by Theorem 2.12, I_Q is a z^J -ideal of P which implies $I_Q = I \subseteq \langle r, I \rangle$ for all $r \in P$. By the definition of I_Q , $\langle r, I \rangle \subseteq I_Q$ for all $r \in P \setminus Q$. Hence $\langle r, I \rangle = I_Q$ for all $r \in P \setminus Q$.

Theorem 2.15. Let I and J be ideals of P with $J \subseteq I$, and $R \subseteq P$. If I is a semiprime and < R, I > is the maximal element among the set $\{< S, I >:< S, I > \neq P$ and $S \subseteq P$, then I_Q is a prime z^J - ideal of P for some strongly prime ideal Q of $P \text{ and } \langle r, I \rangle = I_Q \text{ for some } r \in P \setminus Q.$

Proof. By Theorem 2.4 of [3], there exists $r \in R \setminus I$ such that $\langle r, I \rangle = \langle R, I \rangle$ is a minimal strongly prime ideal of P containing ideal I. Since we have $I \subseteq \langle r, I \rangle \subseteq Q$ for some strongly prime ideal Q of P with $r \notin Q$. By Theorem 2.10, $I_Q \subseteq \langle r, I \rangle$. Also by the definition of I_Q , $\langle r, I \rangle \subseteq I_Q$. Hence $\langle r, I \rangle = I_Q$.

Lemma 2.16. Let P be a poset. Then Sspec(P) is a T_0 -space.

Proof. Let R and Q be two distinct points in Sspec(P). Then $R \nsubseteq Q$ and $Q \nsubseteq R$. Since $R \not\subseteq Q$, we have $a \in R$ such that $a \notin Q$ which implies $Q \in D(a)$ and $R \notin D(a)$. So there is an open set D(a) containing Q, but not R. Similarly there exists an open set D(b) containing P, but not Q for some $b \in Q \setminus R$.

Theorem 2.17. Let Q be a strongly prime ideal of P. Then Sspec(P) is a Hausdorff space if and only if Q is a unique strongly prime ideal containing $P(P)_Q$.

Proof Let Sspec(P) be a Hausdorff space. Let Q and S be distinct strongly prime ideals of P such that $P(P)_Q \subseteq S$. Then by Lemma 2.16, there exists disjoint sets $D(x) \supseteq Q$ and $D(y) \supseteq S$ for some $y \in Q \setminus S$ and $x \in S \setminus Q$. Since Sspec(P) is Hausdorff, we have $D(x) \cap D(y) = \phi$ which implies every strongly prime ideal of P contains either x or y. Then $L(x, y) \subseteq \cap \{R : R \in Sspec(P)\}$ and $L(x, y) \subseteq P(P)$ which implies $y \in P(P)_Q \subseteq S$, a contradiction. Thus $P(P)_Q \nsubseteq S$. Let Q be the unique strongly prime ideal containing $P(P)_Q$. If $S \neq Q$ is a strongly prime ideal of P, then there exists $x \in P(P)_Q \setminus S$ which implies $L(x, y) \subseteq P(P)$ for some $y \notin Q$. Since S is strongly prime, we have $y \in S$ and D(x) and D(y) are the open neighborhoods of S and Q respectively. Then $D(x) \cap D(y) = D(L(x) \cap L(y)) \subseteq D(L(x, y)) = \phi$. \Box

References

- F. Azarpanah, A. S Karamzadeh and A.Rezai Aliabad, On Ideals Consisting Entirely of Zero Divisor, Comm. Algebra, 28(2)(2000), 1061–1073.
- [2] J. Catherine Grace John and B. Elavarasan, Strongly Prime and Strongly Semiprime ideals in Posets, Global Journal of Pure and Applied Mathematics, 11(5)(2015), 2965–2970.
- [3] J. Catherine Grace John and B. Elavarasan, Primeness of extension of semi-ideals in posets, Applied Mathematical Sciences, 164(8)(2014), 8227–8232.
- B. Elavarasan and K. Porselvi, An ideal-based zero-divisor graph of posets, Commun. Korean Math. Soc., 28(1)(2013), 79–85.
- [5] R. Halaš, On extension of ideals in posets, Discrete Mathematics, 308(2008), 4972– 4977.
- [6] V. S. Kharat and K. A. Mokbel, Primeness and semiprimeness in posets, Math. Bohem., 134(1)(2009), 19–30.
- [7] G. Mason, z-ideals and prime ideals, J. Algebra, 26(1973), 280-297.
- [8] P. V. Venkatanarasimhan, Semi ideals in posets, Math. Ann., 185(4)(1970), 338-348.