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Abstract. A necessary and sufficient condition for the product AB of a selfadjoint

operator A and a bounded selfadjoint operator B to be normal is given. Various properties

of the factors of the unitary polar decompositions of A and B are obtained in the case

when the product AB is normal. A block operator model for pairs (A,B) of selfadjoint

operators such that B is bounded and AB is normal is established. The case when both

operators A and B are bounded is discussed. In addition, the example due to Rehder is

reexamined from this point of view.

1. Introduction

The question of when the product AB of two bounded selfadjoint operators A
and B is selfadjoint has simple answer, namely, AB is selfadjoint if and only if A
and B commute. If the product AB is in a wider class of operators, for example,

* Corresponding Author.
Received July 7, 2017; accepted 26, August.
2010 Mathematics Subject Classification: Primary 47B15, 47B20, 47B25.
Key words and phrases: Selfadjoint operator, normal operator, unitary polar decomposi-
tion, block operator model, normal product.
The research of the first author was supported by Kyungpook National University. The
research of the third author was supported by the NCN (National Science Center), decision
No. DEC-2013/11/B/ST1/03613.

457



458 I. B. Jung, M. H. Mortad and J. Stochel

in the class of normal operators, then the operators A and B may not commute. A
simple counterexample can be given even in the case of 2×2 matrices (see Example
5.3). It was Rehder who noticed and proved that if at least one of the factors of the
product AB is positive (still under the assumption that A and B are bounded and
selfadjoint), then AB is normal if and only if AB is selfadjoint (see [11, Theorem]).
The main idea of his proof relies on applying the Fuglede-Putnam theorem ([10,
Lemma]). There were many attempts to generalize Rehder’s theorem to the more
general context of Banach algebras as well as to the context of unbounded operators
(e.g., see [1, 6, 8, 9]). We mention two recent results of this type. The first states
that if A and B are selfadjoint operators such that A is positive, B is bounded
and AB is normal, then AB is selfadjoint (see [6, Theorem 1.5]). The second result
states that if A and B are self-adjoint operators such that B is bounded and positive,
BA is hyponormal and closed, and the spectrum of BA is not the whole complex
plane, then both BA and AB are self-adjoint (see [4, Theorem 3.6]).

In this paper we are searching for necessary and sufficient conditions for the
product AB of a selfadjoint operator A and a bounded selfadjoint operator B to be
normal. It is worth pointing out that there is an asymmetry when considering the
products AB and BA. Namely, if A and B are selfadjoint (or even less, closed) and
B is bounded, then the product AB is closed, while BA may not be (cf. Lemma
3.1). In other words, the assumption that BA is normal is stronger than that on
normality of AB. Indeed, if BA is normal, then AB = (BA)∗ is normal. This
is the reason why we concentrate on studying the normality of products of the
form AB, where B is bounded. Our idea is to use unitary polar decompositions
instead of commonly used polar decompositions. Unitary polar decompositions
are investigated in Section 2. Theorem 3.2, which is the main result of Section
3, characterizes the normality of the product AB of a selfadjoint operator A and
a bounded selfadjoint operator B. We also derive many of the properties of the
factors of unitary polar decompositions of A and B. In particular, it is shown
that the modulus of the product AB equals the product of the moduli of A and
B whenever A is selfadjoint, B is bounded and selfadjoint and AB is normal. As
a consequence, some recent results related to this issue are immediately deduced
(see Corollaries 3.3 and 3.4). In Section 4, using Theorem 3.2, we construct a block
operator model for pairs (A,B) of selfadjoint operators A and B such that B is
bounded and AB is normal (see Theorem 4.4). In Section 5, we obtain the block
operator model for pairs (A,B) of bounded operators. We conclude the paper by
reexamining the Rehder’s example (see Example 5.3).

2. Unitary Polar Decompositions

Let H and K be complex Hilbert spaces. A linear mapping A : H ⊇ D(A) →
K defined on a vector subspace D(A) of H is called an operator from H to K.
The domain, the kernel and the range of A are denote by D(A), N(A) and R(A),
respectively. We write A∗ and |A| for the adjoint and the modulus of A (provided
they exist). We denote by B(H,K) the Banach space of all bounded operators from
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H to K with the domain H. We abbreviate B(H,H) to B(H) and write IH, or
simply I when no confusion arises, for the identity operator on H. If A ⊆ B(H),
then we denote by A′ the commutant of A, i.e., the set of all T ∈ B(H) such that
TA = AT for all A ∈ A, and write A′′ = (A′)′.

Let H1 and H2 be closed vector subspaces of H such that H = H1 ⊕H2. We

say that an operator A in H has the block matrix form
[
A1,1 A1,2

A2,1 A2,2

]
with respect

to the orthogonal decomposition H = H1 ⊕H2 and write A =
[
A1,1 A1,2

A2,1 A2,2

]
, if Ai,j

is an operator from Hj to Hi, D(A) = E ⊕ F, where E = D(A1,1) ∩ D(A2,1) and
F = D(A1,2) ∩ D(A2,2) and

A(f1 ⊕ f2) = (A1,1f1 + A1,2f2) ⊕ (A2,1f1 + A2,2f2)

for all f1 ∈ E and f2 ∈ F. In particular, the following basic identity holds:

A1,1 ⊕A2,2 =
[
A1,1 0
0 A2,2

]
.

Recall that if A is a closed densely defined operator in H, then there exists a
unique partial isometry V ∈ B(H) such that A = V |A| and N(A) = N(V ), where
|A| is the square root of A∗A (see e.g., [2, Theorem 8.1.2]). Such decomposition is
called the polar decomposition of A. In what follows, we will often use the fact that

N(A) = N(|A|) whenever A is closed and densely defined,(2.1)

which is a direct consequence of the polar decomposition of A.

Definition 2.1. We say that a closed densely defined operator A in H has the
unitary polar decomposition if there exists a unitary operator U ∈ B(H) such that
A = U |A| and U |N(A) = IN(A).

Clearly, the unitary polar decomposition of A is unique, namely, if A = U1|A|
and A = U2|A| are unitary polar decompositions of A, then U1 = U2. We refer the
reader to the monograph [5] for more information on polar decompositions of variety
of classes of bounded operators in which the partial isometry factor is replaced by
an isometric or a unitary operator.

The following proposition gives necessary and sufficient condition for an opera-
tor to have the unitary polar decomposition.

Proposition 2.2. A closed densely defined operator A in H has the unitary polar
decomposition if and only if N(A) = N(A∗). If A = V |A| and A = U |A| are the
polar and the unitary polar decompositions of A respectively, then U = V +P , where
P ∈ B(H) is the orthogonal projection of H onto N(A).

Proof. If V ∈ B(H) is such that A = V |A|, then

∥V (|A|h)∥ = ∥Ah∥ = ∥|A|h∥, h ∈ D(A) = D(|A|),(2.2)
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which implies that the operator V |
R(|A|) : R(|A|) → R(A) is unitary. This combined

with the polar decomposition completes the proof. 2

Now we state some basic properties of the unitary polar decomposition of a
normal operator.

Proposition 2.3. Suppose A is a normal operator in H. Then A has the unitary
polar decomposition. Moreover, if A = U |A| is the unitary polar decomposition of
A, then the following assertions hold:

(i) R(|A|) reduces |A|, U and A,

(ii) A = 0N(A) ⊕A1 with A1 = A|
R(|A|),

(iii) U = IN(A) ⊕ U1 with U1 = U |
R(|A|),

(iv) A1 = U1|A1| is the polar decomposition of A1 with |A1| = |A|
∣∣
R(|A|),

(v) if A is selfadjoint, then A = |A|U and U is a fundamental symmetry1 , i.e.,
U = U∗ and U2 = I.

Proof. In view of Proposition 2.2, only the “moreover” part requires the proof.
Assume that A = U |A| is the unitary polar decomposition of A. Note that N(|A|)
reduces |A|. By (2.1) and Definition 2.1, U(N(|A|)) = N(|A|), which implies that
N(|A|) reduces U . Using the fact that a closed vector subspace M of H reduces
an operator T in H if and only if PT ⊆ TP , where P ∈ B(H) is the orthogonal
projection of H onto M, we conclude that N(|A|) reduces A as well. It is a routine
matter to verify the assertions (ii)-(iv). To prove (v), assume that A = A∗. Since,
by (iv), A∗

1 = U∗
1 |A∗

1| is the polar decomposition of A∗
1 and A1 is selfadjoint, we

see that U1 is selfadjoint and unitary. As a consequence, U = U∗, U2 = I and
A = |A|U . This completes the proof. 2

Corollary 2.4. Let A be a closed densely defined operator in H and U ∈ B(H).
Then the following conditions are equivalent:

(i) A is selfadjoint and A = U |A| is the unitary polar decomposition of A,

(ii) U = U∗, A = U |A| = |A|U and U |N(A) = IN(A).

Proof. (i)⇒(ii) Apply Proposition 2.3(v).
(ii)⇒(i) Clearly A∗ = |A|U = A, which together with (2.1) yields R(A) =

R(|A|). This combined with the equalities A = U |A| and (2.2) implies that the
mapping

U |
R(|A|) : R(|A|) → R(|A|)

1 The notion of a fundamental symmetry comes from the theory of Krein spaces (see
[3, Chap. II, Sec. 11]). Obviously, fundamental symmetries are unitary.
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is a unitary operator. Since U |N(A) = IN(A) and N(A) = N(|A|), we see that U is
a unitary operator. 2

3. A Characterization of Normal Products

Before stating the main result of this section we formulate some important
properties of products of strongly commuting selfadjoint operators.

Lemma 3.1. Let A and B be selfadjoint operators in H. Suppose B ∈ B(H).
Then the following assertions hold:

(i) AB is a selfadjoint operator if and only if BA ⊆ AB; if this is the case, then
AB = BA,

(ii) if A and B are positive and BA ⊆ AB, then AB is positive.

Proof. (i) If AB is selfadjoint, then

BA = B∗A∗ ⊆ (AB)∗ = AB.

To prove the converse, assume that BA ⊆ AB. By [2, Theorem 6.3.2], the spectral
measures EA and EB of A and B commute. Let E be the joint spectral measure of
the pair (A,B) (see [2, Theorem 6.5.1]). Then, by [2, Theorem 5.4.7], we have

BA = AB =

∫
R×R

x · t dE(x, t),(3.1)

where R is the set of all real numbers. Since the operator AB is closed and the
spectral integral appearing on right-hand side of (3.1) is selfadjoint (see [2, Theorem
5.4.5]), we conclude that AB is selfadjoint and thus, by (3.1), AB = BA.

(ii) If A and B are positive and BA ⊆ AB, then we can replace R × R by
R+ × R+ in (3.1), where R+ = [0,∞). As a consequence, AB is positive. 2

It is worth mentioning that if A and B are selfadjoint operators in H and B
is bounded, then the product AB is closed, however the product BA may not be
closed even if BA ⊆ AB. This is the reason why we are interested in answering the
question of when the product AB, not BA, is normal.

Now we characterize normality of the product of two selfadjoint operators with
bounded second factor in terms of their unitary polar decompositions.

Theorem 3.2. Let A and B be selfadjoint operators in H. Suppose B ∈ B(H).
Let A = U |A| and B = V |B| be the unitary polar decompositions of A and B,
respectively. Then the following conditions are equivalent:

(i) AB is normal,

(ii) |B|A ⊆ A|B| and2 V |A| ⊆ |A|V .

2 In fact, V |A| = |A|V ; see Lemma 4.1.
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Moreover, if (i) holds, then the following assertions are valid:

(a) V (AB)∗ = ABV and V AB = (AB)∗V ,

(b) V |AB| = |AB|V ,

(c) |AB| = |A||B|,

(d) |A|B and A|B| are selfadjoint,

(e) U |AB| ⊆ |AB|U ,

(f) AB = UV |AB|,

(g) (AB)∗ = V U |AB|,

(h) |B||A| ⊆ |A||B| and B|A| ⊆ |A|B.

Proof. (i)⇒(ii) Assume AB is normal. First we show that

|B|A ⊆ A|B| and |B||A| ⊆ |A||B|.(3.2)

Indeed, since B(AB) ⊆ (AB)∗B, the Putnam-Fuglede theorem (see [10, Lemma])
implies that B(AB)∗ ⊆ (AB)B, and thus

|B|2A = B2A ⊆ B(AB)∗ ⊆ AB2 = A|B|2.

This and [2, Theorem 6.3.2] imply that |B|2EA = EA|B|2, where EA is the spectral
measure of A. By the square root theorem, |B|EA = EA|B|. Applying [2, Theorem
6.3.2] again, we get the first inclusion in (3.2) (this inclusion can also be deduced
from [7, Lemma 2.1] applied to ϕ(x) =

√
x). The second inclusion in (3.2) is a

consequence of the first one. Indeed, the first inclusion implies that |B|A2 ⊆ A2|B|.
Hence, by the square root theorem (see [2, Theorems 5.4.8 and 6.1.4]), we see that
|B||A| ⊆ |A||B|. This is also the first inclusion in (h).

Now we prove (a) and (b). It follows from Proposition 2.3(v) that |B|V = B,
V = V ∗ and V 2 = I, and thus V B = |B|. This yields

V BAV = |B|AV
(3.2)

⊆ A|B|V = AB,

which in turn implies that

(AB)∗ ⊆ V (BA)∗V = V ABV.

By maximality of normal operators, we get (AB)∗ = V ABV , so (a) holds. Since

|AB|2 = (AB)∗V V AB
(a)
= V AB(AB)∗V = V |AB|2V,(3.3)

we get |AB| = V |AB|V , which implies (b).
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Our next aim is to prove (c). First we show that

if C ∈ {A, |A|}, then (C|B|)2 = A2|B|2.(3.4)

Indeed, by (3.2) and Lemma 3.1, C|B| and A2|B|2 are selfadjoint and |A||B| is pos-
itive. Since squares of selfadjoint operators are selfadjoint and, by (3.2), (C|B|)2 ⊆
A2|B|2, maximality of selfadjoint operators implies that (C|B|)2 = A2|B|2. This
proves the assertion (3.4). Since the operator A|B| is selfadjoint, we infer from
Proposition 2.3(v) that

|AB|2 = (A|B|V )∗A|B|V = V (A|B|)2V (3.4)
= V A2|B|2V (3.4)

= V (|A||B|)2V.

This together with (3.3) implies that |AB|2 = (|A||B|)2. Taking square roots gives
(c); recall that the product |A||B| is positive and selfadjoint.

Now we show that

V ∈ {B}′′.(3.5)

Indeed, if T ∈ {B}′, then T |B| = |B|T and so N(|B|) reduces T . This implies that

(TV )(|B|h) = TBh = BTh = V |B|Th = (V T )(|B|h), h ∈ H,

and thus TV h = V Th for all h ∈ R(|B|). As TV h = Th = V Th for all h ∈ N(|B|),
we get TV = V T which proves (3.5).

Next we show that (ii), (d) and (h) hold. Using Proposition 2.3(v), we obtain

B|A| = V |B||A|
(3.2)

⊆ V |A||B| (c)= V |AB| (b)= |AB|V (c)
= |A||B|V = |A|B,

which yields (h). Hence, by [2, Theorem 6.3.2], E|A|(∆) ∈ {B}′ for all Borel subsets
∆ of [0,∞). Therefore, by (3.5), V E|A| = E|A|V , or equivalently

V |A| ⊆ |A|V,(3.6)

which together with (3.2) implies (ii). As a consequence, we have

B|A| = |B|V |A|
(3.6)

⊆ |B||A|V
(3.2)

⊆ |A||B|V = |A|B.

Thus, by Lemma 3.1 and (3.2), the operators |A|B and A|B| are selfadjoint which
proves (d).

(ii)⇒(i) Assume (ii) holds. Since the first inclusion in (ii) implies the second
inclusion in (3.2) (see the first paragraph of this proof), the condition (3.2) is valid.
Since, by (3.2) and Lemma 3.1, A|B| is selfadjoint, we see that AB = (A|B|)V is
closed and densely defined. For the same reason, |A||B| is positive and selfadjoint.
Hence, because U and V are selfadjoint and unitary (see Proposition 2.3(v)), we
have

|AB|2 = (U |A||B|V )∗U |A||B|V = V |A||B|UU |A||B|V = V (|A||B|)2V,
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which, by the square root theorem, yields

|AB| = V |A||B|V.(3.7)

By the von Neumann theorem (see [2, Theorem 3.3.7]), the operator (AB)∗ is closed
and densely defined, and (recall that |A||B| is positive and selfadjoint)

|(AB)∗|2 = U |A||B|V (U |A||B|V )∗ = U |A||B|V V |A||B|U = U(|A||B|)2U,

which implies that

|(AB)∗| = U |A||B|U.(3.8)

As a consequence of (ii) and Proposition 2.3(v), we have

V |A||B| ⊆ |A|V |B| = |A||B|V,(3.9)

and thus

|AB| (3.7)= V |A||B|V
(3.9)

⊆ |A||B|V 2 = |A||B|,(3.10)

which by maximality of selfadjoint operators implies that

|AB| = |A||B|.(3.11)

Observe now that

|B||A|U = |B|A
(ii)

⊆ A|B| = U |A||B|.(3.12)

Taking closures and noting that |B||A| = |A||B| (use (3.2) and Lemma 3.1), we get

|AB|U (3.11)
= |A||B|U

(3.12)

⊆ U |A||B| (3.11)= U |AB|.

This together with U = U∗ and U2 = I yields (e). Next, by (3.8) and (3.11), we
have

|(AB)∗| = U |AB|U
(e)

⊆ |AB|U2 = |AB|,

which by maximality of selfadjoint operators implies that |(AB)∗| = |AB|. There-
fore AB is normal, which means that (i) holds.

It remains to prove (f) and (g). First note that

AB = U |A||B|V (c)
= U |AB|V (b)

= UV |AB|,

which gives (f). This in turn implies that

(AB)∗ = |AB|V U
(b)
= V |AB|U

(e)

⊇ V U |AB|.(3.13)
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Since AB is normal, we obtain

D((AB)∗) = D(AB) = D(|AB|) = D(V U |AB|).

This combined with (3.13) gives (g). This completes the proof. 2

The following is a direct consequence of Theorem 3.2(d) and Lemma 3.1.

Corollary 3.3. Assume that A and B are selfadjoint operators in H such that
B ∈ B(H) and AB is normal. If at least one of the operators A and B is positive,
then AB is selfadjoint, BA ⊆ AB and AB = BA.

Note that the case when A is positive has been recently proved in [6, Theorem
1.5]. The case when B is positive has been considered in [8, Corollary 3]. The next
corollary can be easily deduced from Corollary 3.3 by observing that (BA)∗ = AB.

Corollary 3.4. ([6, Theorem 1.1]) Assume that A and B are selfadjoint operators
in H such that A is positive, B ∈ B(H) and BA is normal. Then AB is selfadjoint
and BA = AB.

4. A Block Operator Model

Our goal in this section is to give a block operator model for two selfadjoint
operators A and B such that B ∈ B(H) and AB is normal. We begin by proving
two necessary lemmata.

Lemma 4.1. Suppose A and B are selfadjoint operators in H such that B ∈ B(H)
and AB is normal. Let B = V |B| be the unitary polar decomposition of B. Then
there exist closed vector subspaces H+ and H− of H such that

(i) H = H+ ⊕H−,

(ii) H+ and H− reduce |A|, |B|, B and V,

(iii) |A| = A+ ⊕A−, |B| = B+ ⊕B−, B = B+ ⊕ (−B−) and V = IH+ ⊕ (−IH−),
where A± (resp., B±) is the restriction of |A| (resp., |B|) to H±; A± and B±
are positive selfadjoint operators in H± and B± ∈ B(H±),

(iv) N(B−) = {0} and B±A± ⊆ A±B±,

(v) V |A| = |A|V .

Proof. (i)-(iii) Denote by EV and E|A| the spectral measures of the selfadjoint
operators V and |A|, respectively. Since, by Proposition 2.3(v), V = V ∗ and V 2 = I,
the spectral mapping theorem and the spectral theorem imply that σ(V ) ⊆ {−1, 1}
and V = IH+ ⊕ (−IH−), where H± := R(EV ({±1})). By Theorem 3.2(ii) and [2,
Theorems 6.2.4 and 6.3.2], EV (∆)|A| ⊆ |A|EV (∆) for all Borel subsets ∆ of R. In
particular, we have

EV ({±1})|A| ⊆ |A|EV ({±1}),
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which implies that H± reduces |A|. Clearly, H = H+ ⊕H−. Since, by Proposition
2.3(v), B = V |B| = |B|V , the same argument as above shows that H± reduces |B|
and consequently H± reduces B. This implies (i), (ii) and (iii).

(iv) Since V |N(|B|) = IN(|B|) and, by (iii), N(|B|) = N(B+) ⊕ N(B−) and
V = IH+⊕(−IH−), we deduce that N(B−) = {0}. It follows from (iii) and Theorem
3.2(h) that B±A± ⊆ A±B±. This yields (iv).

(v) This is a direct consequence of (iii) and Theorem 3.2(ii). 2

Lemma 4.2. Suppose A and B are selfadjoint operators in H such that B ∈ B(H)
and AB is normal. Let A = U |A| and B = V |B| be the unitary polar decompositions
of A and B, respectively, and let H±, A± and B± be as in Lemma 4.1. Then there
exist operators X ∈ B(H+), Y ∈ B(H−,H+) and Z ∈ B(H−) such that

(i) X = X∗ and Z = Z∗,

(ii) X2 + Y Y ∗ = IH+ , Y ∗Y + Z2 = IH− and XY + Y Z = 0,

(iii) X|N(A+) = IN(A+), Y |N(A−) = 0, Y ∗|N(A+) = 0 and Z|N(A−) = IN(A−),

(iv) XA+ ⊆ A+X, Y A− ⊆ A+Y and ZA− ⊆ A−Z,

(v) B+XA+ ⊆ XA+B+, B+Y A− ⊆ Y A−B−, B−Y
∗A+ ⊆ Y ∗A+B+ and

B−ZA− ⊆ ZA−B−,

(vi) U =
[

X Y
Y ∗ Z

]
with respect to H = H+ ⊕H−.

Proof. (i)-(iii)&(vi) Let
[
X Y
Ỹ Z

]
be the block matrix form of U with respect to

the decomposition H = H+ ⊕ H−, where X ∈ B(H+), Y ∈ B(H−,H+), Ỹ ∈
B(H+,H−) and Z ∈ B(H−). It follows from Proposition 2.3(v) that U = U∗ and

U2 = I. The first equality implies that X = X∗, Z = Z∗ and Ỹ = Y ∗, which gives
(i) and (vi). This and the equality U2 = I yield (ii). In turn, since U |N(|A|) = IN(|A|)
and, by Lemma 4.1(iii), N(|A|) = N(A+) ⊕N(A−), we see that (iii) is valid.

(iv) It follows from Lemma 4.1(iii) that |A| = A+ ⊕A− and so

D(|A|) = D(A+) ⊕ D(A−).(4.1)

Take f− ∈ D(A−). Then

0 ⊕ f− ∈ D(|A|) = D(A) = D(U |A|),

and thus, since U |A| ⊆ |A|U (see Proposition 2.3(v)), we get

Y f− ⊕ Zf−
(vi)
= U(0 ⊕ f−) ∈ D(|A|).

This together with (4.1) implies that Y f− ∈ D(A+) and Zf− ∈ D(A−). Moreover,
we have

Y A−f− ⊕ ZA−f− = U |A|(0 ⊕ f−) = |A|U(0 ⊕ f−) = A+Y f− ⊕A−Zf−.
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Putting this all together yields Y A− ⊆ A+Y and ZA− ⊆ A−Z. Taking f+ ∈ D(A+)
and arguing as above with f+ ⊕ 0 in place of 0 ⊕ f−, we get XA+ ⊆ A+X. This
completes the proof of (iv).

(v) It follows from Proposition 2.3(v) and Theorem 3.2(ii) that A = U |A| =
|A|U and |B|A ⊆ A|B|. This implies that |B|U |A| ⊆ U |A||B|. In turn, by Lemma
4.1(iii), we have |B| = B+ ⊕ B−. Take f+ ∈ D(A+). Then, by (4.1), f+ ⊕ 0 ∈
D(|A|) = D(|B|U |A|), and consequently B+f+ ⊕ 0 = |B|(f+ ⊕ 0) ∈ D(|A|). Hence
B+f+ ∈ D(A+). Moreover, we have

B+XA+f+ ⊕B−Y
∗A+f+ = |B|U |A|(f+ ⊕ 0)

= U |A||B|(f+ ⊕ 0)

= XA+B+f+ ⊕ Y ∗A+B+f+.

This implies that B+XA+ ⊆ XA+B+ and B−Y
∗A+ ⊆ Y ∗A+B+. Taking f− ∈

D(A−) and arguing as above with 0 ⊕ f− in place of f+ ⊕ 0, we get B+Y A− ⊆
Y A−B− and B−ZA− ⊆ ZA−B−. This completes the proof. 2

Before stating the main result of this section, we give a primary definition.

Definition 4.3. Let A and B be operators in H, H± be closed vector subspaces
of H, A± be operators in H±, B± ∈ B(H±), X ∈ B(H+), Y ∈ B(H−,H+) and
Z ∈ B(H−). We say that (H±, A±, B±, X, Y, Z) is a block operator model for the
pair (A,B) if the following conditions hold:

1◦ H = H+ ⊕H−,

2◦ A± and B± are positive and selfadjoint and N(B−) = {0},

3◦ the conditions (i)-(v) of Lemma 4.2 hold,

4◦ A =
[

XA+ Y A−
Y ∗A+ ZA−

]
and B =

[
B+ 0
0 −B−

]
with respect to H = H+ ⊕H−.

Now, we are in a position to establish a block operator model for two selfadjoint
operators whose product is normal still under the assumption that the second factor
is bounded.

Theorem 4.4. Let A and B be operators in a complex Hilbert space H. Then the
following conditions are equivalent:

(i) A and B are selfadjoint, B ∈ B(H) and AB is normal,

(ii) (A,B) has a block operator model,

(iii) (A,B) has a block operator model (H±, A±, B±, X, Y, Z) such that B±A± ⊆
A±B±.

If (H±, A±, B±, X, Y, Z) is a block operator model for (A,B) and A = U |A| and
B = V |B| are the unitary polar decompositions of A and B, respectively, then

H± = N(IH ∓ V ),(4.2)

U =
[

X Y
Y ∗ Z

]
, |A| =

[
A+ 0
0 A−

]
, V =

[
IH+

0

0 −IH−

]
, |B| =

[
B+ 0
0 B−

]
.(4.3)
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Furthermore, (A,B) has at most one block operator model.

Proof. (i)⇒(iii) This is a direct consequence of Proposition 2.2 and Lemmata 4.1
and 4.2.

(iii)⇒(ii) Obvious.
(ii)⇒(i) Let (H±, A±, B±, X, Y, Z) be a block operator model for (A,B). Set

V̂ = IH+ ⊕(−IH−). It follows from 2◦ and 4◦ of Definition 4.3 that B ∈ B(H), B is

selfadjoint, |B| = B+⊕B− and V̂ is a unitary operator such that B = V̂ |B| = |B|V̂
and V̂ |N(|B|) = IN(|B|). Hence, by the uniqueness of the unitary factor in the

unitary polar decomposition of B, we see that V = V̂ . The operator Û :=
[

X Y
Y ∗ Z

]
is bounded and selfadjoint, and by the condition (ii) of Lemma 4.2, Û2 = I. This

means that Û is unitary. It follows from 4◦ of Definition 4.3 that A = Û(A+⊕A−).
As a consequence, the operator A is closed and densely defined. This yields

|A|2 = A∗A = (A+ ⊕A−)Û∗Û(A+ ⊕A−) = (A+ ⊕A−)2.

Since, by 2◦ of Definition 4.3, the operator A+ ⊕ A− is positive and selfadjoint,

we deduce that |A| = A+ ⊕ A−. This implies that A = Û |A|. It follows from
the condition (iv) of Lemma 4.2 that Y A− ⊆ A+Y , which yields Y ∗A+ ⊆ A−Y

∗.
Now, it is a routine matter to verify, by using the condition (iv) of Lemma 4.2,

that Û |A| ⊆ |A|Û . Thus |A| ⊆ Û |A|Û . Since the operators |A| and Û |A|Û are

selfadjoint, maximality of selfadjoint operators yields |A| = Û |A|Û . Therefore A =

Û |A| = |A|Û . Applying the condition (iii) of Lemma 4.2 and using the fact that

N(|A|) = N(A+) ⊕N(A−), we verify that Û |N(|A|) = IN(|A|). By Corollary 2.4, the

operator A is selfadjoint and A = Û |A| is the unitary polar decomposition of A.
By the uniqueness of the unitary factor in the unitary polar decomposition of A,
we have U = Û . This completes the proof of (4.3). As a consequence, (4.2) holds.
Since V = IH+ ⊕ (−IH−) and |A| = A+ ⊕A−, we see that V |A| = |A|V . Using the
condition (v) of Lemma 4.2 and the first equality in 4◦ of Definition 4.3, we verify
that |B|A ⊆ A|B|. It follows from Theorem 3.2 that the product AB is normal.

Combining (4.2) with (4.3) and the uniqueness of the unitary factors in the
unitary polar decompositions of B and A shows that (A,B) has at most one block
operator model. This completes the proof. 2

The following corollary shows that two pairs of operators having block operator
models are unitarily equivalent if and only if their models are unitarily equivalent.
It can be deduced from Theorem 4.4 via (4.2) and (4.3). The details are left to the
reader.

Corollary 4.5. Let (H±, A±, B±, X, Y, Z) and (H′
±, A

′
±, B

′
±, X

′, Y ′, Z ′) be block
operator models for pairs (A,B) and (A′, B′) of operators in complex Hilbert spaces
H and H′, respectively. Then the following conditions are equivalent:

(i) there exists a unitary isomorphism W : H → H′ such that

WA = A′W, WB = B′W,
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(ii) there exist unitary isomorphisms W± : H± → H′
± such that

W±A± = A′
±W±, W±B± = B′

±W±,

W+X = X ′W+, W+Y = Y ′W−, W−Z = Z ′W−.

5. The Bounded Case

We begin this section by adapting the block operator model given in Section 4
to the context of bounded operators. The following theorem is a direct consequence
of Theorem 4.4.

Theorem 5.1. Let A,B ∈ B(H), H± be closed vector subspaces of H,
A±, B± ∈ B(H±), X ∈ B(H+), Y ∈ B(H−,H+) and Z ∈ B(H−). Then
(H±, A±, B±, X, Y, Z) is a block operator model for (A,B) if and only if the fol-
lowing conditions hold:

(a) H = H+ ⊕H−,

(b) A± and B± are positive and selfadjoint, N(B−) = {0} and A±B± = B±A±,

(c) the conditions (i)-(iii) of Lemma 4.2 hold,

(d) X ∈ {A+}′, A+Y = Y A− and Z ∈ {A−}′,

(e) X ∈ {A+B+}′, A+B+Y = Y A−B− and Z ∈ {A−B−}′,

(f) A =
[

XA+ Y A−
Y ∗A+ ZA−

]
and B =

[
B+ 0
0 −B−

]
with respect to H = H+ ⊕H−.

The case when the product AB is selfadjoint makes all block operators appearing
in our model diagonal.

Corollary 5.2. Let (H±, A±, B±, X, Y, Z) be a block operator model for (A,B),
where A,B ∈ B(H). Then A± ∈ B(H±) and the following conditions are equiva-
lent:

(i) AB is selfadjoint,

(ii) A+B+Y = 0,

(iii) Y A−B− = 0,

(iv) Y = 0.

Proof. By 2◦ and 4◦ in Definition 4.3 and the closed graph theorem, A± ∈ B(H±).
Since the operators X and Z are selfadjoint, we infer from the conditions (b) and
(e) of Theorem 5.1 that

the operators XA+B+ and ZA−B− are selfadjoint,(5.1)

(Y A−B−)∗ = (A+B+Y )∗ = Y ∗B+A+ = Y ∗A+B+.(5.2)
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It follows from the condition (f) of Theorem 5.1 that

AB =

[
XA+B+ −Y A−B−
Y ∗A+B+ −ZA−B−

]
.(5.3)

(i)⇒(ii) If AB is selfadjoint, then by (5.2) and (5.3), we have

Y ∗A+B+ = −Y ∗A+B+,

hence Y ∗A+B+ = 0, and thus by the condition (b) of Theorem 5.1, A+B+Y = 0.
(ii)⇒(iii) Apply the condition (e) of Theorem 5.1.
(iii)⇒(iv) Taking adjoints, we see that B−A−Y

∗ = 0. Since, by the condition
(b) of Theorem 5.1, N(B−) = {0}, we deduce that A−Y

∗ = 0. Hence Y A− = 0,
which implies that Y |

R(A−)
= 0. However, by the condition (iii) of Lemma 4.2,

Y |N(A−) = 0. As a consequence, we have Y = 0.
(iv)⇒(i) Apply (5.1) and (5.3). 2

We conclude this paper by reexamining the example established by Rehder (see
[11, p. 815]).

Example 5.3. Let H = C2 and A,B ∈ B(H) be selfadjoint operators having the
following block matrix forms

A =

[
−1 i
−i 1

]
, B =

[
0 1
1 0

]
,

with respect to the standard orthogonal decomposition H = C⊕ C. Since

AB = −BA =

[
i −1
1 −i

]
,

the product AB is normal but not selfadjoint. It is easily seen that the factors of
the unitary polar decompositions A = U |A| and B = V |B| have the following block
matrix forms

U =

[
− 1√

2
i√
2

− i√
2

1√
2

]
, |A| =

[√
2 0

0
√

2

]
, V =

[
0 1
1 0

]
, |B| =

[
1 0
0 1

]
,

with respect to the standard orthogonal decomposition H = C⊕ C.
Now, we describe the block operator model for (A,B). It follows from (4.2)

that H± is equal to the linear span of u±, where u± = 1√
2
(1,±1). This implies that

the operators U , |A|, V and |B| have the following block matrix forms

U =

[
0 −1+i√

2
−1+i√

2
0

]
, |A| =

[√
2 0

0
√

2

]
, V =

[
1 0
0 −1

]
, |B| =

[
1 0
0 1

]
,
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with respect to the orthogonal decomposition H = H+⊕H−. Hence, the remaining
components of the block operator model for (A,B) take the form

A± =
√

2, B± = 1, X = 0, Y = −1 + i√
2
, Z = 0.
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