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Abstract. Sharp radius constants for certain classes of normalized analytic functions

with fixed second coefficient, to be in the classes of starlike functions of positive order,

parabolic starlike functions, and Sokó l-Stankiewicz starlike functions are obtained. Our

results extend several earlier works.

1. Introduction

Let A denote the class of analytic functions f defined on D := {z ∈ C : |z| < 1},
which are normalized by the conditions f(0) = 0, and f ′(0) = 1 and let S denote
its subclass consisting of univalent functions. The well-known Bieberbach theorem
states that the second coefficient in the Maclaurin series of functions in S is bounded
by two. This estimate for the second coefficient plays an important role in the study
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starlike functions, convex functions, radius constants.

473



474 R. M. Ali, V. Kumar, V. Ravichandran and S. Sivaprasad Kumar

of the class S, and for that reason, there has been considerable continued interest
in the investigation of the class Sb ⊂ S of functions f(z) = z + a2z

2 + · · · , a2 = 2b
for a fixed b with |b| ≤ 1. The investigation on Sb was initiated as early as 1920
by Gronwall [7], where growth and distortion estimates were obtained for func-
tions in Sb. Recently, Ali et al. [5] extended the theory of second-order differential
subordination to the class of analytic functions with fixed second coefficient. Pur-
suant to that work, Nagpal and Ravichandran [15] obtained sufficient conditions for
starlikeness and close-to-convexity. Differential superordinations were considered
by Mendiratta et al. [13, 14], while Lee et al. [9] investigated other applications
of differential subordination for functions with fixed second coefficient. Livingston
problems for close-to-convex functions with fixed second coefficient were studied by
Mendiratta and Ravichandran [12]. A survey on functions with fixed initial coef-
ficient can be found in [2]. For 0 ≤ α < 1, the classes S∗(α) and K(α) of starlike
functions of order α and convex functions of order α consist of functions f ∈ S

satisfying respectively Re (zf ′(z)/f(z)) > α, and Re (1 + zf ′′(z)/f ′(z)) > α; the
classes S∗ := S∗(0) and K := K(0) are the familiar classes of starlike and convex
functions respectively. The second coefficient of functions in these classes satisfies
respectively the inequalities |a2| ≤ 2(1−α) and |a2| ≤ 1−α. For notational conve-
nience, let us denote by Ab, the class of normalized analytic functions of the form
f(z) = z + bz2 + · · · . For |b| ≤ 1 and 0 ≤ α < 1, let S∗b(α) := S∗(α)

∩
A2b(1−α) and

Kb(α) := K(α)
∩
Ab(1−α). Functions in these classes are respectively called starlike

and convex functions of order α with fixed second coefficient. Let S∗b := S∗b(0) and
Kb := Kb(0). The class S∗L of Sokó l-Stankiewicz starlike functions [22] consists of
functions f ∈ A for which zf ′(z)/f(z) lies in the region bounded by the right half-
plane of the lemniscate of Bernoulli: |w2 − 1| = 1. A function f ∈ S is uniformly
convex if and only if Re(1+zf ′′(z)/f ′(z)) > |zf ′′(z)/f ′(z)|. The corresponding class
of starlike functions connected with the Alexander relation is the class of parabolic
starlike functions, introduced by Rønning [19], given by

S∗P :=

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣} .

For a survey of uniformly starlike/convex functions, see [1]. For β > 1, the class
M(β) consists of functions f ∈ A satisfying Re(zf ′(z)/f(z)) < β. This class con-
tains non-univalent functions and was investigated in [17, 24] (see also [4]). Clearly,
S∗L ⊂ S∗, S∗P ⊂ S∗(1/2) while M(β) ̸⊂ S∗.

The classes of starlike, convex and several other functions are related to the
class P(α), of analytic functions p(z) = 1 + b1z + b2z

2 + · · · satisfying Re(p(z)) >
α (0 ≤ α < 1), P := P(0). It is well known [16, p. 170] that |bn| ≤ 2(1 − α) for
p ∈ P(α). We shall denote by Pb(α) the subclass of P(α) consisting of functions of
the form p(z) = 1 + 2b(1 − α)z + · · · , |b| ≤ 1, and let Pb := Pb(0).

Given two sub-families S1 and S2 of A, the S1-radius of S2 is defined to be the
largest number ρ such that r−1f(rz) ∈ S1 for all 0 < r ≤ ρ and for all f ∈ S2.
Several works on radius problems can be found in [18, 21, 23]. In a recent paper,
Ali et al. [4] obtained sharp radius estimates for functions f ∈ A satisfying certain
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conditions on the ratio f/g for a given g ∈ A. The radii results presented here
are nice extensions of Ali et al. [4] and the works of [2, 18, 21, 23] for functions
with fixed second coefficient, and include the radii results for the classes of starlike
functions of positive order, parabolic starlike functions, and the Sokó l-Stankiewicz
starlike functions.

2. Preliminaries

The results that are required in the present investigation are enlisted below:

Lemma 2.1.([11, Theorem 2]) Let |b| ≤ 1 and 0 ≤ α < 1. If p ∈ Pb(α), then, for
|z| = r < 1, ∣∣∣∣zp′(z)

p(z)

∣∣∣∣ ≤ 2(1 − α)r

1 − r2
|b|r2 + 2r + |b|

(1 − 2α)r2 + 2(1 − α)|b|r + 1
.

Lemma 2.2.([10, Lemma 1]) Let |b| ≤ 1 and 0 ≤ α < 1. If p ∈ Pb(α), then, for
|z| = r < 1, |p(z) − Cb| ≤ Db, where

Cb =
(1 + |b|r)2 + (1 − 2α)(|b| + r)2r2

(1 + 2|b|r + r2)(1 − r2)
, Db =

2(1 − α)(|b| + r)(1 + |b|r)r

(1 + 2|b|r + r2)(1 − r2)
.

Lemma 2.3.([10, Theorem 1]) Let |b| ≤ 1 and 0 ≤ α < 1. Suppose p ∈ Pb(α).
Then, for |z| = r < 1,

Re

(
zp′(z)

p(z)

)
≥

{
−2(1−α)(|b|+2r+|b|r2)r

(1+2α|b|r+(2α−1)r2)(1+2|b|r+r2) , R′ ≤ Rb;

(2
√
αC1 − C1 − α)/(1 − α), R′ ≥ Rb,

where Rb = Cb −Db, R
′ =

√
αC1, Cb and Db are as given in Lemma .

Lemma 2.4.([5, Theorem 5.1]) If f(z) = z+a2z
2 + · · · ∈ K, then f ∈ S∗(α), where

α is the smallest positive root of the equation 2α3 − |a2|α2 − 4α + 2 = 0, in the
interval [1/2, 2/3].

Lemma 2.5.([3, Lemma 2.2]) For 0 < a <
√

2, let ra be given by

ra =

{
(
√

1 − a2 − (1 − a2))1/2, 0 < a ≤ 2
√

2/3;√
2 − a, 2

√
2/3 ≤ a <

√
2,

and for a > 0, let Ra be given by

Ra =

{ √
2 − a, 0 < a ≤ 1/

√
2;

a, 1/
√

2 ≤ a.

Then {w : |w − a| < ra} ⊂ {w : |w2 − 1| < 1} ⊂ {w : |w − a| < Ra}.
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Lemma 2.6.([20, Section 3]) Let a > 1/2. If the number Ra is given by

Ra =

{
a− 1/2, 1/2 < a ≤ 3/2;√

2a− 2, a ≥ 3/2,

then {w ∈ C : |w − a| < Ra} ⊂ {w ∈ C : |w − a| < Rew}.

3. Radius constants

Let

(3.1) f(z) = z + a2z
2 + · · ·

and if Re(f(z)/z) > 0, then f(z)/z ∈ P and hence |a2| ≤ 2. So such functions can
be given the series expansion: f(z) = z + 2bz2 + · · · , where |b| ≤ 1.

Definition 3.1. For |b| ≤ 1, let F1
b be the class of functions f ∈ A2b such that

Re (f(z)/z) > 0.

We now give below the radius constants pertaining to the class F1
b :

Theorem 3.2. The sharp radius constants for the class F1
b are enlisted below:

1. The S∗L−radius is the smallest positive root r0 ∈ (0, 1) of

(3.2) (
√

2 − 1)r4 + 2
√

2|b|r3 + 4r2 + 2|b|(2 −
√

2)r −
√

2 + 1 = 0,

2. The M(β)−radius is the smallest positive root r1 ∈ (0, 1) of

(3.3) (β − 1)r4 + 2|b|βr3 + 4r2 + 2|b|(2 − β)r − β + 1 = 0.

3. The S∗(α)−radius is the smallest positive root r2 ∈ (0, 1) of

(3.4) (1 − α)r4 + 2|b|(2 − α)r3 + 4r2 + 2|b|αr + α− 1 = 0.

4. The S∗P−radius is the smallest positive root r3 ∈ (0, 1) of

(3.5) r4 + 6|b|r3 + 8r2 + 2|b|r − 1 = 0.

Proof. Clearly, the function p(z) = f(z)/z = 1 + 2bz + · · · ∈ Pb and

zp′(z)

p(z)
=

zf ′(z)

f(z)
− 1.

Now by taking α = 0 in Lemma 2.1, we have

(3.6)

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ =

∣∣∣∣zp′(z)

p(z)

∣∣∣∣ ≤ 2r(|b|r2 + 2r + |b|)
(1 − r2)(r2 + 2|b|r + 1)

.
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(1) From Lemma 2.5, we see that∣∣∣∣∣
(
zf ′(z)

f(z)

)2

− 1

∣∣∣∣∣ < 1

whenever the following inequality holds:

2r(|b|r2 + 2r + |b|)
(1 − r2)(r2 + 2|b|r + 1)

≤
√

2 − 1,

which upon simplification, becomes

1 −
√

2 + 2|b|
(

2 −
√

2
)
r + 4r2 + 2

√
2|b|r3 +

(√
2 − 1

)
r4 ≤ 0.

Therefore, the S∗L-radius for the class F1
b , is the smallest positive root r0 ∈ (0, 1) of

(3.2).
To prove the sharpness, consider the function f0 defined by

(3.7) f0(z) =
z(1 + 2bz + z2)

1 − z2

together with w(z) := z(z + b)/(1 + bz). Then we see that

f0(z)

z
=

1 + w(z)

1 − w(z)
,

where w is an analytic function satisfying the conditions of Schwarz’s lemma in the
unit disk D, which leads to Re(f0(z)/z) > 0 in D and hence f0 ∈ F1

b . Thus, for
z = r0, the root of (3.2), we have

zf ′
0(z)

f0(z)
=

1 + 4br0 + 4r20 − r40
(1 − r20) (1 + 2br0 + r20)

=
√

2,

it follows that ∣∣∣∣∣
(
zf ′

0(z)

f0(z)

)2

− 1

∣∣∣∣∣ = 1 (z = r0),

which establishes sharpness of the result.
(2) The inequality (3.6) shows that

Re

(
zf ′(z)

f(z)

)
≤ 1 +

2r(|b|r2 + 2r + |b|)
(1 − r2)(r2 + 2|b|r + 1)

≤ β,

if the following inequality

(β − 1)r4 + 2|b|βr3 + 4r2 + 2(2 − β)|b|r + 1 − β ≤ 0



478 R. M. Ali, V. Kumar, V. Ravichandran and S. Sivaprasad Kumar

holds. Therefore, the M(β)-radius of the class F1
b is the smallest positive root

r1 ∈ (0, 1) of (3.3). The result is sharp due to the function given in (3.7) as, for
z = r1, the root of (3.3), we see that

zf ′
0(z)

f0(z)
=

1 + 4br1 + 4r21 − r41
(1 − r21) (1 + 2br1 + r21)

= β.

(3) In view of (3.6), it follows that

Re

(
zf ′(z)

f(z)

)
≥ 1 − 2r(|b|r2 + 2r + |b|)

(1 − r2)(r2 + 2|b|r + 1)
≥ α,

whenever the following inequality

(1 − α)r4 + 2|b|(2 − α)r3 + 4r2 + 2|b|αr + α− 1 ≤ 0

holds. Thus, the S∗(α)−radius of the class F1
b is the smallest positive root r2 ∈ (0, 1)

of (3.4).
The function f0 defined by

(3.8) f0(z) =
z(1 − z2)

1 − 2bz + z2

is in the class F1
b because for the function f0 defined in (3.8), we have f0(z)/z =

(1−w(z))/(1+w(z)), where w(z) = z(z−b)/(1−bz) is an analytic function satisfying
the conditions of Schwarz’s lemma in the unit disk D, and hence Re(f0(z)/z) > 0
in D. The result is sharp for the function given in (3.8) as, for z = −r2, the root of
(3.4), we have

Re

(
zf ′

0(z)

f0(z)

)
=

zf ′
0(z)

f0(z)
=

1 − r22
(
4 − 4br2 + r22

)
(1 − r22) (1 − 2br2 + r22)

= α,

which demonstrates sharpness.
(4) Lemma 2.6 shows that the disk (3.6) lies inside the parabolic region Ω =

{w : |w − 1| < Rew} provided that

2r(|b|r2 + 2r + |b|)
(1 − r2)(r2 + 2|b|r + 1)

≤ 1

2
,

or equivalently, if the inequality r4 + 6|b|r3 + 8r2 + 2|b|r − 1 ≤ 0 holds. Thus, the
S∗P−radius of the class F1

b is the smallest positive root r3 ∈ (0, 1) of (3.5).
The function defined in (3.8), for z = −r3 satisfies

zf ′
0(z)

f0(z)
=

1 − r23
(
4 − 4br3 + r23

)
(1 − r23) (1 − 2br3 + r23)

=
1

2
,

which demonstrates sharpness. The following figures illustrate sharpness of the
result.
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Remark 3.3. For α = 0, part (3) of Theorem 3.1 reduces to the result [8, Theorem
2] of Goel.

Let

(3.9) g(z) = z + g2z
2 + · · ·

and assume that g(z)/z ∈ P. Let f be given by (3.1) and Re(f(z)/g(z)) > 0.
Then we have |a2| ≤ |g2| + 2 ≤ 4. Our next theorem focuses on the class of
functions involving these functions f and g with fixed second coefficients, whose
series expansions are given respectively by f(z) = z + 4bz2 + · · · and g(z) = z +
2cz2 + · · · , where |b| ≤ 1 and |c| ≤ 1.

Definition 3.4. For |b| ≤ 1 and |c| ≤ 1, let

F2
b,c :=

{
f ∈ A4b : Re

(
f(z)

g(z)

)
> 0 and Re

(
g(z)

z

)
> 0, where g ∈ A2c

}
.

Here below, we furnish the radius constants for the class F2
b,c:

Theorem 3.5. Assume that γ := |2b− c|. Then the sharp radius constants for the
class F2

b,c are enlisted below:

(1) The S∗L−radius is the smallest positive root r0 ∈ (0, 1) of

(
√

2 − 1)r6 + (|c| + γ)2
√

2r5 + (7 +
√

2 + 4(1 +
√

2)|c|γ)r4 + 12(|c| + γ)r3

+ (9 −
√

2 + 4(3 −
√

2)|c|γ)r2 + 2(2 −
√

2)(|c| + γ)r −
√

2 + 1 = 0.

(3.10)

(2) The M(β)−radius is the smallest positive root r1 ∈ (0, 1) of

(β − 1)r6 + 2β(|c| + γ)r5 + (7 + β + 4(1 + β)|c|γ)r4 + 12(|c| + γ)r3

+ (9 − β + 4(3 − β)|c|γ)r2 + 2(2 − β)(|c| + γ)r − β + 1 = 0.(3.11)

(3) The S∗(α)−radius is the smallest positive root r2 ∈ (0, 1) of

(1 − α)r6 + 2(2 − α)(|c| + γ)r5 + (9 − α + 4(3 − α)|c|γ)r4 + 12(|c| + γ)r3

+ (7 + α + 4(1 + α)|c|γ)r2 + 2(|c| + γ)αr + α− 1 = 0.

(3.12)

(4) The S∗P−radius is the smallest positive root r3 ∈ (0, 1) of
(3.13)
r6+6(|c|+γ)r5+(17+20γ|c|)r4+24(|c|+γ)r3+(15+12γ|c|)r2+2(|c|+γ)r−1 = 0.
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Proof. Let the functions p and h be defined by p(z) = g(z)/z, and h(z) = f(z)/g(z).
Then

p(z) = 1 + 2cz + · · · and h(z) = 1 + 2(2b− c)z + · · ·

or p ∈ Pc and h ∈ P2b−c. Since f(z) = zp(z)h(z), from Lemma 2.1 with α = 0, we
have

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ ∣∣∣∣zp′(z)

p(z)

∣∣∣∣+

∣∣∣∣zh′(z)

h(z)

∣∣∣∣ ≤ 2r

1 − r2

(
|c|r2 + 2r + |c|
r2 + 2|c|r + 1

+
γr2 + 2r + γ

r2 + 2γr + 1

)
.

(3.14)

(1) By Lemma 2.5, the function f satisfies
∣∣(zf ′(z)/f(z))2 − 1

∣∣ < 1, for |z| < r, if
the following inequality holds

2r

1 − r2

(
|c|r2 + 2r + |c|
r2 + 2|c|r + 1

+
γr2 + 2r + γ

r2 + 2γr + 1

)
≤

√
2 − 1

or equivalently, if the following inequality holds:

(
√

2 − 1)r6 + (|c| + γ)2
√

2r5 + (7 +
√

2 + 4(1 +
√

2)|c|γ)r4 + 12(|c| + γ)r3

+ (9 −
√

2 + 4(3 −
√

2)|c|γ)r2 + 2(2 −
√

2)(|c| + γ)r −
√

2 + 1 ≤ 0.

Therefore, the S∗L-radius of the class F2
b,c is the smallest positive root r0 ∈ (0, 1) of

(3.10).
Consider the functions defined by

(3.15)

f0(z) =
z
(
1 + (4b− 2c)z + z2

) (
1 + 2cz + z2

)
(1 − z2)

2 and g0(z) =
z
(
1 + 2cz + z2

)
(1 − z2)

.

The function f0 with the choice of g0, defined above, is in the class F2
b,c because

f0(z)

g0(z)
=

1 + w1(z)

1 − w1(z)
and

g0(z)

z
=

1 + w2(z)

1 − w2(z)
,

where w1(z) = z(z + 2b − c)/(1 + (2b − c)z) with |2b − c| ≤ 1 and w2(z) = z(z +
c)/(1 + cz) are analytic functions satisfying the conditions of Schwarz’s lemma in
the unit disk D, and hence Re(g0(z)/z) > 0 and Re(f0(z)/g0(z)) > 0 in D. Since
(3.16)
zf ′

0(z)

f0(z)
= 1+

2

1 − r0
+

2

1 + r0
− 2(1 + cr0)

1 + 2cr0 + r20
− 2 + 4br0 − 2cr0

1 + r0(4b− 2c + r0)
=

√
2, (z = r0),

we have ∣∣∣∣∣
(
zf0(z)

f0(z)

)2

− 1

∣∣∣∣∣ = 1.

Thus, the result is sharp.
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(2) The inequality (3.14) shows that

Re

(
zf ′(z)

f(z)

)
≤ 1 +

2r

1 − r2

(
|c|r2 + 2r + |c|
r2 + 2|c|r + 1

+
γr2 + 2r + γ

r2 + 2γr + 1

)
≤ β,

if the following inequality holds:

(β − 1)r6 + 2β(|c| + γ)r5 + (7 + β + 4(1 + β)|c|γ)r4 + 12(|c| + γ)r3

+ (9 − β + 4(3 − β)|c|γ)r2 + 2(2 − β)(|c| + γ)r − β + 1 ≤ 0.

Hence the M(β)-radius of the class F2
b,c is the smallest positive root r1 ∈ (0, 1) of

(3.11). The result is sharp due to the functions given in (3.15) as it can be seen for
z = r1

(3.17)
zf ′

0(z)

f0(z)
= 1 +

2

1 − r1
+

2

1 + r1
− 2(1 + cr1)

1 + 2cr1 + r21
− 2 + 4br1 − 2cr1

1 + r1(4b− 2c + r1)
= β.

(3) In view of (3.14), it follows that

Re

(
zf ′(z)

f(z)

)
≥ 1 − 2r

1 − r2

(
|c|r2 + 2r + |c|
r2 + 2|c|r + 1

+
γr2 + 2r + γ

r2 + 2γr + 1

)
≥ α,

if the following inequality holds:

(1 − α)r6 + 2(2 − α)(|c| + γ)r5 + (9 − α + 4(3 − α)|c|γ)r4 + 12(|c| + γ)r3

+ (7 + α + 4(1 + α)|c|γ)r2 + 2(|c| + γ)αr + α− 1 ≤ 0.

Thus, the S∗(α)−radius of the class F2
b,c is the smallest positive root r2 ∈ (0, 1) of

(3.12).
Consider the functions defined by

(3.18) f0(z) =
z
(
1 − z2

)2
(1 − (4b− 2c)z + z2) (1 − 2cz + z2)

and g0(z) =
z
(
1 − z2

)
(1 − 2cz + z2)

.

The function f0, with the choice of g0 defined in (3.18), is in the class F2
b because

f0(z)

g0(z)
=

1 − w1(z)

1 + w1(z)
and

g0(z)

z
=

1 − w2(z)

1 + w2(z)
,

where w1(z) = z(z − (2b − c))/(1 − (2b − c)z) with |2b − c| ≤ 1 and w2(z) =
z(z−c)/(1−cz) are analytic functions satisfying the conditions of Schwarz’s lemma
in the unit disk D, and hence Re(g0(z)/z) > 0 and Re(f0(z)/g0(z)) > 0 in D. The
functions defined in (3.18) satisfy

zf ′
0(z)

f0(z)
= 1− 2

1 + r2
− 2

1 − r2
+

2 + 2cr2
1 + 2cr2 + r22

+
2(1 + 2br2 − cr2)

1 + r2(4b− 2c + r2)
= α (z = −r2),
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which demonstrates the sharpness.
(4) By Lemma 2.6, the disk (3.14) lies inside the parabolic region Ω = {w :

|w − 1| < Rew} provided∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ 2r

1 − r2

(
|c|r2 + 2r + |c|
r2 + 2|c|r + 1

+
γr2 + 2r + γ

r2 + 2γr + 1

)
≤ 1

2
.

or equivalently, if r6 +6(|c|+γ)r5 +(17+20γ|c|)r4 +24(|c|+γ)r3 +(15+12γ|c|)r2 +
2(|c| + γ)r − 1 ≤ 0. Thus, the S∗P−radius of the class F2

b is the smallest positive
root r3 ∈ (0, 1) of (3.13). The functions defined in (3.18) satisfy, for z = −r3,

zf ′
0(z)

f0(z)
= 1 − 2

1 + r3
− 2

1 − r3
+

2(1 + cr3)

1 + 2cr3 + r23
+

2(1 + 2br3 − cr3)

1 + r3(4b− 2c + r3)
=

1

2
,

which demonstrates sharpness.

Remark 3.6. Setting b = 1 = c, in Theorem 3.5, we obtain the result [4, Theorem
2.1] of Ali et al.

Let the functions f and g be given by (3.1) and (3.9) respectively. Assume that
f and g are satisfying Re(f(z)/g(z)) > 0 and Re(g(z)/z) > 1/2 in D. Then we
have |a2| ≤ |g2| + 2 ≤ 3. In the following theorem we shall discuss some radius
problems for functions with fixed second coefficients whose series expansion are
given respectively by f(z) = z + 3bz2 + · · · and g(z) = z + cz2 + · · · with |b| ≤ 1
and |c| ≤ 1.

Definition 3.7. For |b| ≤ 1 and |c| ≤ 1, let

F3
b,c :=

{
f ∈ A3b : Re

(
f(z)

g(z)

)
> 0, and Re

(
g(z)

z

)
>

1

2
, where g ∈ Ac

}
.

Now the radius constants for the class F3
b,c are established in the following result.

Theorem 3.8. Assume that γ1 = |3b− c|. For the class F3
b,c,

1. the S∗L−radius is the smallest positive root r0 ∈ (0, 1) of
√

2|c|r5 + (1 +
√

2)(1 + |c|γ1)r4 + (6|c| +
√

2(1 +
√

2)γ1)r3

+ (6 + (3 −
√

2)|c|γ1)r2 +
√

2(
√

2 − 1)(|c| + γ1)r −
√

2 + 1 = 0(3.19)

and it is sharp.

2. the M(β)−radius is the smallest positive root r1 ∈ (0, 1) of

|c|βr5 + (1 + β)(1 + |c|γ1)r4 + (6|c| + (2 + β)γ1)r3

+ (6 + (3 − β)|c|γ1)r2 + (2 − β)(|c| + γ1)r − β + 1 = 0(3.20)

and it is sharp.
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3. the S∗(α)−radius is the smallest positive root r2 ∈ (0, 1) of

− |c|αr7 + (|c|(1 − α)(γ1 + 2|c|) − 1 − α)r6 + (|c|(2 − α)(3 + 2|c|γ1) − αγ1)r5

+ (5 + 8|c|2 − α + 2(3 − α)|c|γ1)r4 + ((12 + α)|c| + 2(2 + |c|2α)γ1)r3

+ (5 − 2|c|2 + α + 2|c|2α + (1 + 3α)|c|γ1)r2 + (2|c| + 3|c|α + αγ1)r

+ α− 1 = 0.
(3.21)

4. the S∗P−radius is the smallest positive root r3 ∈ (0, 1) of

|c|r7 + (1 + 4|c|2 + 3|c|γ1)r6 + (17|c| + 3γ1 + 8|c|2γ1)r5 + (13 + 20|c|2 + 16|c|γ1)r4

+ (31|c| + 8γ1 + 4|c|2γ1)r3 + (11 + 5|c|γ1)r2 + (γ1 − |c|)r − 1 = 0.

(3.22)

Proof. Define the functions p and h by p(z) = g(z)/z and h(z) = f(z)/g(z)

(3.23) p(z) = 1 + cz + · · · and h(z) =
f(z)

g(z)
= 1 + (3b− c)z + · · ·

or p ∈ Pc/2(1/2) and h ∈ P(3b−c)/2. Lemma 2.1 with α = 0 and α = 1/2 respectively
lead to

(3.24)

∣∣∣∣zh′(z)

h(z)

∣∣∣∣ ≤ r

1 − r2
γ1r

2 + 4r + γ1
r2 + γ1r + 1

and

∣∣∣∣zp′(z)

p(z)

∣∣∣∣ ≤ r

1 − r2
|c|r2 + 2r + |c|

|c|r + 1
.

From (3.23), f(z)/z = p(z)h(z), and so the inequalities in (3.24) yields∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ ∣∣∣∣zh′(z)

h(z)

∣∣∣∣+

∣∣∣∣zp′(z)

p(z)

∣∣∣∣
≤ r

1 − r2

(
γ1r

2 + 4r + γ1
r2 + γ1r + 1

+
|c|r2 + 2r + |c|

|c|r + 1

)
.(3.25)

(1) By Lemma 2.5, the function f satisfies
∣∣(zf ′(z)/f(z))2 − 1

∣∣ < 1, for |z| < r, if
the following inequality holds

r

1 − r2

(
γ1r

2 + 4r + γ1
r2 + γ1r + 1

+
|c|r2 + 2r + |c|

|c|r + 1

)
≤

√
2 − 1

or equivalently, if the following inequality holds:

√
2|c|r5 + (1 +

√
2)(1 + |c|γ1)r4 + (6|c| +

√
2(1 +

√
2)γ1)r3

+ (6 + (3 −
√

2)|c|γ1)r2 +
√

2(
√

2 − 1)(|c| + γ1)r −
√

2 + 1 ≤ 0.
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Therefore, the S∗L-radius of the class F3
b,c is the smallest positive root r0 ∈ (0, 1) of

(3.19). Consider the functions defined by

(3.26) f0(z) =
z(1 + (3b− c)z + z2)(1 + cz)

(1 − z2)2
and g0(z) =

z(1 + cz)

(1 − z2)
.

The function f0 with the choice g0, defined in (3.26), is in the class F3
b,c because

f0(z)

g0(z)
=

1 + w1(z)

1 − w1(z)
and

g0(z)

z
=

1 + w2(z)

1 − w2(z)
,

where w1(z) = z(z + (3b − c)/2)/(1 + ((3b − c)z/2) with |3b − c| ≤ 2 and w2(z) =
z(z + c/2)/(1 + cz/2) are analytic functions satisfying the conditions of Schwarz’s
lemma in the unit disk D, and hence Re(g0(z)/z) > 1/2 and Re(f0(z)/g0(z)) > 0
in D. Since

zf ′
0(z)

f0(z)
=

2

1 − r0
+

2

1 + r0
− 1

1 + cr0
− 2 + 3br0 − cr0

1 + r0(3b− c + r0)
=

√
2,

for z = r0, the root of (3.19), we have |(zf0(z)/f0(z))2 − 1| = 1. Thus, the result is
sharp.

(2) The inequality (3.25) shows that

Re

(
zf ′(z)

f(z)

)
≤ r

1 − r2

(
γ1r

2 + 4r + γ1
r2 + γ1r + 1

+
|c|r2 + 2r + |c|

|c|r + 1

)
+ 1 ≤ β,

if the following inequality holds:

β|c|r5 + (1 + β)(1 + |c|γ1)r4 + (6|c| + (2 + β)γ1)r3

+ (6 + (3 − β)|c|γ1)r2 + (2 − β)(|c| + γ1)r − β + 1 ≤ 0.

Therefore the M(β)−radius of the class F3
b,c is the smallest positive root r1 ∈ (0, 1)

of (3.20). The result is sharp for the functions given in (3.26) as it can be seen that,
for z = r1, the root of (3.20), we have

zf ′
0(z)

f0(z)
=

2

1 − r1
+

2

1 + r1
− 1

1 + cr1
− 2 + 3br1 − cr1

1 + r1(3b− c + r1)
= β.

(3) Since f(z)/z = p(z)h(z), it follows from Lemma 2.1 and Lemma 2.3 that

(3.27) Re

(
zf ′(z)

f(z)

)
≥ 1− (γ1r

2 + 4r + γ1)r

(r2 + γ1r + 1)(1 − r2)
+

(|c| + 2r + |c|r2)r

(1 + 2|c|r + r2)(1 + |c|r)
≥ α,

if the following inequality holds:

− |c|αr7 + (|c|(1 − α)(γ1 + 2|c|) − 1 − α)r6 + (|c|(2 − α)(3 + 2|c|γ1) − αγ1)r5

+ (5 + 8|c|2 − α + 2(3 − α)|c|γ1)r4 + ((12 + α)|c| + 2(2 + |c|2α)γ1)r3

+ (5 − 2|c|2 + α + 2|c|2α + (1 + 3α)|c|γ1)r2 + (2|c| + 3|c|α + αγ1)r + α− 1 ≤ 0.
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Thus, the S∗(α)−radius of the class F3
b,c is the smallest positive root r2 ∈ (0, 1) of

(3.21).
(4) From (3.25) and (3.27), it is clear that |(zf ′(z)/f(z))−1| < Re(zf ′(z)/f(z))

provided

1 − (γ1r
2 + 4r + γ1)r

(r2 + γ1r + 1)(1 − r2)
+

(|c| + 2r + |c|r2)r

(1 + 2|c|r + r2)(1 + |c|r)

≥ r

1 − r2

(
γ1r

2 + 4r + γ1
r2 + γ1r + 1

+
|c|r2 + 2r + |c|

|c|r + 1

)
or equivalently, if the following inequality holds:

|c|r7 + (1 + 4|c|2 + 3|c|γ1)r6 + (17|c| + 3γ1 + 8|c|2γ1)r5 + (13 + 20|c|2 + 16|c|γ1)r4

+ (31|c| + 8γ1 + 4|c|2γ1)r3 + (11 + 5|c|γ1)r2 + (γ1 − |c|)r − 1 ≤ 0.

Thus the S∗P−radius of the class F3
b,c is the smallest positive root r3 in (0, 1) of

(3.22).

Remark 3.9. Putting b = 1 = c in Theorem 3.8, we obtain the result [4, Theorem
2.2] of Ali et al.

Now consider the functions f and g, given by (3.1) and (3.9) respectively. Sup-
pose that f and g satisfy the conditions |f(z)/g(z) − 1| < 1 and Re(g(z)/z) > 0 in
D. Then it follows that |a2| ≤ |g2| + 2 ≤ 3. Thus such functions with fixed second
coefficient, satisfying the above conditions can have the series expansion namely
f(z) = z + 3bz2 + · · · and g(z) = z + 2cz2 + · · · with |b| ≤ 1 and |c| ≤ 1.

Definition 3.10. For |b| ≤ 1 and |c| ≤ 1, let

F4
b,c :=

{
f ∈ A3b :

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1, and Re

(
g(z)

z

)
> 0, where g ∈ A2c

}
.

Now in the following result, we provide the radius constants for the class F3
b,c.

Theorem 3.11. Assume that δ := |2c− 3b|. For the class F4
b,c,

1. the S∗L−radius is the smallest positive root r0 ∈ (0, 1) of

√
2δr5 + (1 +

√
2)(1 + 2δ|c|))r4 + 2(3δ +

√
2(1 +

√
2)|c|)r3

+ 2(3 + (3 −
√

2)δ|c|)r2 + (2 −
√

2)(δ + 2|c|)r −
√

2 + 1 = 0.(3.28)

2. the M(β)−radius is the smallest positive root r1 ∈ (0, 1) of

βδr5 + (1 + β)(1 + 2δ|c|)r4 + 2(3δ + 2|c| + |c|β)r3

+ 2(3 + (3 − β)δ|c|)r2 + (2 − β)(δ + 2|c|)r − β + 1 = 0.(3.29)
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3. the f ∈ S∗(α)−radius is the smallest positive root r2 ∈ (0, 1) of

(2 − α)δr5 + (1 + 2δ|c|)(3 − α)r4 + 2(3δ + 4|c| − |c|α)r3

+ (δ + 2|c|)αr2 + 2(3 + (1 + α)δ|c|)r + α− 1 = 0.(3.30)

4. the S∗P−radius is the smallest positive root r3 ∈ (0, 1) of

(3.31) 3δr5+5(1+2δ|c|)r4+2(6δ+7|c|)r3+6(2+δ|c|)r2+(δ+2|c|)r−1 = 0.

Proof. It is easy to see that |f(z)/g(z) − 1| < 1 if and only if Re(g(z)/f(z)) > 1/2.
Define the functions p and h by p(z) = g(z)/z, and h(z) = g(z)/f(z). Then

p(z) = 1 + 2cz + · · · and h(z) =
g(z)

f(z)
= 1 + (2c− 3b)z + · · ·

or p ∈ Pc and h ∈ P(2c−3b)/2(1/2). Lemma 2.1 with α = 0 and α = 1/2 respectively
lead to

(3.32)

∣∣∣∣zh′(z)

h(z)

∣∣∣∣ ≤ 2r(|c|r2 + 2r + |c|)
(1 − r2)(r2 + 2|c|r + 1)

and

∣∣∣∣zp′(z)

p(z)

∣∣∣∣ ≤ r(δr2 + 2r + δ)

(1 − r2)(δr + 1)

respectively, where δ := |2c− 3b|. Since zp(z) = f(z)h(z), from (3.32), we have∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ ∣∣∣∣zp′(z)

p(z)

∣∣∣∣+

∣∣∣∣zh′(z)

h(z)

∣∣∣∣
≤ r

1 − r2

(
2(|c|r2 + 2r + |c|)

r2 + 2qr + 1
+

(δr2 + 2r + δ)

δr + 1

)
.(3.33)

(1) By Lemma 2.5, the function f satisfies
∣∣(zf ′(z)/f(z))2 − 1

∣∣ < 1, if the following
inequality holds:

r

1 − r2

(
2(|c|r2 + 2r + |c|)

r2 + 2qr + 1
+

(δr2 + 2r + δ)

δr + 1

)
≤

√
2 − 1,

or equivalently, if

√
2δr5 + (1 +

√
2)(1 + 2δ|c|))r4 + 2(3δ +

√
2(1 +

√
2)|c|)r3

+ 2(3 + (3 −
√

2)δ|c|)r2 + (2 −
√

2)(δ + 2|c|)r −
√

2 + 1 ≤ 0.

Therefore the S∗L−radius of the class F4
b,c is the smallest positive root r0 ∈ (0, 1) of

(3.28).
(2) Using (3.33), we get

Re

(
zf ′(z)

f(z)

)
≤ 1 +

r

1 − r2

(
2(|c|r2 + 2r + |c|)

r2 + 2qr + 1
+

(δr2 + 2r + δ)

δr + 1

)
≤ β
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if the following inequality holds:

βδr5 + (1 + β)(1 + 2δ|c|)r4 + 2(3δ + 2|c| + |c|β)r3

+ 2(3 + (3 − β)δ|c|)r2 + (2 − β)(δ + 2|c|)r − β + 1 ≤ 0.

Therefore, the M(β)−radius of the class F4
b,c is the smallest positive root r1 ∈ (0, 1)

of (3.29).
(3) Inequality in (3.33) implies that

Re

(
zf ′(z)

f(z)

)
≥ 1 − r

1 − r2

(
2(|c|r2 + 2r + |c|)

r2 + 2qr + 1
+

(δr2 + 2r + δ)

δr + 1

)
≥ α

if the following inequality holds:

(2 − α)δr5 + (1 + 2δ|c|)(3 − α)r4 + 2(3δ + 4|c| − |c|α)r3

+ (δ + 2|c|)αr2 + 2(3 + (1 + α)δ|c|)r + α− 1 ≤ 0.

Thus, the S∗(α)−radius of the class F4
b,c is the smallest positive root in r2 ∈ (0, 1)

of (3.30).
(4) Lemma 2.6 shows that the disk (3.33) lies inside Ω = {w : |w − 1| < Rew},

the parabolic region, provided∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ r

1 − r2

(
2(|c|r2 + 2r + |c|)

r2 + 2qr + 1
+

(δr2 + 2r + δ)

δr + 1

)
≤ 1

2

if the following inequality holds:

3δr5 + 5(1 + 2δ|c|)r4 + 2(6δ + 7|c|)r3 + 6(2 + δ|c|)r2 + (δ + 2|c|)r − 1 ≤ 0.

Therefore, the S∗P−radius of the class F4
b,c is the smallest positive root r3 ∈ (0, 1)

of (3.31).

Remark 3.12. Note that, in addition, we obtain the following sharp results of [4,
Theorem 2.3] of Ali et al. as special case to parts (3) and (4) of Theorem 3.11 when
b = 1 = c.

For the class F4
1,1,

(1) the S∗L−radius, r0 = 2(2−
√
2)

√
2(
√

17−4
√
2+3)

,

(2) the M(β)−radius, r1 = 2(β−1)

3+
√

9+4β(β−1)
,

(3) the sharp f ∈ S∗(α)−radius, r2 = 2(1−α)

3+
√

9+4β(1−α)(2−α)
,

(4) the sharp S∗P−radius, r3 = 2
√
3−3
3 .
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Consider the functions f and g given by (3.1) and (3.9) respectively. Further
assume that f and g satisfy the condition |f(z)/g(z) − 1| < 1 and g is a convex
function in the unit disk D. Then we have |a2| ≤ |g2|+ 1 ≤ 2. In the next theorem,
we consider such functions with fixed second coefficient, whose series expansion are
given by f(z) = z + 2bz2 + · · · and g(z) = z + cz2 + · · · with |b| ≤ 1 and |c| ≤ 1.

Definition 3.13. For |b| ≤ 1 and |c| ≤ 1, let

F5
b,c :=

{
f ∈ A2b : Re

(
f(z)

g(z)

)
> 0, where g ∈ Ac ∩K = Kc

}
.

We now obtain the radius constants for the class F3
b,c in the following result.

Theorem 3.14. Assume that δ1 := |c− 2b|. For the class F5
b,c,

1. the S∗(λ)−radius is the smallest root r0 ∈ (0, 1) of

(δ1 + β0δ1 − δ1λ)r5 + (2 + β0 + 3|c|δ1 + |c|β0δ1 − λ− 2|c|δ1λ)r4

+ (5|c| + |c|β0 + 3δ1 − β0δ1 − 2|c|λ)r3 + (3 − β0 + (1 − β0 + 2λ)δ1|c|)r2

+ (2|c|λ + δ1λ− |c| − |c|β0)r + λ− 1 = 0,
(3.34)

where β0 = 2α0−1 and α0 ∈ (0, 1) is the smallest positive root of the equation

2α3 − qα2 − 4α + 2 = 0

in the interval [1/2, 2/3].

2. the S∗P−radius is the smallest root r1 ∈ (0, 1) of

(δ1 + 2β0δ1)r5 + (3 + 2β0 + 4|c|δ1 − 2|c|β0δ1)r4

+ (8|c| − 2|c|β0 + 6δ1 − 2β0δ1 + 2|c|β0δ1 − 2|c|2β0δ1)r3

+ (6 − 2β0 + 2|c|β0 − 2|c|2β0 + 4|c|δ1 − 2|c|β0δ1)r2

+ (−2|c|β0 + δ1)r − 1 = 0.(3.35)

3. the S∗L−radius is the smallest root r2 ∈ (0, 1) of

(δ1 +
√

2δ1 − β0δ1)r5 + (2 +
√

2 − β0 + 3qδ1 + 2
√

2|c|δ1 − |c|β0δ1)r4

+ (5|c| + 2
√

2|c| − |c|β0 + 3δ1 + 2|c|2δ1 − β0δ1 − |c|β0δ1 − |c|2β0δ1)r3

+ (3 + 2|c|2 − β0 − |c|β0 − |c|2β0 + 5|c|δ1 − 2
√

2|c|δ1 − |c|β0δ1)r2

+ (3|c| − 2
√

2|c| − |c|β0 + 2δ1 −
√

2δ1)r −
√

2 + 1 = 0.

(3.36)
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4. the M(β)−radius is the smallest root r3 ∈ (0, 1) of

(δ1 + βδ1 − β0δ1)r5 + (2 + β − β0 + 3|c|δ1 + 2β|c|δ1 − |c|β0δ1)r4

+ (5|c| + 2β|c| − |c|β0 + 3δ1 + 2|c|2δ1 − β0δ1 − |c|β0δ1 − |c|2β0δ1)r3

+ (3 + 2|c|2 − β0 − |c|β0 − |c|2β0 + 5|c|δ1 − 2b|c|δ1 − |c|β0δ1)r2

+ (|c| − 2β|c| − |c|β0 + 2δ1 − βδ1)r − β + 1 = 0.
(3.37)

Proof. Define the functions h and p by h(z) = g(z)/f(z), and p(z) = zg′(z)/g(z).
Then

h(z) = 1 + (c− 2b)z + · · · and p(z) = 1 + cz + · · · .
Since |f(z)/g(z) − 1| < 1 if and only if Re(g(z)/f(z)) > 1/2, we have h ∈
P(c−2b)/2(1/2). An application of Lemma 2.1 to the function h(z), gives

(3.38)

∣∣∣∣zh′(z)

h(z)

∣∣∣∣ ≤ (δ1r
2 + 2r + δ1)r

(δ1r + 1)(1 − r2)
,

where δ1 := |c− 2b|. Since g(z) = z + cz2 + · · · ∈ Kc, it follows from Lemma that

Re

(
zg′(z)

g(z)

)
> α0,

where α0 is the smallest positive root of the equation 2α3 − |c|α2 − 4α + 2 = 0 in
the interval [1/2, 2/3]. Thus Re(p(z)) > α0.
(1) An application of Lemma with α = α0, gives

(3.39) |p(z) − Cc| ≤ Dc,

where

Cc =
(1 + |c|r)2 − β0(|c| + r)2r2

(1 + 2|c|r + r2)(1 − r2)
, Dc =

(1 − β0)(|c| + r)(1 + |c|r)r

(1 + 2|c|r + r2)(1 − r2)
and β0 = 2α0−1.

Since h(z) = g(z)/f(z) and p(z) = zg′(z)/g(z), we have

(3.40)

∣∣∣∣zf ′(z)

f(z)
− Cc

∣∣∣∣ ≤ |p(z) − Cc| +

∣∣∣∣zh′(z)

h(z)

∣∣∣∣ .
From (3.39), (3.38) and (3.40), we have

(3.41)

∣∣∣∣zf ′(z)

f(z)
− Cc

∣∣∣∣ ≤ Dc +
(δ1r

2 + 2r + δ1)r

(δ1r + 1)(1 − r2)
.

Clearly f ∈ S∗(λ), provided that

Re

(
zf ′(z)

f(z)

)
≥ Cc −Dc −

(δ1r
2 + 2r + δ1)r

(δ1r + 1)(1 − r2)
) ≥ λ
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or equivalently, if the following inequality holds:

(δ1 + β0δ1 − δ1λ)r5 + (2 + β0 + 3|c|δ1 + |c|β0δ1 − λ− 2|c|δ1λ)r4

+ (5|c| + |c|β0 + 3δ1 − β0δ1 − 2|c|λ)r3 + (3 − β0 + (δ1 − β0δ1 + 2δ1λ)|c|)r2

+ (−|c| − |c|β0 + 2|c|λ + δ1λ)r − 1 + λ ≤ 0.

Thus, the S∗(λ)−radius of the class F5
b,c is the smallest positive root r0 ∈ (0, 1) of

(3.34).

(2) In view of Lemma 2.6, the disk given in (3.41) lies inside the parabolic region
given by Ω := {w : |w − 1| < Rew} provided

Dc +
(δ1r

2 + 2r + δ1)r

(δ1r + 1)(1 − r2)
) ≤ Cc − 1/2

or equivalently, if the following inequality holds:

(δ1 + 2β0δ1)r5 + (3 + 2β0 + 4|c|δ1 − 2|c|β0δ1)r4

+ (8|c| − 2|c|β0 + 6δ1 − 2β0δ1 + 2|c|β0δ1 − 2|c|2β0δ1)r3

+ (6 − 2β0 + 2|c|β0 − 2|c|2β0 + 4|c|δ1 − 2|c|β0δ1)r2 + (δ1 − 2|c|β0)r − 1 ≤ 0.

Hence the M(β)−radius of the class F5
b,c is the smallest positive root r1 ∈ (0, 1) of

(3.35).

(3) From Lemma 2.5, the function f satisfies
∣∣(zf ′(z)/f(z))2 − 1

∣∣ < 1, in |z| < r,
if the following inequality holds:

Dc +
(δ1r

2 + 2r + δ1)r

(δ1r + 1)(1 − r2)
) ≤

√
2 − Cc,

or equivalently, if the following inequality holds:

(δ1 +
√

2δ1 − β0δ1)r5 + (2 +
√

2 − β0 + 3qδ1 + 2
√

2|c|δ1 − |c|β0δ1)r4

+ (5|c| + 2
√

2|c| − |c|β0 + 3δ1 + 2|c|2δ1 − β0δ1 − |c|β0δ1 − |c|2β0δ1)r3

+ (3 + 2|c|2 − β0 − |c|β0 − |c|2β0 + 5|c|δ1 − 2
√

2|c|δ1 − |c|β0δ1)r2

+ (3|c| − 2
√

2|c| − |c|β0 + 2δ1 −
√

2δ1)r −
√

2 + 1 ≤ 0.

Therefore the S∗L−radius of the class F5
b,c is the smallest positive root r2 ∈ (0, 1) of

(3.36).

(4) From (3.41), we have

Re

(
zf ′(z)

f(z)

)
≤ Cc + Dc +

(δ1r
2 + 2r + δ1)r

(δ1r + 1)(1 − r2)
≤ β.
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if the following inequality holds:

(δ1 + βδ1 − β0δ1)r5 + (2 + β − β0 + 3|c|δ1 + 2β|c|δ1 − |c|β0δ1)r4

+ (5|c| + 2β|c| − |c|β0 + 3δ1 + 2|c|2δ1 − β0δ1 − |c|β0δ1 − |c|2β0δ1)r3

+ (3 + 2|c|2 − β0 − |c|β0 − |c|2β0 + 5|c|δ1 − 2b|c|δ1 − |c|β0δ1)r2

+ (|c| − 2β|c| − |c|β0 + 2δ1 − βδ1)r − β + 1 = 0.

Therefore, the M(β)−radius of the class F5
b,c is the smallest positive root r3 ∈ (0, 1)

of (3.37).

Remark 3.15. Note that for b = 1 = c, Theorem 3.14 reduces to the result [4,
Theorem 2.5] of Ali et al.
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