DOI QR코드

DOI QR Code

에너지 하베스팅 네트워크에서 물리계층 보안을 향상시키기 위한 파워 분할 기반의 아날로그 네트워크 코딩

Power Splitting-based Analog Network Coding for Improving Physical Layer Security in Energy Harvesting Networks

  • Lee, Kisong (School of Information and Communication Engineering, Chungbuk National University) ;
  • Choi, Hyun-Ho (Department of Electrical, Electronic and Control Engineering, Hankyong National University)
  • 투고 : 2017.06.01
  • 심사 : 2017.06.21
  • 발행 : 2017.10.31

초록

외부의 RF 신호로부터 전력을 수집하는 RF 에너지 하베스팅은 무선 센서의 전원 부족 문제를 해결하는 기술로써 최근 큰 관심을 받고 있다. 뿐만 아니라, 사물 인터넷의 구현을 위해서는 센서 간의 보안 통신을 보장하는 것 역시 중요하다. 본 논문에서는 두 source로부터 전송되는 신호로부터 에너지 하베스팅이 가능한 relay가 존재하는 2-hop 네트워크에서 물리계층 보안을 최대화하기 위한 파워 분할 기반 네트워크 아날로그 코딩을 제안한다. 두 source, relay, eavesdropper가 존재하는 시스템을 수학적으로 모델링하고, exhaustive search를 통해 최소 요구 보안 용량을 최대화 할 수 있는 최적의 파워 분할 비율을 찾았다. 다양한 환경에서 시뮬레이션을 통해 제안 방안은 기존 방안에 비해 eavesdropper에서의 도청을 막아 최소 요구 보안 용량을 개선함을 보인다.

Recently, RF energy harvesting, in which energy is collected from the external RF signals, is considered as a promising technology to resolve the energy shortage problem of wireless sensors. In addition, it is important to guarantee secure communication between sensors for implementing Internet-of-Things. In this paper, we propose a power splitting-based network analog coding for maximizing a physical layer security in 2-hop networks where the wireless-powered relay can harvest energy from the signals transmitted by two sources. We formulate systems where two sources, relay, and eavesdropper exist, and find an optimal power splitting ratio for maximizing the minimum required secrecy capacity using an exhaustive search. Through simulations under various environments, it is demonstrated that the proposed scheme improves the minimum required secrecy capacity by preventing the eavesdropper from overhearing source signals, compared to the conventional scheme.

키워드

참고문헌

  1. L. Liu, R. Zhang, and K. Chua, "Wireless information transfer with opportunistic energy harvesting," IEEE Transactions on Wireless Communication, vol. 12, no. 1, pp. 288-300, Jan. 2013. https://doi.org/10.1109/TWC.2012.113012.120500
  2. L. Liu, R. Zhang, and K. Chua, "Wireless information and power transfer: a dynamic power splitting approach," IEEE Transactions on Communication, vol. 61, no. 9, pp. 3990- 4001, Sep. 2013. https://doi.org/10.1109/TCOMM.2013.071813.130105
  3. A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, "Relaying protocols for wireless energy harvesting and information processing," IEEE Transactions on Wireless Communication, vol. 12, no. 7, pp. 3622-3636, July 2013. https://doi.org/10.1109/TWC.2013.062413.122042
  4. K. Lee and J. Ko, "Power allocation and splitting algorithm for SWIPT in energy harvesting networks with channel estimation error," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 7, pp. 1277-1282, July 2016. https://doi.org/10.6109/jkiice.2016.20.7.1277
  5. V. N. Q. Bao, N. L. Trung, and M. Debbah, "Relay selection schemes for dual-hop networks under security constraints with multiple eavesdroppers," IEEE Transactions on Wireless Communication, vol. 12, no. 12, pp. 6076-6085, Dec. 2013. https://doi.org/10.1109/TWC.2013.110813.121671
  6. H. Zhang, H. Xing, J. Cheng, A. Nallanathan, and V. C. M. Leung "Secure resource allocation for OFDMA two-way relay wireless sensor networks without and with cooperative jamming," IEEE Transactions on Industrial Informatics, vol. 12, no. 5, pp. 1714-1725, Oct. 2016. https://doi.org/10.1109/TII.2015.2489610
  7. X. Lu, P.Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 757-789, May 2015. https://doi.org/10.1109/COMST.2014.2368999
  8. H. Meyr, M. Mseneclaey, and S. A. Fechtel, Digital Communication Receivers, Synchronization, Channel Estimation, and Signal Processing, J. G. Proakis, Ed. New York, NY: Wiley Series in Telecommunications and Signal Processing, 1998.