DOI QR코드

DOI QR Code

High Accurate Cup Positioning System for a Coffee Printer

커피 프린터를 위한 커피 잔 정밀 측위 시스템

  • Kim, Heeseung (School of Electrical, Electronic, Robot and Communication Engineering, Korea National University of Transportation) ;
  • Lee, Jaesung (School of Electrical, Electronic, Robot and Communication Engineering, Korea National University of Transportation)
  • Received : 2017.08.30
  • Accepted : 2017.09.13
  • Published : 2017.10.31

Abstract

In food-printing field, precise positioning technique for a printing object is very important. In this paper, we propose cup positioning method for a latte-art printer through image processing. A camera sensor is installed on the upper side of the printer, and the image obtained from this is projected and converted into a top-view image. Then, the edge lines of the image is detected first, and then the coordinate of the center and the radius of the cup are detected through a Circular Hough transformation. The performance evaluation results show that the image processing time is 0.1 ~ 0.125 sec and the cup detection rate is 92.26%. This means that a cup is detected almost perfectly without affecting the whole latte-art printing time. The center point coordinates and radius values of cups detected by the proposed method show very small errors less than an average of 1.5 mm. Therefore, it seems that the problem of the printing position error is solved.

정밀 푸드 프린팅 분야에서 출력 대상물의 정밀한 측위기술은 대단히 중요하다. 본 논문에서는 영상처리를 통하여 라떼 아트 프린터의 커피 잔을 정밀하게 측위하는 방법을 제안한다. 프린터 상단 측면에 설치된 카메라 센서로부터 얻은 이미지를 투영변환을 통하여 Top-View 이미지로 변환하고 이미지의 에지를 검출 후 Circular Hough 변환을 통하여 컵의 중심점 및 반지름을 검출하였다. 성능 평가 결과 0.1 ~ 0.125초의 영상 처리 속도, 92.26% 의 컵 검출률을 보여 라떼 아트 출력 소요 시간에 영향을 거의 주지 않으면서 거의 완벽하게 컵을 검출하는 것을 확인하였으며, 검출된 컵의 중심점 좌표 및 반지름 값들이 평균적으로 1.5mm 이내의 매우 적은 오차를 보여 본 논문이 해결하고자 했던 인쇄 위치 오차 문제를 해결한 것으로 평가된다.

Keywords

References

  1. Z. Wang, Y. Torigoe and S. Hirai, "A Prestressed Soft Gripper: Design, Modeling, Fabrication, and Tests for Food Handling," IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 1909-1916, Oct. 2017. https://doi.org/10.1109/LRA.2017.2714141
  2. Y. Fan , Z. Min, and B. Bhesh, "Recent development in 3D food printing," Critical Reviews in Food Science and Nutrition, vol. 57, pp. 3145-3153, Oct. 2015.
  3. A. Z. Kouzani, S. Adams, R. Oliver, Y. Y. Nguwi, B. Hemsley and S. Balandin, "3D printing of a pavlova," 2016 IEEE Region 10 Conference (TENCON), Singapore, pp. 2281-2285, 2016.
  4. M.-N. Pablo, L.-A. Javier, J. M. Buenaposada, and B. Luis, "Speeding-up homography estimation in mobile devices," Journal of Real Time Image Processing, vol. 11, no. 1, pp. 141-154, Jan. 2013.
  5. G. Zbigniew, Z. Ewa, T. Boguslaw, P. Andrzej, "The use of the Circular Hough Transform for counting coins," Measurement Automation Monitoring, vol. 61, no. 09, pp. 434-437, Sept. 2015.
  6. Nisha, M. Rajesh, and S. Lalita, "Comparative Analysis of Canny and Prewitt Edge Detection Techniques used in Image Processing," International Journal of Engineering Trends and Technology (IJETT), vol. 28, no. 1, pp. 48-53, Oct. 2015. https://doi.org/10.14445/22315381/IJETT-V28P210
  7. R. C. Gonzalez, R. E. Woods, Digital Image Processing, 4th ed. London, UK: Pearson, 2017.
  8. M. Jang and A.-S. Oh, "Design of 3D Printer Based on SLA Using LSU and Test of Scanning Mechanism," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 6, pp. 1225-1230, June 2017. https://doi.org/10.6109/JKIICE.2017.21.6.1225