DOI QR코드

DOI QR Code

Implementation of A9-Based Digital Portable Radiation Detector with the Algorithm of Temperature Compensation in Scintillator

Scintillator에 온도 보정 알고리즘을 적용한 A9기반의 디지털 휴대용 방사선 검출기 구현

  • Lim, Ik-Chan (Department of Electronic Engineering, Ajou University) ;
  • Park, Geo (Department of Electronic Engineering, Ajou University) ;
  • Kim, Young-kil (Department of Electronic Engineering, Ajou University)
  • Received : 2017.06.26
  • Accepted : 2017.09.15
  • Published : 2017.10.31

Abstract

In accordance with the global strengthening of security systems for the safety of the shipping and logistics industry, the development of core technologies within the field has become a key in the establishment of Korea's own national logistics security system. Further in line with these global developments, there is growing attention within Korea to the development of portable radiation detectors capable of detecting gamma ray nuclides. In addition, many parts are becoming localized. In this research, instead of Pulse Shaping Board, which is used in existing portable radiation detectors, we have implemented an Algorithm to discriminate nuclides and correct the temperature conversion efficiency of the scintillator. This paper aims to improve the performance of these devices through the implementation of a temperature conversional algorithm within the scintillator of the A9-based digital portable radiation detector.

세계적으로 해운물류 안전 보안체계가 강화됨에 따라 국가물류보안 체계 구축을 위한 해운물류 안전 보안 핵심기술에 관심이 높아지고 있다. 이러한 국제적 정서에 발맞추어, 국내에서도 감마선 핵종 검출을 위한 휴대용 방사선 검출기의 개발이 활발히 이루어지고 있다. 또한 많은 부품이 국산화 되고 있다. 본 논문에서는 기존의 휴대용 방사선 검출기에 사용되던 Pulse Shaping Board를 대신하여 핵종을 판별하고 Scintillator의 온도 변환 효율을 보정하는 알고리즘을 구현하였다. 이를 통해 검사 성능을 향상시키고 소형화 된 A9기반의 디지털 휴대용 방사선 검출기 구현에 대한 연구를 제안한다.

Keywords

References

  1. K. T. Han, W. J. Yoo, S. H. Shin, D. Y. Jeon, J. Y. Park, B. G. Park, and B. S. Lee, "Development of Fiber-optic Radiation Sensor Using LYSO Scintillator for Gamma-ray Spectroscopy," Journal of Sensor Science and Technology, vol. 21, no. 4, pp.287-292, Apr. 2012. https://doi.org/10.5369/JSST.2012.21.4.287
  2. J. H. Lee, "Research for realization of platform of portable radiation detector using NaI(Tl) Scintillator," Korea Institute of Information and Communication Engineering, vol. 16, no. 10, pp.2323-2328, Oct. 2012. https://doi.org/10.6109/jkiice.2012.16.10.2323
  3. Efficiency of Transition of Scintillator Based on the Temperature. [Internet]. Available: http://www.lnf.infn.it/esperimenti/gedi/images/Fig04.gif.
  4. Efficiency of Transition of Scintillator Based on the Temperature. [Internet]. Available: http://www.lnf.infn.it/esperimenti/gedi/images/Fig04.gif.
  5. Radiation Sensor without the Insertion of Light Pipe. [Internet]. Available: http://www.ortec-online.com/download/905-Series.pdf.
  6. J. Navarik, "Precise Compact System For Ionizing Radiation Detection And Signal Processing With Advanced Components Integration And Electronic Control," Journal of Electrical Engineering, vol. 55, no. 4, Sep. 2015.
  7. T. K. Kwon, "Research of Detection performance enhancement from portable radiation detection platform based on Cortex-A9," Journal of the Korea Institute of Information and Communication Engineering, vol.18, no.6, pp.1488-1493, Jun. 2014. https://doi.org/10.6109/jkiice.2014.18.6.1488
  8. Conversion gain. [Internet]. Available: http://www.orteconline.com/download/296.pdf.
  9. J. G. Seo, "An implementation of portable gamma ray detection platform using Cortex-A8," Journal of the Korea Institute of Information and Communication Engineering, vol. 17, no. 4, pp.1028-1033, Apr. 2013. https://doi.org/10.6109/jkiice.2013.17.4.1028
  10. Dalvic virtual machine. [Internet]. Available: https://en.wikipedia.org/wiki/Dalvik_(software).