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UNIT GROUPS OF QUOTIENT RINGS OF INTEGERS IN

SOME CUBIC FIELDS

Ajchara Harnchoowong and Pitchayatak Ponrod

Abstract. Let K = Q(α) be a cubic field where α is an algebraic inte-
ger such that discK(α) is square-free. In this paper we will classify the

structure of the unit group of the quotient ring OK/A for each non-zero

ideal A of OK .

1. Introduction

An important theorem in elementary number theory, which can be found in
[2], [4] and [6], is the structure of a unit group of integers modulo n, (Zn)×,
i.e., (Z/nZ)×. Specifically, for an odd prime p, (Zpe)× is cyclic for all natural
numbers e, while (Z2)× = {1}, (Z4)× = 〈−1〉 and (Z2e)× = 〈−1〉 × 〈5〉 for
all natural numbers e ≥ 3. In fact, this theorem is usually stated in terms of
primitive roots. Together with the Chinese remainder theorem, we can get the
structure of (Zn)× for any natural number n. Let K be a number field, OK
be the ring of integers of K and A be a non-zero ideal of OK , we will study
the structure of (OK/A)×. In 1910, A. Ranum [7] studied this problem in all
number fields of degree 2. Later, J. T. Cross [3] in 1983 and A. A. Allan et
al. [1] in 2008, apparently unaware of Ranum’s work, studied this problem in
the field of Gaussian numbers, which is a number field of degree 2.

In this paper we will study this problem when K = Q(α) where α is a root
of some monic polynomial of degree 3 in Z[x] which is irreducible over Q and
discK(α) is square-free. This implies that OK = Z[α]. In general, the ring of
integers of a number field does not always has a nice simple form like Z[α].
One of the famous examples is L = Q(β) where β is a root of x3− x2− 2x− 8.
Its ring of integers is not Z[γ] for any γ ∈ OL. In fact, its ring of integers is

Z + βZ + (β+β
2

2 )Z.
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Notations and properties in algebraic number theory can be found in [5] and
[8].

When OK = Z[α] for a number field K, we can use the following theorem
to find all prime ideals of OK .

Theorem 1.1 ([8]). Let K be a number field of degree n over Q such that
OK = Z[α] for some α ∈ OK with the minimal polynomial f(x) ∈ Z[x]. Let p
be a prime number and f(x) be the polynomial obtained from f by reducing all
coefficients of f modulo p.

Suppose that f(x) = f
e1
1 (x) · · · fegg (x) is the factorization of f(x) in Zp[x].

Then

〈p〉 = P e11 · · ·P egg
is the prime factorization such that Pi = 〈p, fi(α)〉 where fi(x) is a monic
polynomial in Z[x] whose reduction modulo p is f i(x), deg fi(x) = deg f i(x),
and N(Pi) = pdeg fi .

We can use some properties of the discriminant of polynomials to prove the
following theorem:

Theorem 1.2. Let x3+ax2+bx+c ∈ Q[x] be an irreducible polynomial. Then

disc(x3 + ax2 + bx+ c) = a2b2 − 4b3 − 4a3c− 27c2 + 18abc.

2. Notations and lemmas

To simplify proofs, we use a square � to denote a non-specific element of
OK . For example

(1 + 2p+ 3p2)(2 + 5pα) = 2 + p(4 + 5α+ 6p+ 10pα+ 15p2α) = 2 + p�.

Note that � is a placeholder and is not a variable. That is, each � may not be
equal, e.g., we may write 2� + 4� = 2�.

Definition. For subgroups H1 and H2 of an abelian group G, if the product
H1H2 is an (internal) direct product, i.e., H1 ∩H2 = {1}, then we will write
H1 �H2 for the direct product of H1 and H2.

We have two results about a direct product.

Lemma 2.1. Let G be an abelian group, H a subgroup of G and g ∈ G an
element of order p for some prime number p. If g /∈ H, then H � 〈g〉.

Lemma 2.2. Let G be a finite abelian group, H a subgroup of G and g ∈ G
of order pe for some prime number p and natural number e ≥ 2. If H � 〈gp〉,
then H � 〈g〉.

The following two lemmas will be used very often. The first is a generaliza-
tion of Euler’s φ function to number fields.
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Lemma 2.3. Let K be a number field, P be a prime ideal of OK and e ∈ N.
Then

|(OK/P e)×| = (N(P )− 1)N(P )e−1.

Proof. We have that OK/P e is a local ring with the unique maximal ideal
P/P e. Since in a local ring, an element is a unit if and only if it is not in the
maximal ideal, we have that

(OK/P e)× = OK/P e \ P/P e.

By the third isomorphism theorem for rings, OK/P
e

P/P e
∼= OK/P , so |P/P e| =

N(P )e−1. Thus

|(OK/P e)×| = |OK/P e| − |P/P e| = N(P )e −N(P )e−1 = (N(P )− 1)N(P )e−1.

�

Lemma 2.4. Let K be a number field, β ∈ OK , a ∈ N, r, s ∈ Z and p be a
prime number. If p ≥ 3, then

(r + psβ)p
a

= rp
a

+ pa+1rp
a−1sβ + pa+2�,

and if also r is odd, then

(r + 2sβ)2
a

= r2
a

+ 2a+1sβ + 2a+1s2β2 + 2a+2�.

We will see that (OK/A)× contains an isomorphic image of (Zn)× for some
n ∈ N, so we can use the structure of (Zn)× to find the structure of (OK/A)×.

Lemma 2.5. Let K be a number field and A be an non-zero ideal of OK . If n
is the least natural number in A, then there is the natural embedding

(Zn)× ↪→ (OK/A)×.

Proof. Consider the natural homomorphism Z→ OK/A sending a 7→ [a] where
[a] denotes the coset a + A in OK/A. The kernel of this homomorphism is
Z ∩ A which is an ideal of Z. Thus Z ∩ A = nZ where n is the least natural
number in A. Then by the first isomorphism theorem, Zn = Z/nZ ↪→ OK/A.
Consequently, (Zn)× = (Z/nZ)× ↪→ (OK/A)×. �

One more thing that we will use throughout this paper is the following
lemma:

Lemma 2.6. Let K be a number field. If [h] is of order k in (OK/〈p〉)× with
p - k, then [hp

e

] is of order k in (OK/〈pe〉)×.

Proof. Assume [h] is of order k in (OK/〈p〉)× and [hp
e

] is of order l in
(OK/〈pe〉)×. Then hk = 1 + p� which implies that hp

ek = 1 + pe�, so l | k.
Also from hp

el = 1 + pe� = 1 + p�, we have that k | pel. But p is a prime
number and p - k, so k | l. Hence k = l. �
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From now on, let K = Q(α) be a cubic field where α ∈ OK and discK(α)
is square-free. Let f(x) ∈ Z[x] be the minimal polynomial of α. We will apply
Theorem 1.1 to consider all possible factorizations of f(x) (mod p). There are
5 possibilities:

(1) f(x) ≡ (x + a)(x + b)(x + c) (mod p) for some a, b, c ∈ Z that are
non-congruent modulo p.

(2) f(x) ≡ (x2 + a1x+ a0)(x+ b) (mod p) for some polynomial x2 + a1x+
a0 ∈ Z[x] which is irreducible mod p and b ∈ Z.

(3) f(x) ≡ (x+a)2(x+b) (mod p) for some a, b ∈ Z that are non-congruent
modulo p.

(4) f(x) ≡ (x+ a)3 (mod p) for some a ∈ Z.
(5) f(x) (mod p) is irreducible.

By Theorem 1.1, each factorization of f(x) corresponds respectively to the
following 5 categories of factorizations of 〈p〉 in OK .

(1) 〈p〉 = S1S2S3,
(2) 〈p〉 = QS,
(3) 〈p〉 = R2S,
(4) 〈p〉 = R3,
(5) 〈p〉 stays prime,

where prime ideals in the factorization in each category are distinct. Ideals
denoted by S with or without a suffix are of norm p, N(R) = p and N(Q) = p2.

3. S1, S2, S3 and S in the first, second, and third categories

This is the easiest case of ideals. Since S1, S2 and S3 have the same properties
as S, i.e., each has norm p and ramification index one, we will also call them
S. We will show that OK/Se ∼= Zpe . We know that |OK/Se| = pe so it suffices
to show that pe−1 /∈ Se. Suppose that pe−1 ∈ Se, i.e., Se | 〈pe−1〉. From the
categorization above, the largest power of S dividing 〈pe−1〉 is e− 1 which is a
contradiction. So we have proved the following theorem.

Theorem 3.1. If N(S) = p and S2 - 〈p〉, then (OK/Se)× ∼= (Zpe)×.

4. Q in the second category: 〈p〉 = QS

4.1. p = 2

In this category f(x) modulo 2 has to be factored into a product of two irre-
ducible polynomials modulo 2, a linear and an irreducible quadratic polynomial
modulo 2. Since there is only one irreducible quadratic polynomial modulo 2,

f(x) ≡ (x+ a0)(x2 + x+ 1) (mod 2)

for some a0 ∈ Z. We can simplify the proof by shifting the value of α so that
α is a root of a monic irreducible polynomial f(x) such that

f(x) ≡ x((x− a0)2 + (x− a0) + 1) ≡ x(x2 + x+ 1) (mod 2).
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So f(x) = x3 + c2x
2 + c1x + 2c0 for some integer c0 and odd integers c1 and

c2. Now from f(x) ≡ x(x2 + x + 1) (mod 2), the principle ideal 〈2〉 can be
factorized into prime ideals as follows:

〈2〉 = 〈2, α〉〈2, α2 + α+ 1〉.

That is Q = 〈2, α2 + α + 1〉. Thus 2e and (α2 + α + 1)e are in Qe. Using the
facts that α3 + c2α

2 + c1α + 2c0 = 0 and c1, c2 being odd, it can be shown
by induction that (α2 + α + 1)e = rα2 + sα + t such that 2 - r, s, t. Also
2e ∈ Qe, thus we have that α2 − d1α − d0 ∈ Qe for some odd integers d0 and
d1. This means that in OK/Qe, [α2] = [d1α+ d0]. Together with the fact that
|OK/Qe| = 22e, we have that elements in OK/Qe can be represented uniquely
in the form [r + sα] where 0 ≤ r, s < 2e, i.e.,

OK/Qe = {[r + sα] | 0 ≤ r, s < 2e}.

Now we consider the structure of (OK/Qe)×. By Lemma 2.3, the order of
(OK/Qe)× is 3(22e−2), so it has an element of order 3, denoted by [h]. For

e ≥ 3, (1 + 2α)2
e−1

= 1 + 2e�, while

(1 + 2α)2
e−2

= 1 + 2e−1α+ 2e−1α2 + 2e�

= 1 + 2e−1(α+ d1α+ d0) + 2e� = 1 + 2e−1 + 2e�.

Thus the order of [1+2α] is 2e−1 and [(1+2α)2
e−2

] = [1+2e−1] for all e ≥ 3.
For e = 1, 2, we can see that the order of [1 + 2α] is also 2e−1. And for e ≥ 3,
since

(1 + 4α)2
e−2

= 1 + 2e−2(4α) +

(
2e−2

2

)
(4α)2 + 2e� = 1 + 2e�,

while

(1 + 4α)2
e−3

= 1 + 2e−3(4α) + 2e� = 1 + 2e−1α+ 2e�,

the order of [1 + 4α] is 2e−2 and [(1 + 4α)2
e−3

] = [1 + 2e−1α] for e ≥ 3. For
e = 1, 2, the order of [1 + 4α] is 1. When e = 1, (OK/Q)× is a cyclic group of
order 3, i.e.,

(OK/Q)× = 〈[h]〉 ∼= Z3
∼= (Z2)× × Z3.

When e = 2, consider the product of two subgroups generated by elements of
order 2:

〈[−1]〉〈[1 + 2α]〉.
Since [1 + 2α] 6∈ 〈[−1]〉, 〈[−1]〉 � 〈[1 + 2α]〉. Since the order of (OK/Q2)× is
3(22), then together with [h], an element of order 3, we then have that

(OK/Q2)× = 〈[−1]〉 � 〈[1 + 2α]〉 � 〈[h]〉 ∼= Z2 × Z2 × Z3
∼= (Z22)× × Z2 × Z3.

Now for e ≥ 3, consider the product of three subgroups generated by elements
of order 2:

〈[−1]〉〈[1 + 2e−1]〉〈[1 + 2e−1α]〉.
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Since e ≥ 3, [1 + 2e−1] /∈ 〈[−1]〉, so by Lemma 2.1, we have that 〈[−1]〉 �
〈[1 + 2e−1]〉. The previous direct product contains only cosets representable by
integers, so [1 + 2e−1α] /∈ 〈[−1]〉 � 〈[1 + 2e−1]〉. Thus

〈[−1]〉 � 〈[1 + 2e−1]〉 � 〈[1 + 2e−1α]〉.

Since [(1 + 2α)2
e−2

] = [1 + 2e−1] and [(1 + 4α)2
e−3

] = [1 + 2e−1α],

〈[−1]〉 � 〈[(1 + 2α)2
e−2

]〉 � 〈[(1 + 4α)2
e−3

]〉.

By Lemma 2.2, we then have that

〈[−1]〉 � 〈[1 + 2α]〉 � 〈[1 + 4α]〉.

It is a direct product of order (2)(2e−1)(2e−2) = 22e−2. Since the order of
(OK/Qe)× is 3(22e−2), together with the element [h] of order 3, we have that

(OK/Qe)× = 〈[−1]〉 � 〈[1 + 4α]〉 � 〈[1 + 2α]〉 � 〈[h]〉
∼= Z2 × Z2e−2 × Z2e−1 × Z3

∼= (Z2e)× × Z2e−1 × Z3.

To summarize:

Theorem 4.1. If Q is a prime ideal lying over 2 of norm 4, then

(OK/Qe)× ∼= (Z2e)× × Z2e−1 × Z3.

4.2. p ≥ 3

We find that it is easier to consider (OK/SeQe)× = (OK/〈pe〉)× instead
of just (OK/Qe)× and use the isomorphism (OK/SeQe)× ∼= (OK/Se)× ×
(OK/Qe)× to get the structure of (OK/Qe)×. We have that elements of
OK/〈pe〉 can be uniquely represented by [r + sα + tα2] where 0 ≤ r, s, t < pe,
i.e.,

OK/〈pe〉 = {[r + sα+ tα2] | 0 ≤ r, s, t < pe}.
Since (OK/Q)× is the unit group of the field OK/Q, it is a cyclic group of
order p2 − 1. Since (OK/Q)× can be embedded into (OK/〈p〉)×, (OK/〈p〉)×
has an element [h] of order p2 − 1. By Lemma 2.6, [hp

e

] is of order p2 −
1 in (OK/〈pe〉)×. Now for e ≥ 2, we have (1 + pα)p

e−1

= 1 + pe�, while

(1 + pα)p
e−2

= 1 + pe−1α + pe�. Similarly (1 + pα2)p
e−1

= 1 + pe�, while

(1+pα2)p
e−2

= 1+pe−1α2 +pe�. Hence the orders of [1+pα] and [1+pα2] are

both pe−1. Also [(1 + pα)p
e−2

] = [1 + pe−1] and [(1 + pα2)p
e−2

] = [1 + pe−1α2].
Let [g] be a generator of (Zpe)× embedded naturally in (OK/〈pe〉)×. Con-

sider the product

〈[g]〉〈[1 + pe−1α]〉〈[1 + pe−1α2]〉.
Since the first subgroup contains only cosets representable by natural numbers,
[1 + pe−1α] 6∈ 〈[g]〉, so the product of the first two subgroups is direct. Since
(1 + pe−1α)l = 1 + lpe−1α + pe� for any natural number l, the product of
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the first two subgroups contains only cosets representable by an element of the
form r + sα. Hence [1 + pe−1α2] /∈ 〈[g]〉〈[1 + pe−1α] and from this we have

〈[g]〉 � 〈[1 + pe−1α]〉 � 〈[1 + pe−1α2]〉.

Since [(1 + pα)p
e−2

] = [1 + pe−1α] and [(1 + pα2)p
e−2

] = [1 + pe−1α2], we have
that the above product is equal to

〈[g]〉 � 〈[(1 + pα)p
e−2

]〉 � 〈[(1 + pα2)p
e−2

]〉.

By Lemma 2.2, we have that

〈[g]〉 � 〈[1 + pα]〉 � 〈[1 + pα2]〉

and the order is (p − 1)pe−1pe−1pe−1 = (p − 1)p3e−3. Since the order of
(OK/〈pe〉)× is (p− 1)(p2 − 1)p3e−3, then together with the fact that the order
of [hp

e

] in (OK/〈pe〉)× is p2 − 1, we have that

(OK/〈pe〉)× = 〈[g]〉 � 〈[1 + pα]〉 � 〈[1 + pα2]〉 � 〈[hp
e

]〉
∼= Zp−1 × Zpe−1 × Zpe−1 × Zpe−1 × Zp2−1.

Since (OK/〈pe〉)× ∼= (OK/Se)× × (OK/Qe)× ∼= Zp−1 × Zpe−1 × (OK/Qe)×,

(OK/Qe)× ∼= Zpe−1 × Zpe−1 × Zp2−1.

To summarize:

Theorem 4.2. Let Q be a prime ideal lying over p ≥ 3 of norm p2. Then

(OK/Qe)× ∼= Zpe−1 × Zpe−1 × Zp2−1.

5. R in the third category: 〈p〉 = R2S

To fall in this category, the minimal polynomial f(x) of α will be congruent
to (x + a0)(x + a1)2 (mod p) for some a0, a1 ∈ N such that a0 6≡ a1 (mod p).
We can shift the value of α to make f(x) ≡ (x+b0)x2 (mod p) for some b0 ∈ N
such that p - b0 and so

〈p〉 = 〈p, α+ b0〉〈p, α〉2.
Since f(x) ≡ x3 + b0x

2 (mod p), f(x) = x3 + a2x
2 + pa1x + pa0 for some

a0, a1, a2 ∈ Z such that p - a2 and a2 ≡ b0 (mod p). By Theorem 1.2

disc(f) = −4a31p
3 +

(
−27a20 + 18a1a2a0 + a21a

2
2

)
p2 − 4a0a

3
2p

which is not square-free if p | a0 or p = 2. Thus p 6= 2 and p - a0. Next we
consider a representation set of OK/Re. The following lemma can be easily
proved by induction.

Lemma 5.1. For all e ≥ 1, there exist c0, c1 ∈ Z such that α2+pc1α+pc0 ∈ Re
and p - c0.
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Now we can choose representations of cosets in (OK/Re)×. Since α2 +c1α+
c0 ∈ Re for some c0, c1 ∈ Z, a representation of any coset in (OK/Re)× can be
chosen in a form r + sα. We divide into two cases: an exponent of R is even
or odd.

When an exponent of R is even, say it is 2e for some e ≥ 1. Since 〈pe〉 =
R2eSe ⊆ R2e, pe, peα ∈ R2e. Since |OK/R2e| = N(R2e) = p2e, each element of
OK/R2e can be represented uniquely by [r + sα] where 0 ≤ r, s < pe, i.e.,

OK/R2e = {[r + sα] | 0 ≤ r, s < pe}.
Similarly for an odd exponent, say it is 2e + 1 for some e ≥ 0. Since R2e+1 ⊇
R2e+1Se = 〈pe〉〈p, α〉 = 〈pe+1, peα〉, pe+1, peα ∈ R2e+1. Since |OK/R2e+1| =
N(R2e+1) = p2e+1, each element of OK/R2e+1 can be represented uniquely by
[r + sα] where 0 ≤ r < pe+1 and 0 ≤ s < pe, i.e.,

OK/R2e+1 = {[r + sα] | 0 ≤ r < pe+1, 0 ≤ s < pe}.
Next we consider structures of (OK/R2e)× and (OK/R2e+1)×. First, (OK/R)×

is a cyclic group of order p − 1. Since OK/R2 = {[r + sα] | 0 ≤ r, s < p} has
a subgroup isomorphic to Zp, (OK/R2)× has a subgroup isomorphic to Zp−1.
By Lemma 2.3, |(OK/R2)×| = (p− 1)p, so

(OK/R2)× ∼= Zp−1 × Zp.
Similarly OK/R3 = {[r + sα] | 0 ≤ r < p2, 0 ≤ s < p}, which has a subgroup
isomorphic to Zp2 . Since (Zp2)× ∼= Zp(p−1), (OK/R3)× has a subgroup isomor-

phic to Zp(p−1). By Lemma 5.1, [α2] = [−pa1α− pa0] = [p�]. Thus for p ≥ 3,

[αp] = [α2(α)αp−3] = [pα�]. Thus for any [r + sα] ∈ (OK/R3)×,

[r + sα]p = [rp + prp−1sα+ · · ·+ pr(sα)p−1 + αp] = [rp + pα�] = [rp].

Since the order of [rp] in (OK/R3)× is at most p− 1, the order of any element
of (OK/R3)× is at most p(p− 1), so

(OK/R3)× ∼= Zp−1 × Zp × Zp.
Now we consider structures of (OK/R2e)× and (OK/R2e+1)× for e ≥ 2. For
p ≥ 5,

[(1 + α)p] = [1 + pα+ p(p− 1)α2 + · · ·+ pαp−1 + αp].

From Lemma 5.1, we know that [α2] = [pa1α+ pa0] = [p�] and for any k ≥ 2,
[pαk] = [p2αk−2�] = [p2�]. Hence [αp] = [α2][α2][αp−4] = [p�][p�][�] =
[p2�]. Thus from the expansion of [(1 + α)p], the third term onward can be
combined into p2�, i.e.,

[(1 + α)p] = [1 + pα+ p2�].

We will see later that if p = 3, then [1 +α]3 may not always be [1 + 3α+ 32�].
From Lemma 5.1, α2 + 3mα + 3n ∈ Re for some m,n ∈ Z where 3 - n, i.e.,
[α2] = [−3mα−3n]. Thus [α3] = [−3mα2−3nα] = [−3m(−3mα−3n)−3nα] =
[(9m2 − 3n)α+ 9mn] = [−3nα+ 9�], and so

[(r + sα)3] = [r3 + 3r2sα+ 3rs2α2 + s3α3]
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= [r3 + 3r2sα+ 3rs2(−3mα− 3n) + (−3ns3α+ 9�)]

= [r3 + 3(r2s− ns3)α+ 9�].

Since 3 - n, n ≡ 1 or 2 (mod 3). We will consider first the case n ≡ 2
(mod 3), we choose r = 1 and s = 2 so that the above coset will be [(r+sα)3] =
[1 + 3(2− 2(8))α+ 9�] = [1 + 3α+ 9�]. We will consider the case p = 3 when
n ≡ 2 (mod 3) together with the case p ≥ 5 because in both cases, there are
r, s ∈ Z such that [r + sα]p = [1 + pα+ p2�]. For e ≥ 2,

(1 + pα+ p2�)p
e−1

= 1 + peα+ pe+1�,

while

(1 + pα+ p2�)p
e−2

= (1 + p(α+ p�))p
e−2

= 1 + pe−1(α+ p�) + pe�

= 1 + pe−1α+ pe�.

Thus in both (OK/R2e)× and (OK/R2e+1)×, the order of [1 + pα+ p2�] is
pe−1. Since for p ≥ 5, [1 + α]p = [1 + pα + p2�] and for p = 3, [1 + 2α]3 =
[1 + 3α + 9�], for p ≥ 5, the order of [1 + α] is pe and for p = 3, the order
of [1 + 2α] is 3e. Now let [g], be a generator of (Zpe)× naturally embedded in
(OK/R2e)×. Consider the product

〈[g]〉〈[1 + pe−1α]〉.

Since 〈[g]〉 only contains cosets representable by natural numbers, [1+pe−1α] 6∈
〈[g]〉 so by Lemma 2.1,

〈[g]〉 � 〈[1 + pe−1α]〉.
Since [r+ sα]p = [1 + pα+ p2�] and [1 + pα+ p2�]p

e−2

= [1 + pe−1α], we then
have by Lemma 2.2 that,

〈[g]〉 � 〈[r + sα]〉
is a subgroup of (OK/R2e)× of order p2e−1(p−1) which is equal to the order of
(OK/R2e)×. For (OK/R2e+1)×, let [g] be a generator of (Zpe+1)× embedded in
(OK/R2e+1)×. We can prove similarly that (OK/R2e+1)× = 〈[g]〉 � 〈[r+ sα]〉.

Thus for p = 3,

(OK/R2e)× = 〈[g]〉 � 〈[1 + 2α]〉,
(OK/R2e+1)× = 〈[g]〉 � 〈[1 + 2α]〉,

and for p ≥ 5,

(OK/R2e)× = 〈[g]〉 � 〈[1 + α]〉,
(OK/R2e+1)× = 〈[g]〉 � 〈[1 + α]〉.

Now for the special case we left out earlier which is the case when p = 3 and
α2 + 3mα+ 3n ∈ Re where n ≡ 1 (mod 3). Recall that

[(r + sα)3] = [r3 + 3(r2s− ns3)α+ 9�].
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(1) If 3 | r, then

[(r + sα)3] = [r3 + 3(r2s− ns3)α+ 9�] = [3�].

Since 3e ∈ Re, [3�] is a zero-divisor in OK/Re, then [r + sα] is also a
zero-divisor OK/Re, i.e., [r + sα] 6∈ (OK/Re)×, so we do not have to
consider this case.

(2) If 3 - r and 3 | s, then

[(r + sα)3] = [r3 + 3(r2s− ns3)α+ 9�] = [r3 + 9�].

(3) If 3 - r and 3 - s, then

r2s− ns3 ≡ r2s− s3 ≡ r2s− s ≡ s(r2 − 1) ≡ s(1− 1) ≡ 0 (mod 3).

Thus for any [r + sα] ∈ (OK/Re)×,

[(r + sα)3] = [r3 + 3(r2s− ns3)α+ 9�] = [r3 + 9�].

By Lemma 2.3 and the fact that N(R) = 3, we have that

|(OK/R2e)×| = (3− 1)32e−1 = 2(32e−1)

and

|(OK/R2e+1)×| = (3− 1)32e = 2(32e).

Since (1 + 3α)3
e−1

= 1 + 3e�, while (1 + 3α)3
e−2

= 1 + 3e−1α+ 3e�, the order

of 1 + 3α in (OK/R2e)× is 3e−1 and [(1 + 3α)3
e−2

] = [1 + 3e−1α]. Let [g] be
a generator of (Z3e)× embedded naturally in (OK/R2e)×, so [g] is of order
2(3e−1). Since [1 + 3e−1α] /∈ 〈[g]〉, by Lemma 2.1,

〈[g]〉 � 〈[1 + 3e−1α]〉.

Since [1 + 3e−1α] = [(1 + 3α)3
e−2

] in (OK/R2e)×, by Lemma 2.2 we have

〈[g]〉 � 〈[1 + 3α]〉
and its order is 2(32e−2). This means that 〈[g]〉�〈[1+3α]〉 is a subgroup of index
3 in (OK/R2e)×. Since 〈[g]〉 � 〈[1 + 3α]〉 is isomorphic to Z2 × Z3e−1 × Z3e−1 ,
then the structure of (OK/R2e)× is either

Z2 × Z3e × Z3e−1 or Z2 × Z3e−1 × Z3e−1 × Z3.

From the earlier, for any [r + sα] ∈ (OK/R2e)×, [r + sα]3 = [r3 + 9�], so

[r + sα]2(3
e−1) = [r3 + 9�]2(3

e−2) = [r3
e−1

+ 3e�]2 = [r2(3
e−1)] = [1]. Thus the

order of any element in (OK/R2e)× is not greater than 2(3e−1). This means
that

(OK/R2e)× ∼= Z2 × Z3e−1 × Z3e−1 × Z3.

Next consider (OK/R2e+1)×, which is of order (p−1)p2e. Let [g] be a generator
of (Z3e+1)× embedded naturally in (OK/R2e+1)×. Then the subgroup 〈[g]〉 �
〈[1 + 3α]〉 which is of order 2(3e)(3e−1) = 2(32e−1) is of index 3 and isomorphic
to Z2 × Z3e × Z3e−1 . Hence the structure of (OK/R2e+1)× is either

Z2 × Z3e+1 × Z3e−1 , Z2 × Z3e × Z3e or Z2 × Z3e × Z3e−1 × Z3.
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Similar to the above, any element in (OK/R2e+1)× is of order at most 2(3e) so
the first form is impossible. To show that the second form is also impossible,
we use the following lemma:

Lemma 5.2. Let p be a prime number and e ∈ N. For any element (a, b) of
order pe in the additive group Zpe ×Zpe , we can find an element (c, d), also of
order pe, such that

Zpe × Zpe = 〈(a, b)〉 ⊕ 〈(c, d)〉.

Suppose for a contradiction that (OK/R2e+1)× ∼= Z2 × Z3e × Z3e . Let
[g] be a generator of (Z3e+1)× naturally embedded in (OK/R2e+1)×, then the
order of [g2] is 3e. By Lemma 5.2, we can find [r + sα] of order 3e such that

〈[g2]〉 � 〈[r + sα]〉. Since [r + sα]3 = [r3 + 9�], [r + sα]3
e−1

= [r3 + 9�]3
e−2

=

[r3
e−1

]. [r + sα] is of order 3e, so [r3
e−1

] is of order 3. Since [g] is a generator
of (Z3e+1)× embedded naturally in (OK/R2e+1)×, 〈[g2]〉 will contains all coset

of order 3 generated by natural numbers, specifically [r3
e−1

]. Thus the product
〈[g2]〉〈[r + sα]〉 is not direct, which is a contradiction. Hence the structure of
(OK/R2e+1)× is not Z2 × Z3e × Z3e either. This leaves only one possibility
that is

(OK/R2e+1)× ∼= Z2 × Z3e × Z3e−1 × Z3.

Now that we established the structure of this special case, we will find out
which minimal polynomial f(x) that will make this special case occurs. We
already have that this special case occurs when there are m,n ∈ Z such that
α2 + 3mα+ 3n ∈ Re and n ≡ 1 (mod 3). Let f(x) = x3 + ax2 + 3bx+ 3c, that
is α3 = −aα2 − 3bα− 3c. For e = 1, 2 or 3 the structure of (OK/Re)× are the
same whether n ≡ 1 or 2 (mod 3). Thus we consider e ≥ 4. We will use the
following lemma:

Lemma 5.3. Let e ≥ 4 and α2 + 3mα+ 3n ∈ Re. Then for any k, l ∈ Z, such
that α2 + kα+ l ∈ Re, we have that 3 | l and n ≡ l

3 (mod 3).

Proof. Since α2 + 3mα+ 3n, α2 + kα+ l ∈ Re, (3m− k)α+ (3n− l) ∈ Re. If e
is even, then e = 2i for some i ≥ 2. We have already shown that 3i, 3iα ∈ R2i.
Write (3m − k) = 3iq1 + r1 and (3n − l) = 3iq2 + r2 where q1, q2, r1, r2 ∈ Z
and 0 ≤ r1, r2 < 3i. So r1α + r2 ∈ R2i which implies that [r1α + r2] = [0]
in OK/R2i. Since we have that the cosets [r + sα] where 0 ≤ r, s < 3i are
all distinct, we have r1 = r2 = 0. Thus 3i | (3n − l). Since i ≥ 2, 3 | l and
9 | 3n − l, and so n ≡ l

3 (mod 3). If e is odd, then e = 2i + 1 for some i ≥ 2.

We have that 3i+1, 3iα ∈ R2i+1. We can show similarly to the above that 3 | l
and n ≡ l

3 (mod 3). �

From the lemma we have that if we can find one element α2+3mα+3n ∈ Re
such that n ≡ 2 (mod 3), other elements of the form α2 +3m′α+3n′ ∈ Re will
also be such that n′ ≡ n ≡ 2 (mod 3). Thus to show that there is no m,n ∈ Z
such that α2 + 3mα+ 3n ∈ Re and n ≡ 1 (mod 3), we only need to show that
there are m,n ∈ Z such that α2 + 3mα+ 3n ∈ Re and n ≡ 2 (mod 3).
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Let e ≥ 3. Assume α2+3mα+3n ∈ Re. Since R = 〈3, α〉, α3+3mα2+3nα ∈
Re+1 and

α3+3mα2+3nα = (−aα2−3bα−3c)+3mα2+3nα = (3m−a)α2+(3n−3b)α−3c.

Let k be a positive integer such that 3k ∈ Re+1 and (3m− a)−1 be an inverse
of 3m− a modulo 3k, i.e., (3m− a)−1(3m− a)− 1 ∈ Re+1. We have

α2 + (3m− a)−1(3n− 3b)α− 3c(3m− a)−1 ∈ Re+1,

so −c(3m − a)−1 ≡ −c(−a)−1 ≡ ca−1 (mod 3). That is Re+1 will be in the
special case if and only if a ≡ c (mod 3). To summarize:

Theorem 5.4. Let e ≥ 2. If either p ≥ 5, or p = 3 and f(x) = x3 + ax2 +
3bx+ 3c such that a 6≡ c (mod 3), then

(OK/R)× = Zp−1,
(OK/Re)× = Zp−1 × Z

pb
e−1
2
c × Z

pb
e
2
c .

If p = 3 and f(x) = x3 + ax2 + 3bx+ 3c such that a ≡ c (mod 3), then

(OK/R)× = Z2,

(OK/Re)× = Z2 × Z
3b

e−1
2
c × Z

3b
e−2
2
c × Z3.

6. R in the fourth category: 〈p〉 = R3

Under our assumption that the discriminant of the minimal polynomial of α
is square-free, this case does not actually occur because for 〈p〉 to be factorized
to R3, the minimal polynomial f(x) has to satisfy f(x) ≡ (x + a)3 (mod p)
for some a ∈ N. We can shift the value of α to α − a without the change
of disc(f) so that f(x) ≡ x3 (mod p). This makes f(x) to be in the form
f(x) = x3 + pa2x

2 + pa1x + pa0 for some a0, a1, a2 ∈ Z. Hence by Theorem
1.2, the discriminant of f is

disc(f) = −27p2a20 − 4p3a31 + 18p3a0a1a2 + p4a21a
2
2 − 4p4a0a

3
2,

which is divisible by p2, thus is not square-free.

7. 〈p〉 stays prime

7.1. p = 2

In order to have 〈2〉 stays prime, the minimal polynomial f(x) of α has
to remain irreducible modulo 2. Since there are only two irreducible cubic
polynomials modulo 2, namely, x3+x+1 and x3+x2+1, thus f(x) is congruent
modulo 2 to one of these two polynomials. That is f(x) = x3−a2x2−a1x−a0
for some a0, a1, a2 ∈ Z such that a0 is odd and either a1 or a2 is odd (we turn
those signs to minus to make some latter calculations less confusing, specifically
we will have that α3 = a2α

2 + a1α+ a0). Then

α4 = α(a2α
2 + a1α+ a0) = a2(a2α

2 + a1α+ a0) + a1α
2 + a0α
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= (a1 + a22)α2 + (a0 + a1a2)α+ a0a2.

Now we consider the structure of (OK/〈2e〉)×. First, since |(OK/〈2e〉)×| =
(N(〈2〉) − 1)N(〈2〉)e−1 = 7(8e−1), (OK/〈2e〉)× has an element [h] of order 7.
Next we consider the part with elements of order powers of 2. For e ≥ 3, we
have

(1 + 2α)2
e−1

= 1 + 2e�

while
(1 + 2α)2

e−2

= 1 + 2e−1α+ 2e−1α2 + 2e�.

Hence the order of 1 + 2α in (OK/〈2e〉)× is 2e−1. Also

(1 + 2α2)2
e−1

= 1 + 2e�,

while

(1 + 2α2)2
e−2

= 1+ 2e−1α2+ 2e−1α4+ 2e�

= 1+ 2e−1α2+ 2e−1
(
(a1 + a22)α2+ (a0 + a1a2)α+ a0a2

)
+ 2e�.

Since a0 is odd and either a1 or a2 is odd, a1 + a22 and a0 + a1a2 are both odd,
so the above expression can be reduced to

(1 + 2α2)2
e−2

= 1 + 2e−1a0a2 + 2e−1α+ 2e�.

Thus the order of [1 + 2α2] in (OK/〈2e〉)× is 2e−1. Now we are ready to
find the structure of (OK/〈2e〉)×. If e = 1, it is just a cyclic group. For e = 2,
consider 〈[−1]〉〈[1 + 2α]〉〈[1 + 2α2]〉 which is the product of three subgroups,
each generated by an element of order 2. Since [1 + 2α] 6∈ 〈[−1]〉, the product
of the first two subgroups is direct. Also the product of the first two subgroups
contains only coset representable by an element r + sα for some r, s ∈ Z. This
implies that [1+2α2] 6∈ 〈[−1]〉〈[1+2α]〉. Together with [h], an element of order
7 in (OK/〈22〉)×,

(OK/〈22〉)× = 〈[h]〉 � 〈[−1]〉 � 〈[1 + 2α]〉 � 〈[1 + 2α2]〉.
Now for e ≥ 3, consider

〈[5]〉〈[−1]〉〈[1 + 2e−1a0a2 + 2e−1α]〉〈[1 + 2e−1α+ 2e−1α2]〉.
As usual we will use Lemma 2.1 to show that the previous product is direct.
Since (Z2e)× is embedded naturally in (OK/〈2e〉)×, 〈[5]〉 � 〈[−1]〉 is direct.
〈[5]〉〈[−1]〉 only contains cosets representable by r for some r ∈ Z thus the
product of the first two subgroups does not contain [1 + 2e−1a0a2 + 2e−1α].
Thus the product of the first three subgroups is direct. Again the product of
the first three subgroups contains only cosets representable by r+ sα for some
r, s ∈ Z, so the product of all four subgroups is direct. By Lemma 2.2, the
product

〈[5]〉〈[−1]〉〈[1 + 2α2]〉〈[1 + 2α]〉
is direct of order 23e−3. Combine with [h], an element of order 7, we have that

(OK/〈2e〉)× = 〈[h]〉 � 〈[5]〉 � 〈[−1]〉 � 〈[1 + 2α]〉 � 〈[1 + 2α2]〉
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∼= Z7 × Z2e−2 × Z2 × Z2e−1 × Z2e−1 .

To summarize:

Theorem 7.1. If the ideal 〈2〉 stays prime, then

(OK/〈2e〉)× ∼= Z7 × (Z2e)× × Z2e−1 × Z2e−1 .

7.2. p ≥ 3

This category use almost the same set of generators as the case Q when
p ≥ 3 and also use the same reason that

〈[g]〉 � 〈[1 + pα]〉 � 〈[1 + pα2]〉.

One difference is that since 〈p〉 is a prime ideal, (OK/〈p〉)× is a cyclic group of

order p3 − 1, say generated by [h] for some h ∈ OK . By Lemma 2.6 [hp
e−1

] is
of order p3 − 1 in (OK/〈pe〉)×. Thus

(OK/〈pe〉)× = 〈[hp
e−1

]〉 � 〈[gp−1]〉 � 〈[1 + pα]〉 � 〈[1 + pα2]〉
∼= Zp3−1 × Zpe−1 × Zpe−1 × Zpe−1 .

To summarize:

Theorem 7.2. Let p ≥ 3. If the ideal 〈p〉 stays prime, then

(OK/〈pe〉)× ∼= Zp3−1 × Zpe−1 × Zpe−1 × Zpe−1 .

8. Examples

Consider the irreducible polynomial f(x) = x3 + x + 1 over Q. Let α be a
root of f(x) in C and K = Q[α]. Since

disc(x3 + x+ 1) = −4− 27 = −31

which is square-free, OK = Z[α]. We select some prime numbers to show
factorizations of 〈p〉 by using Theorem 1.1.

(1) Let p = 47. Since x3 + x+ 1 ≡ (x+ 12)(x+ 13)(x+ 22) (mod 47),

〈47〉 = 〈47, α+ 12〉〈47, α+ 13〉〈47, α+ 22〉.

(2) Let p = 3. Since x3 + x+ 1 (mod 3) ≡ (x+ 2)(x2 + x+ 2) (mod 3),

〈3〉 = 〈3, α+ 2〉〈3, α2 + α+ 2〉.

(3) Let p = 31. Since x3 + x+ 1 ≡ (x+ 17)2(x+ 28) (mod 31),

〈31〉 = 〈31, α+ 17〉2〈31, α+ 28〉.

(4) Let p = 2. Since x3 +x+ 1 (mod 2) is irreducible, 〈2〉 is a prime ideal.

Using previous results, we have that
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(1) 〈47, α + 12〉, 〈47, α + 13〉, 〈47, α + 22〉, 〈3, α + 2〉 and 〈31, α + 28〉 are
ideals denoted by S in §3, thus

(OK/〈47, α+ 12〉e)× ∼= (OK/〈47, α+ 13〉e)×

∼= (OK/〈47, α+ 22〉e)× ∼= (Z47e)×,

(OK/〈3, α+ 2〉e)× ∼= (Z3e)×,

and
(OK/〈31, α+ 28〉e)× ∼= (Z31e)×.

(2) 〈3, α2 + α + 2〉 is an ideal in the second category which is denoted by
Q. Thus

(OK/〈3, α2 + α+ 2〉e)× ∼= Z3e−1 × Z3e−1 × Z8.

(3) 〈31, α + 17〉 is an ideal in the third category which is denoted by R.
Thus

(OK/〈31, α+ 17〉e)× ∼= Z30 × Z
31b

e−1
2
c × Z

31b
e
2
c .

(4) 〈2〉 stays prime, so it is in the fifth category. Thus

(OK/〈2〉e)× ∼= Z7 × (Z2e)× × Z2e−1 × Z2e−1 .
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