THE HULL NUMBER OF POWERS OF CYCLES

Hasan Al-Ezeh, Manal Ghanem, and Jameel Rwalah

Abstract. Let C_{n} be the cycle graph of order n on the vertices v_{0}, v_{1}, \ldots, v_{n} and C_{n}^{k} be the k-th power of C_{n}. In this article we determine the hull-number of C_{n}^{k}.

1. Introduction

Given a finite simple connected graph G, let u and v be two vertices of G. The distance between u and v is the length of a shortest path between u and v, we denote it by $d_{G}(u, v)$. A shortest path between u and v is called a $u-v$ geodesic. The set of all vertices in G that lie on a $u-v$ geodesic is denoted by $I[u, v]$. The closed interval $I[u, v]$ consists of all vertices that lie on a $u v$ geodesic of G . For $A \subseteq V(G)$, let the closed interval $I[A]$ be the union of all sets $I[u, v]$ for $u, v \in A$, then A is called a convex set if $I[A]=A$. The convex hull of A, denoted by $[A]$, is the smallest convex set containing A. If $[A]=V(G)$, then A is called a hull set of G. The cardinality of a minimum hull set of G is called the hull number of G, and it is denoted by $h(G)$. If $I[A]=V(G)$, then A is called a geodetic set of G. The minimum cardinality of a geodetic set in G is named the geodetic number of G and it is denoted by $g(G)$. Certainly, $h(G) \leq g(G)$.

The process of rebuilding a network modelled by a connected graph is a discrete optimization problem, consisting in finding a subset of vertices of cardinality as small as possible, which would allow us to store and retrieve the whole graph. One way to approach this problem is by using a certain convex operator. This procedure has attracted much attention since it was shown in [9] that every convex subset in a graph is the convex hull of its extreme vertices if and only if the graph is chordal and contains no induced 3 -fan. The hull number of a graph was introduced by [8]. They characterized graphs having some particular hull numbers and they obtained a number of bounds for the hull numbers of graphs. Dourado et al. [7] proved that the hull number of

[^0]unit interval graphs, cographs and split graphs can be computed in polynomial time. The hull number of an oriented graph was studied in [5] and [6]. The hull number of the power of paths was determined in [1]. For more results on the subject, see [3], [4] and [5]. For any positive integer k and a connected graph G the k-th power graph G^{k} of G has $V\left(G^{k}\right)=V(G)$ and the distinct vertices x and y are adjacent in G^{k} if $d(x, y) \leq k$. Circulant graphs have been extensively studied and have a vast number of applications to multicomputer networks and distributed computation (see [2] and [10]). One type of the circulant graphs is the k-th power of the n-cycle C_{n}^{k}. Our aim in this paper is to find the hull number of the graph C_{n}^{k}.

2. The hull number of C_{n}^{k}

For positive integers n and k, we denote by C_{n}^{k} the graph with vertex set $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and edge set $\left\{v_{i} v_{j}: i-j \equiv \pm m \bmod n, 1 \leq m \leq k\right\}$. The graph C_{n}^{k} is the k-th power of the n-cycle C_{n}.

In this section, we will determine the hull number of the k-th power of the n-cycle C_{n}^{k}. The hull number of a connected graph G of order n is n if and only if G is the complete graph of order n, [8]. It is clear that C_{n}^{k} is the complete graph of order n when $k \geq\left\lfloor\frac{n}{2}\right\rfloor$ and hence its hull number equal n. So next we will only consider C_{n}^{k} when $1<k<\left\lfloor\frac{n}{2}\right\rfloor$.

Let G be a graph. Given a vertex v, denote by $N(v)$ the set of neighbors of v. And denote, the subgraph of G induced by the set $B, B \subseteq V(G)$ by $G[B]$. We say that v is a simplicial vertex of G if $N(v)$ induces a complete subgraph. It is clear that every hull set of a graph G contains the set of all simplicial vertices of G. In this section, we characterize the hull number of the graph C_{n}^{k} in the following sequences of lemmas.

First, we start by the following lemma that determines the geodetic number of the k-th power of a path with $q k+2$ vertices.

Lemma 1 ([1]). Let P_{n+1} be the path of order $n+1$ and P_{n+1}^{k} be the k-th power of P_{n+1}. Suppose that $n=q k+r$ where q is a positive integer and $0 \leq r<k$, then $g\left(P_{n+1}^{k}\right)=2$ if and only if $n=q k+1$.

In the following lemma, we show that 3 is an upper bound for $h\left(C_{n}^{k}\right)$.
Lemma 2. The hull number of any power of cycle graph is at most 3.
Proof. Let C_{n}^{k} be the k-th power of the cycle graph with n vertices. Then there are two cases of n.

Case 1: n is even. Use division algorithm, to write $n=2 q k+2 r$, where q is a positive integer, $0 \leq 2 r<2 k$, and $V\left(C_{n}^{k}\right)=\left\{v_{0}, v_{1}, \ldots, v_{k}, \ldots, v_{q k}, \ldots, v_{q k+r}\right.$, $\left.\ldots, v_{q k+2 r}, \ldots, v_{(q+1) k+2 r}, \ldots, v_{(2 q-1) k+2 r}, \ldots, v_{2 q k+2 r-1}\right\}$. Now, assume that the hull number of C_{n}^{k} is not equal 2 and let $A=\left\{v_{0}, v_{1}, v_{q k+r}\right\}$, we claim that A is a hull-set of C_{n}^{k}. To show this, first note that $\left\{v_{0}, v_{q k+r}\right\} \subseteq A$ gives $A_{1}=\left\{v_{0}, v_{k}, v_{2 k}, \ldots, v_{q k}, v_{q k+r}\right\}$ and $A_{2}=\left\{v_{q k+r}, v_{q k+2 r}, v_{(q+1) k+2 r}, \ldots\right.$
$\left.v_{(2 q-1) k+2 r}, v_{0}\right\}$ are subsets of $[A]$, since their elements lie on geodesics between v_{0} and $v_{q k+r}$. And observe that, $\left\{v_{1}, v_{q k}, v_{q k+2 r}\right\} \subseteq[A]$ and the induced subgraph of C_{n}^{k} with the set of vertices $A_{3}=\left\{v_{1}, v_{0}, v_{2 q k+2 r-1}, \ldots\right.$, $\left.v_{(q+1) k+2 r}, \ldots, v_{q k+2 r}\right\}$ is isomorphic to P_{m+1}^{k}, where $m=q k+1$. Use Lemma 1 , to get $A_{3} \subseteq[A]$. Therefore, $v_{2 q k+2 r-1} \in[A]$. Take $A_{4}=\left\{v_{2 q k+2 r-1}, v_{0}, \ldots\right.$, $\left.v_{k}, \ldots, v_{q k}\right\}$, then $C_{n}^{k}\left[A_{4}\right] \cong P_{q k+2}^{k}$, and hence $A_{4} \subseteq[A]$. Moreover,

$$
\begin{aligned}
& A_{5}=\left\{v_{(q+1) k+r+1}, v_{(q+1) k+r}, \ldots, v_{q k+2 r}, \ldots, v_{q k+r}\right\} \subseteq[A] \text { and } \\
& A_{6}=\left\{v_{q k+r}, v_{q k+r-1}, \ldots, v_{q k}, \ldots, v_{(q-1) k+r}, v_{(q-1) k+r-1}\right\} \subseteq[A],
\end{aligned}
$$

since $\left\{v_{(q+1) k+r+1}, v_{q k+r}, v_{(q-1) k+r-1}\right\} \subseteq[A]$ and $C_{n}^{k}\left[A_{i}\right] \cong P_{k+2}^{k}$ for $i=5,6$. So, $V\left(C_{n}^{k}\right)=\bigcup_{i=1}^{6} A_{i}=[A]$ and hence A is a hull set of C_{n}^{k}.

Case 2: n is odd. By division algorithm $n-1=2 q k+2 r$, where q is a positive integer, $0 \leq 2 r<2 k$ and $V\left(C_{n}^{k}\right)=\left\{v_{0}, v_{1}, \ldots, v_{k}, \ldots, v_{q k}\right.$, $\left.\ldots, v_{q k+r}, \ldots, v_{q k+2 r+1}, \ldots, v_{(q+1) k+2 r+1}, \ldots, v_{(2 q-1) k+2 r+1}, \ldots, v_{2 q k+2 r}\right\}$. If $r=0$, then $A=\left\{v_{0}, v_{(q-1) k}, v_{q k+1}\right\}$ is a hull set of C_{n}^{k}. To show this set $A_{1}=\left\{v_{(q-1) k}, v_{(q-1) k+1}, \ldots, v_{q k+1}\right\}, A_{2}=\left\{v_{0}, v_{1}, \ldots, v_{(q-1) k+1}\right\}, A_{3}=$ $\left\{v_{q k+1}, v_{(q+1) k+1}, \ldots, v_{(2 q-1) k+1}, v_{0}\right\}, A_{4}=\left\{v_{q k}, v_{q k+1}, \ldots, v_{(q+1) k+1}\right\}, A_{5}=$ $\left\{v_{(q+1) k+1}, \ldots, v_{(2 q-1) k+1}, \ldots, v_{0}, v_{1}\right\}$. By using Lemma 1 and noting that all vertices of A_{3} lie on a $v_{0}-v_{q k+1}$ geodesic, we can prove respectively that $A_{i} \subseteq[A]$ for all i. Hence, $V\left(C_{n}^{k}\right)=\cup_{i=1}^{5} A_{i}=[A]$ and thus $h\left(C_{n}^{k}\right)=3$. Now, suppose that $r \neq 0$. We claim that $A=\left\{v_{0}, v_{1}, v_{q k+r}\right\}$ is a hull set of C_{n}^{k}, to prove this claim we mimic the proof of Case 1. First, observe that, there are two paths between v_{0} and $v_{q k+r}$, the first one is $v_{0}-v_{1}-$ $\cdots-v_{k}-\cdots-v_{q k}-\cdots-v_{q k+r}$ and the second is $v_{q k+r}-\cdots-v_{q k+2 r+1}-$ $\cdots-v_{(q+1) k+2 r+1}-\cdots-v_{(2 q-1) k+2 r+1}-\cdots-v_{0}$. Since the length of the first path is $q k+r$ and the length of the second path is $q k+r+1$ and $r+1 \leq k$, we have $v_{0}-v_{k}-\cdots-v_{q k}-v_{q k+r}$ and $v_{q k+r}-v_{q k+2 r+1}-v_{(q+1) k+2 r+1}-$ $\cdots-v_{(2 q-1) k+2 r+1}-v_{0}$ are geodesics between v_{0} and $v_{q k+r}$. Thus, $A_{1}=$ $\left\{v_{0}, v_{k}, \ldots, v_{q k}, v_{q k+r}, v_{q k+2 r+1}, v_{(q+1) k+2 r+1}, \ldots, v_{(2 q-1) k+2 r+1}\right\} \subseteq[A]$. Now, take

$$
\begin{aligned}
A_{2} & =\left\{v_{q k+2 r+1}, v_{q k+2 r+2}, \ldots, v_{(q+1) k+r+1}, \ldots, v_{2 q k+2 r}, v_{0}, v_{1}\right\}, \\
A_{3} & =\left\{v_{2 q k+2 r}, v_{0}, \ldots, v_{k}, \ldots, v_{q k}\right\}, \\
A_{4} & =\left\{v_{q k+r}, v_{q k+r+1}, \ldots v_{q k+2 r}, \ldots, v_{(q+1) k+r}, v_{(q+1) k+r+1}\right\}, \\
A_{5} & =\left\{v_{(q-1) k+r-1}, v_{(q-1) k+r}, \ldots v_{q k}, v_{q k+1}, \ldots, v_{q k+r}\right\} .
\end{aligned}
$$

Then $C_{n}^{k}\left[A_{i}\right] \cong P_{q k+2}^{k}$ for $i=2,3$ and $C_{n}^{k}\left[A_{i}\right] \cong P_{k+2}^{k}$ for $i=4,5$. By Lemma 1, we get $\bigcup_{i=2}^{5} A_{i} \subseteq[A]$. So, $V\left(C_{n}^{k}\right)=[A]$ and hence A is a hull set of C_{n}^{k}.

In the following lemma, we show that 3 is a sharp upper bound of C_{n}^{k}.
Lemma 3. Suppose that $n=2 q k$ where q is a positive integer, then $h\left(C_{n}^{k}\right)=3$.
Proof. Suppose that $A=\left\{v_{0}, v_{q k}\right\}$, we will show that A is not a hull set of C_{n}^{k}. Observe that, there are exactly two $v_{0}-v_{q k}$ geodesics, the first one is
$v_{0}-v_{k}-\cdots-v_{q k}$ and the second is $v_{q k}-v_{(q+1) k}-v_{(q+2) k}-\cdots-v_{(2 q-1) k}-v_{0}$. So, $[A] \neq V\left(C_{n}^{k}\right)$ and hence A is not a hull set of C_{n}^{k}. Similarly, if we replace $v_{q k}$ in A by any other vertex of C_{n}^{k} we can easily show that A is not a hull set. So $h\left(C_{n}^{k}\right)>2$. By Lemma 2, we get the result.
Lemma 4 ([1]). Suppose that $n=q k+r$ where $0<r<k$, then

$$
h\left(P_{n+1}^{k}\right)= \begin{cases}2, & \text { if } q>1, r \neq k \\ 3, & \text { if } q=1, r \neq 1 \\ 2, & \text { if } q=1, r=1\end{cases}
$$

Lemma 5. Suppose that $n=2 q k+2 r$ where q is a positive integer and $0<$ $r<k$, then $h\left(C_{n}^{k}\right)=2$.
Proof. Let

$$
\begin{aligned}
A_{1} & =\left\{v_{0}, v_{1}, \ldots, v_{k}, \ldots, v_{q k}, \ldots, v_{q k+r}\right\} \text { and } \\
A_{2} & =\left\{v_{q k+r}, \ldots, v_{q k+2 r}, \ldots, v_{(q+1) k+2 r}, \ldots, v_{2 q k+2 r-1}, v_{0}\right\} .
\end{aligned}
$$

Then $C_{n}^{k}\left[A_{i}\right] \cong P_{q k+r+1}^{k}$ for $i=1,2$. By using Lemma 4, we have the following three cases:

Case 1: $q=1$ and $r=1$. Since v_{0} and $v_{q k+r}$ are simplicial vertices of $C_{n}^{k}\left[A_{i}\right]$, the hull set of $C_{n}^{k}\left[A_{i}\right]$ is $A=\left\{v_{0}, v_{q k+r}\right\}$ for $i=1,2$. But $A_{1} \cup A_{2}=V\left(C_{n}^{k}\right)$, so A is a hull set of C_{n}^{k}.

Case 2: $q>1$ and $r \neq k$, then the hull set of $C_{n}^{k}\left[A_{i}\right]$ is $A=\left\{v_{0}, v_{q k+r}\right\}$ for $i=1,2$. Thus A is a hull set of C_{n}^{k}.

Case 3: $q=1$ and $r \neq 1$. Then the hull number $h\left(C_{n}^{k}\left[A_{i}\right]\right)=3$ for $i=1,2$. In this case, $A=\left\{v_{0}, v_{k+r}\right\}$ is a hull set of C_{n}^{k}. To show this, observe that $v_{0}-v_{k}-v_{k+r}$ and $v_{k+r}-v_{2 k+r}-v_{0}$ are $v_{0}-v_{k+r}$ geodesics. Therefore, $\left\{v_{2 k+r}, v_{k}\right\} \subseteq[A]$. Since $r<k$, the path $v_{2 k+r}-v_{1}-v_{k}$ is a $v_{2 k+r}-v_{k}$ geodesic. So, v_{1} belongs to $[A]$ and hence $\left\{v_{0}, v_{1}, v_{k+r}\right\} \subseteq[A]$. By using the proof of Lemma 2, we have A is a hull set of C_{n}^{k}.

Lemma 6. Suppose that $n-1=2 q k$ where q is a positive integer, then $h\left(C_{n}^{k}\right)=$ 3.

Proof. Assume that $n-1=2 q k$, where q is a positive integer, that means the number of the vertices of the graph C_{n}^{k} is odd. Set $A=\left\{v_{0}, v_{q k}\right\}$. Clearly, there exists unique $v_{0}-v_{q k}$ geodesic which is $v_{0}-v_{k}-\cdots-v_{q k}$. So, A is not a hull set of C_{n}^{k}. Similarly, if we replace $v_{q k}$ by any other vertex, we get the same result. By Lemma 2, we conclude that $h\left(C_{n}^{k}\right)=3$.
Lemma 7. Suppose that $n-1=2 q k+2 r$ where q is a positive integer and $0<r<k$, then $h\left(C_{n}^{k}\right)=2$.
Proof. Let $A=\left\{v_{0}, v_{q k+r}\right\}$. Then A is a hull set of C_{n}^{k}. To show this it is enough to show that v_{1} belongs to $[A]$ (see the proof of Lemma 2). Since $v_{0}-v_{k}-v_{k+r}-v_{2 k+r}-\cdots-v_{q k+r}, v_{0}-v_{r}-v_{k+r}-v_{2 k+r}-\cdots-v_{q k+r}$ and $v_{0}-v_{(2 q-1) k+2 r+1}-v_{(2 q-2) k+2 r+1}-\cdots-v_{q k+2 r+1}-v_{q k+r}$ are $v_{0}-$
$v_{q k+r}$ geodesics, we have $\left\{v_{(2 q-1) k+2 r+1}, v_{r}, v_{k}\right\} \subseteq[A]$. But $v_{(2 q-1) k+2 r+1}-$ $v_{2 q k+2 r}-v_{r}$ is a $v_{(2 q-1) k+2 r+1}-v_{r}$ geodesic, so $v_{2 q k+2 r} \in[A]$. Now, let $B=\left\{v_{2 q k+2 r}, v_{0}, \ldots, v_{k}\right\}$, then $C_{n}^{k}[B] \cong P_{k+2}^{k}$. By Lemma 1, we get $v_{1} \in[A]$ and hence the result holds.

We can summarize the above in the following theorem.
Theorem 8. If $n=2 q k+2 r$ or $n-1=2 q k+2 r$ where q is a positive integer and $0 \leq r<k$, then

$$
h\left(C_{n}^{k}\right)= \begin{cases}2, & \text { if } \quad 0<r<k \\ 3, & \text { if } \quad r=0\end{cases}
$$

For interested readers one might try to find the hull number of some other types of circulant graphs.

References

[1] O. AbuGhneim, B. Al-Khamaiseh, and H. Al-Ezeh, The geodetic, hull, and Steiner numbers of powers of paths, Util. Math. 95 (2014), 289-294.
[2] J. Bermond, F. Cormellas, and D. F. Hsu, Distributed loop computer networks: a survey, J. Parallel Distributed Computing 24 (1995), 2-10.
[3] J. Cáceresa, C. Hernandob, M. Morab, I. M. Pelayob, and M. L. Puertasa, On the geodetic and the hull numbers in strong product graphs, Comput. Math. Appl. 60 (2010), no. 11, 3002-3031.
[4] S. R. Canoy, G. B. Cagaanan, and S. V. Gervacio, Convexity, geodetic and hull numbers of the join of graphs, Utilitas Math. 71 (2006), 143-159.
[5] G. Chartrand, J. F. Fink, and P. Zhang, Convexity in oriented graphs, Discrete Appl. Math. 116 (2002), 115-126.
[6] , The hull number of an oriented graph, International J. Math. Math. Sci. 36 (2003), 2265-2275.
[7] M. C. Dourado, J. G. Gimbel, J. Kratochvíl, F. Protti, and J. L. Szwarcfiter, On the computation of the hull number of a graph, Discrete Math. 309 (2009), no. 18, 56685674.
[8] M. G. Everett and S. B. Seidman, The hull number of a graph, Discrete Math. 57 (1985), no. 3, 217-223.
[9] M. Farber and R. E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Methods 7 (1986), no. 3, 433-444.
[10] D. E. Knuth, The Art of Computer Programming. Vol. 3, Addison-Wesley, Reading, MA, 1975.

Hasan Al-Ezeh
Department of Mathematics
School of Science
The University of Jordan Amman 11942, Jordan
E-mail address: alezehh@ju.edu.jo

Manal Ghanem
Department of Mathematics
School of Science
The University of Jordan Amman 11942, Jordan
E-mail address: m.ghanem@ju.edu.jo
Jameel Rwalah
Department of Mathematics
School of Science
The University of Jordan Amman 11942, Jordan
E-mail address: jameel_31@yahoo.com

[^0]: Received December 6, 2016; Accepted June 14, 2017.
 2010 Mathematics Subject Classification. 05C12, 05C38.
 Key words and phrases. geodetic number, hull number, paths, powers of cycles graphs.
 This paper constitutes a part of PhD Thesis at the University of Jordan written by the third author and supervised by the first and the second authors.

