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THE HULL NUMBER OF POWERS OF CYCLES

Hasan Al-Ezeh, Manal Ghanem, and Jameel Rwalah

Abstract. Let Cn be the cycle graph of order n on the vertices υ0,

υ1, . . ., υn and Ck
n be the k-th power of Cn. In this article we determine

the hull-number of Ck
n.

1. Introduction

Given a finite simple connected graph G, let u and v be two vertices of G.
The distance between u and v is the length of a shortest path between u and
v, we denote it by dG(u, v). A shortest path between u and v is called a u− v
geodesic. The set of all vertices in G that lie on a u − v geodesic is denoted
by I[u, v]. The closed interval I[u, v] consists of all vertices that lie on a uv
geodesic of G. For A ⊆ V (G), let the closed interval I[A] be the union of all sets
I[u, v] for u, v ∈ A, then A is called a convex set if I[A] = A. The convex hull
of A, denoted by [A], is the smallest convex set containing A. If [A] = V (G),
then A is called a hull set of G. The cardinality of a minimum hull set of G is
called the hull number of G, and it is denoted by h(G). If I[A] = V (G), then
A is called a geodetic set of G. The minimum cardinality of a geodetic set in
G is named the geodetic number of G and it is denoted by g(G). Certainly,
h(G) ≤ g(G).

The process of rebuilding a network modelled by a connected graph is a
discrete optimization problem, consisting in finding a subset of vertices of car-
dinality as small as possible, which would allow us to store and retrieve the
whole graph. One way to approach this problem is by using a certain convex
operator. This procedure has attracted much attention since it was shown in
[9] that every convex subset in a graph is the convex hull of its extreme ver-
tices if and only if the graph is chordal and contains no induced 3-fan. The hull
number of a graph was introduced by [8]. They characterized graphs having
some particular hull numbers and they obtained a number of bounds for the
hull numbers of graphs. Dourado et al. [7] proved that the hull number of
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unit interval graphs, cographs and split graphs can be computed in polynomial
time. The hull number of an oriented graph was studied in [5] and [6]. The hull
number of the power of paths was determined in [1]. For more results on the
subject, see [3], [4] and [5]. For any positive integer k and a connected graph
G the k-th power graph Gk of G has V (Gk) = V (G) and the distinct vertices x
and y are adjacent in Gk if d(x, y) ≤ k. Circulant graphs have been extensively
studied and have a vast number of applications to multicomputer networks and
distributed computation (see [2] and [10]). One type of the circulant graphs
is the k-th power of the n-cycle Ck

n. Our aim in this paper is to find the hull
number of the graph Ck

n.

2. The hull number of Ck
n

For positive integers n and k, we denote by Ck
n the graph with vertex set

{υ0, υ1, . . . , υn−1} and edge set {υiυj : i − j ≡ ±m mod n, 1 ≤ m ≤ k}. The
graph Ck

n is the k-th power of the n-cycle Cn.
In this section, we will determine the hull number of the k-th power of the

n-cycle Ck
n. The hull number of a connected graph G of order n is n if and only

if G is the complete graph of order n, [8]. It is clear that Ck
n is the complete

graph of order n when k ≥ bn2 c and hence its hull number equal n. So next we

will only consider Ck
n when 1 < k < bn2 c.

Let G be a graph. Given a vertex v, denote by N(v) the set of neighbors of
v. And denote, the subgraph of G induced by the set B,B ⊆ V (G) by G[B].
We say that v is a simplicial vertex of G if N(v) induces a complete subgraph.
It is clear that every hull set of a graph G contains the set of all simplicial
vertices of G. In this section, we characterize the hull number of the graph Ck

n

in the following sequences of lemmas.
First, we start by the following lemma that determines the geodetic number

of the k-th power of a path with qk + 2 vertices.

Lemma 1 ([1]). Let Pn+1 be the path of order n+1 and P k
n+1 be the k-th power

of Pn+1. Suppose that n = qk + r where q is a positive integer and 0 ≤ r < k,
then g(P k

n+1) = 2 if and only if n = qk + 1.

In the following lemma, we show that 3 is an upper bound for h(Ck
n).

Lemma 2. The hull number of any power of cycle graph is at most 3.

Proof. Let Ck
n be the k-th power of the cycle graph with n vertices. Then there

are two cases of n.
Case 1: n is even. Use division algorithm, to write n = 2qk+2r, where q is a

positive integer, 0 ≤ 2r < 2k, and V (Ck
n) = {υ0, υ1, . . . , υk, . . . , υqk, . . . , υqk+r,

. . . , υqk+2r, . . . , υ(q+1)k+2r, . . . , υ(2q−1)k+2r, . . . , υ2qk+2r−1}. Now, assume that

the hull number of Ck
n is not equal 2 and let A = {υ0, υ1, υqk+r}, we claim

that A is a hull-set of Ck
n. To show this, first note that {υ0, υqk+r} ⊆ A

gives A1 = {υ0, υk, υ2k, . . . , υqk, υqk+r} and A2 = {υqk+r, υqk+2r, υ(q+1)k+2r, . . .
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υ(2q−1)k+2r, υ0} are subsets of [A], since their elements lie on geodesics be-
tween υ0 and υqk+r. And observe that, {υ1, υqk, υqk+2r} ⊆ [A] and the in-
duced subgraph of Ck

n with the set of vertices A3 = {υ1, υ0, υ2qk+2r−1, . . . ,
υ(q+1)k+2r, . . . , υqk+2r} is isomorphic to P k

m+1, where m = qk+ 1. Use Lemma
1, to get A3 ⊆ [A]. Therefore, υ2qk+2r−1 ∈ [A]. Take A4 = {υ2qk+2r−1, υ0, . . .,
υk, . . . , υqk}, then Ck

n[A4] ∼= P k
qk+2, and hence A4 ⊆ [A]. Moreover,

A5 = {υ(q+1)k+r+1, υ(q+1)k+r, . . . , υqk+2r, . . . , υqk+r} ⊆ [A] and

A6 = {υqk+r, υqk+r−1, . . . , υqk, . . . , υ(q−1)k+r, υ(q−1)k+r−1} ⊆ [A],

since {υ(q+1)k+r+1, υqk+r, υ(q−1)k+r−1} ⊆ [A] and Ck
n[Ai] ∼= P k

k+2 for i = 5, 6.

So, V (Ck
n) =

⋃6
i=1Ai = [A] and hence A is a hull set of Ck

n.
Case 2: n is odd. By division algorithm n − 1 = 2qk + 2r, where q

is a positive integer, 0 ≤ 2r < 2k and V (Ck
n) = {υ0, υ1, . . . , υk, . . . , υqk,

. . . , υqk+r, . . . , υqk+2r+1, . . . , υ(q+1)k+2r+1, . . . , υ(2q−1)k+2r+1, . . . ., υ2qk+2r}. If

r = 0, then A = {υ0, υ(q−1)k, υqk+1} is a hull set of Ck
n. To show this set

A1 = {υ(q−1)k, υ(q−1)k+1, . . . , υqk+1}, A2 = {υ0, υ1, . . . , υ(q−1)k+1}, A3 =
{υqk+1, υ(q+1)k+1, . . . , υ(2q−1)k+1, υ0}, A4 = {υqk, υqk+1, . . . , υ(q+1)k+1}, A5 =
{υ(q+1)k+1, . . . , υ(2q−1)k+1, . . . , υ0, υ1}. By using Lemma 1 and noting that all
vertices of A3 lie on a υ0 − υqk+1 geodesic, we can prove respectively that
Ai ⊆ [A] for all i. Hence, V (Ck

n) = ∪5i=1Ai = [A] and thus h(Ck
n) = 3.

Now, suppose that r 6= 0. We claim that A = {υ0, υ1, υqk+r} is a hull set
of Ck

n, to prove this claim we mimic the proof of Case 1. First, observe
that, there are two paths between υ0 and υqk+r, the first one is υ0 − υ1 −
· · · − υk − · · · − υqk − · · · − υqk+r and the second is υqk+r− · · · − υqk+2r+1−
· · · − υ(q+1)k+2r+1− · · · − υ(2q−1)k+2r+1− · · · − υ0. Since the length of the first
path is qk + r and the length of the second path is qk + r + 1 and r + 1 ≤ k,
we have υ0 − υk − · · · − υqk − υqk+r and υqk+r − υqk+2r+1− υ(q+1)k+2r+1 −
· · · − υ(2q−1)k+2r+1 − υ0 are geodesics between υ0 and υqk+r. Thus, A1 =
{υ0, υk, . . . , υqk, υqk+r, υqk+2r+1, υ(q+1)k+2r+1, . . . , υ(2q−1)k+2r+1} ⊆ [A]. Now,
take

A2 = {υqk+2r+1, υqk+2r+2, . . . , υ(q+1)k+r+1, . . . , υ2qk+2r, υ0, υ1},
A3 = {υ2qk+2r, υ0, . . . , υk, . . . , υqk},
A4 = {υqk+r, υqk+r+1, . . . υqk+2r, . . . , υ(q+1)k+r, υ(q+1)k+r+1},
A5 = {υ(q−1)k+r−1, υ(q−1)k+r, . . . υqk, υqk+1, . . . , υqk+r}.

Then Ck
n[Ai] ∼= P k

qk+2 for i = 2, 3 and Ck
n[Ai] ∼= P k

k+2 for i = 4, 5. By Lemma

1, we get
⋃5

i=2Ai ⊆ [A]. So, V (Ck
n) = [A] and hence A is a hull set of Ck

n. �

In the following lemma, we show that 3 is a sharp upper bound of Ck
n.

Lemma 3. Suppose that n = 2qk where q is a positive integer, then h(Ck
n) = 3.

Proof. Suppose that A = {υ0, υqk}, we will show that A is not a hull set of
Ck

n. Observe that, there are exactly two υ0 − υqk geodesics, the first one is
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υ0−υk−· · ·−υqk and the second is υqk−υ(q+1)k−υ(q+2)k−· · ·−υ(2q−1)k−υ0.

So, [A] 6= V (Ck
n) and hence A is not a hull set of Ck

n. Similarly, if we replace
υqk in A by any other vertex of Ck

n we can easily show that A is not a hull set.
So h(Ck

n) > 2. By Lemma 2, we get the result. �

Lemma 4 ([1]). Suppose that n = qk + r where 0 < r < k, then

h(P k
n+1) =

 2, if q > 1, r 6= k;
3, if q = 1, r 6= 1;
2, if q = 1, r = 1.

Lemma 5. Suppose that n = 2qk + 2r where q is a positive integer and 0 <
r < k, then h(Ck

n) = 2.

Proof. Let

A1 = {υ0, υ1, . . . , υk, . . . , υqk, . . . , υqk+r} and

A2 = {υqk+r, . . . , υqk+2r, . . . , υ(q+1)k+2r, . . . , υ2qk+2r−1, υ0}.

Then Ck
n[Ai] ∼= P k

qk+r+1 for i = 1, 2. By using Lemma 4, we have the following
three cases:

Case 1: q = 1 and r = 1. Since υ0 and υqk+r are simplicial vertices of Ck
n[Ai],

the hull set of Ck
n[Ai] is A = {υ0, υqk+r} for i = 1, 2. But A1 ∪A2 = V (Ck

n), so
A is a hull set of Ck

n.
Case 2: q > 1 and r 6= k, then the hull set of Ck

n[Ai] is A = {υ0, υqk+r} for
i = 1, 2. Thus A is a hull set of Ck

n.
Case 3: q = 1 and r 6= 1. Then the hull number h(Ck

n[Ai]) = 3 for i = 1, 2.
In this case, A = {υ0, υk+r} is a hull set of Ck

n. To show this, observe that
υ0 − υk − υk+r and υk+r − υ2k+r − υ0 are υ0 − υk+r geodesics. Therefore,
{υ2k+r, υk} ⊆ [A]. Since r < k, the path υ2k+r − υ1 − υk is a υ2k+r − υk
geodesic. So, υ1 belongs to [A] and hence {υ0, υ1, υk+r} ⊆ [A]. By using the
proof of Lemma 2, we have A is a hull set of Ck

n. �

Lemma 6. Suppose that n−1 = 2qk where q is a positive integer, then h(Ck
n) =

3.

Proof. Assume that n− 1 = 2qk, where q is a positive integer, that means the
number of the vertices of the graph Ck

n is odd. Set A = {υ0, υqk}. Clearly,
there exists unique υ0 − υqk geodesic which is υ0 − υk − · · · − υqk. So, A is not
a hull set of Ck

n. Similarly, if we replace υqk by any other vertex, we get the
same result. By Lemma 2, we conclude that h(Ck

n) = 3. �

Lemma 7. Suppose that n − 1 = 2qk + 2r where q is a positive integer and
0 < r < k, then h(Ck

n) = 2.

Proof. Let A = {υ0, υqk+r}. Then A is a hull set of Ck
n. To show this it

is enough to show that υ1 belongs to [A] (see the proof of Lemma 2). Since
υ0 − υk − υk+r − υ2k+r − · · · − υqk+r, υ0 − υr − υk+r − υ2k+r − · · · − υqk+r

and υ0 − υ(2q−1)k+2r+1 − υ(2q−2)k+2r+1 − · · · − υqk+2r+1 − υqk+r are υ0 −
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υqk+r geodesics, we have {υ(2q−1)k+2r+1, υr, υk} ⊆ [A]. But υ(2q−1)k+2r+1 −
υ2qk+2r − υr is a υ(2q−1)k+2r+1 − υr geodesic, so υ2qk+2r ∈ [A]. Now, let

B = {υ2qk+2r, υ0, . . . , υk}, then Ck
n[B] ∼= P k

k+2. By Lemma 1, we get υ1 ∈ [A]
and hence the result holds. �

We can summarize the above in the following theorem.

Theorem 8. If n = 2qk+ 2r or n− 1 = 2qk+ 2r where q is a positive integer
and 0 ≤ r < k, then

h(Ck
n) =

{
2, if 0 < r < k;
3, if r = 0.

For interested readers one might try to find the hull number of some other
types of circulant graphs.
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