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ON A LIE RING OF GENERALIZED INNER DERIVATIONS

Neşet Aydin and Selin Türkmen

Abstract. In this paper, we define a set including of all fa with a ∈ R

generalized derivations of R and is denoted by fR. It is proved that (i)
the mapping g : L (R) → fR given by g (a) = f−a for all a ∈ R is a Lie

epimorphism with kernel Nσ,τ ; (ii) if R is a semiprime ring and σ is an

epimorphism of R, the mapping h : fR → I (R) given by h (fa) = iσ(−a)
is a Lie epimorphism with kernel l (fR) ; (iii) if fR is a prime Lie ring and

A,B are Lie ideals of R, then [fA, fB ] = (0) implies that either fA = (0)
or fB = (0).

1. Introduction

Let R be an associative ring with center Z(R) and σ, τ : R → R be two
mappings. R is said to be 2-torsion free if 2x = 0 with x ∈ R, then x = 0. A
ring R is called a semiprime ring if a ∈ R and aRa = (0) implies that a = 0. R
is called a prime ring if a, b ∈ R and aRb = (0) implies that a = 0 or b = 0. For
x, y ∈ R, xy−yx is denoted by [x, y] and xσ (y)−τ (y)x is denoted by [x, y]σ,τ .

An additive subgroup U of R is said to be a Lie ideal of R if [u, r] ∈ U for all
u ∈ U and for all r ∈ R. A Lie ideal P of a Lie ring L is a prime Lie ideal if
A,B are two Lie ideals of L such that [A,B] ⊂ P implies that either A ⊂ P or
B ⊂ P. Similarly, a Lie ideal P of L is a semiprime Lie ideal if A is a Lie ideal
of L such that [A,A] ⊂ P implies that A ⊂ P (see [3]). L is a prime Lie ring if
[A,B] 6= (0) for any two nonzero Lie ideals A,B of L. Similarly, L is a semiprime
Lie ring if [A,A] 6= (0) for any nonzero Lie ideal A of L (see [3]). An additive
mapping d : R→ R is called a derivation if d(xy) = d(x)y+xd(y) for all x, y ∈
R. For a fixed a ∈ R, the mapping ia : R→ R given by ia (x) = [a, x] is called
an inner derivation determinated by a. In [5], the set of all inner derivations ia
of R is denoted by I (R) which is a Lie ring with the product [ia, ib] = i[a,b] for
all ia, ib ∈ I(R). In [2], a generalized derivation in rings is defined as follow: An
additive mapping f : R → R is called a generalized derivation if there exists
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a derivation d of R such that f(xy) = f(x)y + xd(y) for all x, y ∈ R. In [1],
the set of all generalized derivations of R is denoted by Gder(R) which is a Lie
ring with the product [f1, f2] = f1f2 − f2f1 for all f1, f2 ∈ Gder(R). For fixed
a, b ∈ R, mappings of the form f (x) = ax + xb are called a generalized inner
derivation. For a ∈ R, fa : R→ R defined as fa (x) = [x, a]σ,τ is a generalized

inner derivation such that fa (x) = (−τ (a))x+ xσ (a).
By L (R), it is denoted the associated Lie ring of R and the product in L (R)

is given by [r, s] for all r, s ∈ R. In [4], N. Jacobson proved that the mapping
θ : L (R) → I (R) given by θ (r) = ir for all r ∈ R is a Lie epimorphism
with kernel Z (R) . In [5], C. R. Jordan and D. A. Jordan proved by using the
isomorphism in [4] if R is a semiprime (resp. prime) 2-torsion free ring, then
I (R) is a semiprime (resp. prime) Lie ring.

In this paper, we define a Lie subring of Gder (R) including of all general-
ized derivations fa with a ∈ R and denoted by fR. The isomorphism in [4] is
generalized and some properties of fR are investigated.

Throughout the present paper, R is a ring, Z (R) is the center of R, L (R)
is the Lie ring of R and σ, τ are homomorphisms of R. We use the basic
commutator identities:

• [x, y] = − [y, x] = [−y, x] = [y,−x] = [−x,−y]
• [xy, z]σ,τ = [x, z]σ,τ y + x [y, σ (z)]

•
[
[x, y]σ,τ , z

]
σ,τ
−
[
[x, z]σ,τ , y

]
σ,τ

= [x, [y, z]]σ,τ

2. Results

Lemma 2.1 ([4, Theorem 3]). The mapping θ : L (R)→ I (R) given by θ (r) =
ir for all r ∈ R is a Lie epimorphism with kernel Z. Consequently Z is an ideal
of L (R) and L (R) /Z ∼= I (R) .

Lemma 2.2 ([5, Lemma 4]). Let R be a prime ring of characteristic not 2.
Then Z is a prime ideal of L (R) . Equivalently, I (R) is a prime Lie ring.

Lemma 2.3 ([5, Lemma 6]). Let R be a semiprime 2-torsion free ring. Then
Z is a semiprime ideal of L (R) . Equivalently, I (R) is a semiprime Lie ring.

Lemma 2.4. For a fixed a ∈ R, fa : R → R such that fa (x) = [x, a]σ,τ is a
generalized derivation associated with inner derivation iσ(−a) of R.

Proof. For all x, y ∈ R, it holds

fa (x+ y) = [x+ y, a]σ,τ = [x, a]σ,τ + [y, a]σ,τ = fa (x) + fa (y)

and

fa (xy) = [xy, a]σ,τ = [x, a]σ,τ y + x [y, σ (a)]

= [x, a]σ,τ y + x [σ (−a) , y]

= fa (x) y + xiσ(−a) (y) .
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So, fa is a generalized derivation associated with inner derivation iσ(−a) of
R. �

Example 2.5. Let R = {[ x y0 z ] | x, y, z ∈ Z} be a ring, σ, τ : R → R defined
as σ ([ x y0 z ]) = [ x 0

0 0 ] and τ ([ x y0 z ]) = [ 0 0
0 z ] be endomorphisms. For a fixed a =

[ x y0 z ] ∈ R, iσ(−a) : R → R defined by iσ(−a)
([

b c
0 d

])
=
[
0 −cx
0 0

]
is an inner

derivation determinated by σ (−a) and fa : R → R defined by fa
([

b c
0 d

])
=[

bx 0
0 −dz

]
is a generalized derivation associated with inner derivation iσ(−a).

Lemma 2.6. Nσ,τ =
{
a ∈ R | [r, a]σ,τ = 0 for all r ∈ R

}
is a subring as well

as a Lie ideal of R. Moreover, if R is a semiprime ring, then

Nσ,τ = {a ∈ R |σ (a) = τ (a) ∈ Z (R)} .

Proof. Let a, b ∈ Nσ,τ . For all r ∈ R
[r, a− b]σ,τ = [r, a]σ,τ − [r, b]σ,τ = 0

and
[r, ab]σ,τ = [r, a]σ,τ σ (b) + τ (a) [r, b]σ,τ = 0

are obtained. It yields that a− b, ab ∈ Nσ,τ for all a, b ∈ Nσ,τ . Thus Nσ,τ is a
subring of R.

Since a ∈ Nσ,τ , it holds that for all r, s ∈ R

[r, [s, a]]σ,τ =
[
[r, s]σ,τ , a

]
σ,τ
−
[
[r, a]σ,τ , s

]
σ,τ

= 0.

This means [s, a] ∈ Nσ,τ for all s ∈ R and a ∈ Nσ,τ . So, Nσ,τ is a Lie ideal of
R.

Assume that R is a semiprime ring. From the definition of Nσ,τ , it holds
[rs, a]σ,τ = 0 for all r, s ∈ R and a ∈ Nσ,τ . It implies that

0 = [rs, a]σ,τ = [r, a]σ,τ s+ r [s, σ (a)] = r [s, σ (a)]

for all r, s ∈ R, a ∈ Nσ,τ . Thus it yields

R [R, σ (a)] = (0)

for all a ∈ Nσ,τ . The semiprimeness of R gives σ (a) ∈ Z (R) for all a ∈ Nσ,τ .
Using σ (a) ∈ Z (R) and [r, a]σ,τ = 0 together, it holds that

(σ (a)− τ (a))R = (0)

for all a ∈ Nσ,τ . Since R is a semiprime ring, for all a ∈ Nσ,τ
σ (a) = τ (a) ∈ Z (R)

is obtained. �

For a fixed a ∈ R, it holds that

fa (x) = [x, a]σ,τ = xσ (a)− τ (a)x = xσ (a) + (−τ (a))x

for all x ∈ R. So, fa is a generalized inner derivation of R and fa ∈ Gder (R) .
We denote fR, the set of all fa with a ∈ R generalized derivations of R, i.e.,
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fR =
{
fa : R→ R | fa(x) = [x, a]σ,τ , a ∈ R

}
. For all fa, fb ∈ fR and r ∈ R, it

holds

(fa − fb) (r) = fa(r)− fb(r) = [r, a]σ,τ − [r, b]σ,τ

= rσ (a)− τ (a) r − (rσ (b)− τ (b) r)

= rσ(a− b)− τ (a− b) r
= [r, a− b]σ,τ = fa−b(r).

Thus

(1) fa − fb = fa−b, ∀fa, fb ∈ fR

is obtained. Since
[
[x, y]σ,τ , z

]
σ,τ
−
[
[x, z]σ,τ , y

]
σ,τ

= [x, [y, z]]σ,τ for all x, y, z ∈
R, it holds for all r ∈ R

([fa, fb]) (r) = (fafb − fbfa) (r) = fa (fb (r))− fb (fa (r))

= fa

(
[r, b]σ,τ

)
− fb

(
[r, a]σ,τ

)
=
[
[r, b]σ,τ , a

]
σ,τ
−
[
[r, a]σ,τ , b

]
σ,τ

= [r, [b, a]]σ,τ =
(
f[b,a]

)
(r) .

So, it implies

(2) [fa, fb] = f[b,a], ∀fa, fb ∈ fR.

Lemma 2.7. fR =
{
fa : R→ R | fa(x) = [x, a]σ,τ , a ∈ R

}
is a Lie subring of

Gder (R) .

Proof. fR is obviously a Lie subring of Gder (R) from the (1) and (2). �

Lemma 2.8. For a fixed a ∈ R, the followings hold:

i) f−a = −fa.
ii) fa = iσ(−a) + l(σ−τ)(a), where u ∈ R, lu : R→ R such that lu (x) = ux.

iii) fa = iτ(−a)+r(σ−τ)(a), where u ∈ R, ru : R→ R such that ru (x) = xu.
iv) If σ (a) = τ (a) ∈ Z (R), then fa = 0. Conversely, if fa = 0 and R is a

semiprime ring, then σ (a) = τ (a) ∈ Z (R) .
v) If A is a Lie ideal of R, then fA = {fa ∈ fR | a ∈ A} is a Lie subring

as well as a Lie ideal of fR.

Proof. (i) For an arbitrary x ∈ R,
f−a (x) = xσ (−a)− τ (−a)x = −xσ (a)− (−τ (a))x

= − (xσ (a)− τ (a)x) = − [x, a]σ,τ = − (fa (x)) = (−fa) (x) .

Thus f−a = −fa.
(ii) For any x ∈ R,

fa (x) = xσ (a)− τ (a)x = xσ (a)− τ (a)x∓ σ (a)x
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= [x, σ (a)] + ((σ − τ) (a))x = [σ (−a) , x] + ((σ − τ) (a))x.

Let lu : R→ R such that lu (x) = ux where u ∈ R. For all x ∈ R
fa (x) = iσ(−a) (x) + l(σ−τ)(a) (x) =

(
iσ(−a) + l(σ−τ)(a)

)
(x) .

Thus fa = iσ(−a) + l(σ−τ)(a).
(iii) We can prove by the similar way as in the proof of (ii).
(iv) Since σ (a) = τ (a) ∈ Z (R) , it holds that fa (x) = xσ (a) − τ (a)x =

x (σ (a)− τ (a)) = 0 for all x ∈ R. Thus fa = 0.
Conversely, if fa = 0, then a ∈ Nσ,τ . Since R is a semiprime ring and

a ∈ Nσ,τ , it follows that σ (a) = τ (a) ∈ Z (R) from Lemma 2.6.
(v) Since A is a Lie ideal of R, it is obviously that fa − fb = fa−b ∈ fA

and [fa, fb] = f[b,a] ∈ fA for all fa, fb ∈ fA. So, fA is a Lie subring of fR.
Let fa ∈ fA with a ∈ A and fr ∈ fR with r ∈ R. Since A is a Lie ideal of R,
[r, a] ∈ A with a ∈ A, r ∈ R which implies that [fa, fr] = f[r,a] ∈ fA. Thus fA
is a Lie ideal of fR. �

Lemma 2.9. l (fR) =
{
fa ∈ fR | iσ(a) = 0

}
is a subring as well as a Lie ideal

of fR. Moreover,

l (fR) = {fa ∈ fR | fa (xy) = fa (x) y for all x, y ∈ R} .

Proof. Let fa, fb ∈ l (fR). Since iσ(a) = 0 and iσ(b) = 0, it holds

iσ(a−b) = iσ(a) − iσ(b) = 0

and
iσ([b,a]) =

[
iσ(b), iσ(a)

]
= 0.

This means fa−b, f[b,a] ∈ l (fR) . Thus l (fR) is a Lie subring of fR. Assume
that fa ∈ l (fR) and fr ∈ fR.

iσ([r,a]) =
[
iσ(r), iσ(a)

]
=
[
iσ(r), 0

]
= 0

which implies [fa, fr] = f[r,a] ∈ l (fR) . So, l (fR) is a Lie ideal of fR.
Moreover, since iσ(a) = 0

fa (xy) = fa (x) y + xiσ(−a) (y) = fa (x) y + x
(
−iσ(a)

)
(y) = fa (x) y

is obtained for all x, y ∈ R. �

The following theorem is a generalization of Lemma 2.1.

Theorem 2.10. The mapping g : L (R) → fR given by g (a) = f−a for all
a ∈ R is a Lie epimorphism with kernel Nσ,τ . Thus L (R) /Nσ,τ ∼= fR.

Proof. Mapping g holds that for all a, b ∈ R
g (a+ b) = f−(a+b) = f−a + f−b = g (a) + g(b)

and

g ([a, b]) = f−([a,b]) = f[b,a] = [fa, fb] = [−fa,−fb]
= [f−a, f−b] = [g (a) , g (b)] .
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So, g is a Lie homomorphism.

ker g = {a ∈ R | g (a) = f0} = {a ∈ R | f−a = 0}

=
{
a ∈ R | [x, a]σ,τ = 0 for all x ∈ R

}
= Nσ,τ

and it is clear that g is surjective. Thus L (R) /Nσ,τ ∼= fR. �

Theorem 2.11. Let R be a semiprime ring and σ be an epimorphism of R.
Then the followings hold:

i) The mapping h : fR → I (R) given by h (fa) = iσ(−a) for all fa ∈ fR is
a Lie epimorphism with kernel l (fR) . Thus fR/l (fR) ∼= I (R) .

ii) It holds hg = θσ.

Proof. (i) Taking fa, fb ∈ fR such that fa = fb. It follows that [x, a]σ,τ =

[x, b]σ,τ for all x ∈ R. So, it holds that a − b ∈ Nσ,τ . Since R is a semiprime

ring, σ (a− b) ∈ Z (R) from Lemma 2.6. This means [r, σ (a)] = [r, σ (b)] for all
r ∈ R. It follows that iσ(−a) = iσ(−b) which implies that h (fa) = h (fb) . Thus
h is well defined. For all fa, fb ∈ fR

h (fa + fb) = h (fa+b) = iσ(−(a+b)) = iσ(−a) + iσ(−b)

= h (fa) + h (fb)

and

h ([fa, fb]) = h
(
f[b,a]

)
= iσ(−[b,a]) = iσ([a,b]) =

[
iσ(a), iσ(b)

]
=
[
iσ(−a), iσ(−b)

]
= [h (fa) , h (fb)]

are obtained. So, h is a Lie homomorphism. Let ix ∈ I (R) with x ∈ R. Since σ
is an epimorphism of R, there exists an element y ∈ R which holds x = σ (y) .
In this case, there exists an element f−y ∈ fR which holds

ix = iσ(y) = iσ(−(−y)) = h (f−y) .

This means that h is surjective. Moreover,

kerh = {fa ∈ fR | h (fa) = 0} =
{
fa ∈ fR | iσ(a) = 0

}
= l (fR) .

Thus fR/l (fR) ∼= I (R) .
(ii) By using the mappings in (i), Lemma 2.1 and Theorem 2.10

L (R)
↓g ↘θσ

fR →
h

I (R)

is obtained. Thus hg = θσ. �

Corollary 2.12. Let R be a prime ring of characteristic not 2 and σ be an
epimorphism of R. Then fR/l (fR) is a prime Lie ring. So, l (fR) is a prime
Lie ideal of fR.



ON A LIE RING OF GENERALIZED INNER DERIVATIONS 833

Proof. I(R) is a prime Lie ring from Lemma 2.2 and it holds that fR/l (fR) ∼=
I (R) from Theorem 2.11(i). Thus fR/l (fR) is a prime Lie ring. It follows that
l (fR) is a prime Lie ideal of fR. �

Corollary 2.13. Let R be a semiprime 2-torsion free ring and σ be an epimor-
phism of R. Then fR/l (fR) is a semiprime Lie ring. So, l (fR) is a semiprime
Lie ideal of fR.

Proof. We can prove by the similar way as in the proof of Corollary 2.12 by
using Lemma 2.3 and Theorem 2.11(i). �

Theorem 2.14. Let A,B be Lie ideals of R. If fR is a prime Lie ring, then
[fA, fB ] = (0) implies that either fA = (0) or fB = (0) .

Proof. Since fR is a prime Lie ring, L (R) /Nσ,τ is a prime Lie ring from Theo-
rem 2.10. So, Nσ,τ is a prime Lie ideal of L (R) . Since [fA, fB ] = (0) , it holds
that 0 = [fa, fb] = f[b,a] for all fa ∈ fA, for all fb ∈ fB . Thus [b, a] ∈ Nσ,τ for
all a ∈ A, for all b ∈ B which implies that [A,B] ⊂ Nσ,τ . Since Nσ,τ is a prime
Lie ideal of L (R) , it follows that either A ⊂ Nσ,τ or B ⊂ Nσ,τ . It implies that
either fA = (0) or fB = (0) . �

Corollary 2.15. Let A be a Lie ideal of R. If fR is a semiprime Lie ring, then
[fA, fA] = (0) implies that fA = (0) .
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