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EXPONENTIAL STABILITY OF A CLASS OF NONLINEAR

DIFFERENCE EQUATIONS IN BANACH SPACES

Nguyen Sinh Bay, Le Van Hien, and Hieu Trinh

Abstract. The problems of global and local exponential stability analy-

sis of a class of nonlinear non-autonomous difference equations in Banach
spaces are studied in this paper. By a novel comparison technique, new

explicit exponential stability conditions are derived. Numerical examples
are given to illustrate the effectiveness of the obtained results.

1. Introduction

It is well-known that delay differential equations (DDEs) play an essential
role in modeling a wide range of phenomena in the vivid world [9,25]. Typical
examples are chemical and physical processes, data transmission lines, biolog-
ical models, robotic control or communication networks. These practical sys-
tems are usually modeled in the form of nonlinear continuous-time systems with
time-varying delays, which are much more complicated than corresponding or-
dinary differential equations [12,20]. Today, with a dramatical development of
computer-based computational techniques, difference equations are found to be
much more appropriate for computer simulation, experiment and computation,
which play an important role in realistic applications. By a discretization pro-
cess, discrete-time systems described by difference equations inherit the similar
dynamical behavior of the continuous-time ones [12]. Considerable attention
from researchers has been devoted to develop efficient numerical methods and
enrich theoretical aspects for this type of systems [7, 23, 24, 28]. Particularly,
the problem of stability analysis of difference equations with or without delays
has received extensive attention recently [4, 11,12,16,17,27].

In most of existing results, which concern with stability of difference equa-
tions with delay, the Lyapunov–Krasovskii functional (LKF) method is widely
used to derive sufficient stability conditions. However, this approach, on one
hand, relies heavily on how to choose an appropriate LKF candidate which
usually leads to serious difficulties and, on the other hand, is hard to apply to
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nonlinear non-autonomous equations [14]. Another effective approach is the use
of discrete-type inequalities such as Gronwall inequality or Halanay inequalities
[1, 2, 12,19,26–28,30].

On the other hand, a numerical approximation process of a variety of practi-
cal systems leads to difference equations in infinite-dimensional spaces [4,7,29].
When considering the applicability of numerical methods for dynamical sys-
tems, it is important to analyze whether or not numerical methods inherit
dynamical properties of the underlying systems. Therefore, it is relevant and
important to study asymptotic behavior of difference equations in a Banach
spaces [3, 5, 6, 10,21,29].

Motivated by the above discussion, in this paper, we consider the prob-
lem of exponential stability analysis of a class of higher-order nonlinear non-
autonomous difference equations in Banach spaces. Based on a novel compari-
son technique, we establish explicit conditions that ensure exponential stability
of the equation with general growth condition of the nonlinear part. Specifi-
cally, the derived conditions ensure both global exponential stability and local
exponential stability of the equation when the nonlinear part satisfies a sub-
linear condition and a superlinear condition, respectively. Numerical examples
are given to illustrate the effectiveness of the obtained results.

Notation. Throughout this paper, we let Z and Z+ denote the set of integers
and positive integers, respectively. For r ∈ Z, we denote Zr = {m ∈ Z : m ≥ r}
and for r1, r2 ∈ Z, r1 ≤ r2, the set {r1, r1 + 1, . . . , r2} is denoted as Z[r1, r2].
We also use the notation m to denote the set Z[1,m] for m ∈ Z+.

2. Preliminaries

Consider the following functional equation

(1) x′(t) = −ax(t) + b(t)f(t, xt), x0 = φ,

where a > 0 is a constant, b ∈ L∞(R,R), f : R × C([−τ, 0],R) → R, τ > 0,
is a continuous function, φ ∈ C([−τ, 0],R) is the initial condition and xt ∈
C([−τ, 0],R) defined by xt(s) = x(t+ s), s ∈ [−τ, 0].

By employing continuous Halanay inequality, it was proved in [15] that if
|f(t, φ)| ≤ ‖φ‖ for all φ ∈ C([−τ, 0],R) and b∞ = esssup|b(t)| < a, then all
solutions of (1) converge exponentially to zero. Later, by a discrete Halanay
inequality, it was proved in [18] the delay-independent condition b∞ < a is
preserved under a numerical scheme. More precisely, let r be a positive integer
(the number of subintervals) and define h = τ/r as the discretization step.
Denote t0 = 0, tn+i = tn + ih, xn = x(tn), xn+i = x(tn + ih), i ∈ Z, then (1)
can be approximated by the following scheme:

Step 1 Calculate xn = φ(tn) for n ∈ Z[−r, 0].
Step 2 Define ψn : [tn−r, tn] → R as the piecewise linear function connecting

the r + 1 points pn−r = (tn−r, xn−r), . . . , pn = (tn, xn) and ϕn(t) =
ψn(t− tn).
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Step 3 Calculate f̄(n, xn, . . . , xn−r) = b(tn)f(tn, ϕn).

By using the explicit Euler discretization method to approximate (1), we obtain

(2) xn+1 = (1− ah)xn + hf̄(n, xn, . . . , xn−r), n > 0.

Theorem 2 in [18] ensures that equation (2) is asymptotically stable if b∞ < a
and h ≤ 1

a .
It should be pointed out that the asymptotic stability of (1) is preserved

in (2) only for sufficiently small sizes of discretization step. Now, we slightly
modify the approximation of (1). By applying the backward Euler method into
the linear part, equation (1) is approximated as

(3)
xn+1 − xn

h
= −axn+1 + f̄(n, xn, . . . , xn−r)

which can be written in the form

(4) xn+1 =

(
1− ah

1 + ah

)
xn +

h

1 + ah
f̄(n, xn, . . . , xn−r).

It can be verified by Theorem 2 in [18] that the asymptotic stability of (1) is
preserved for difference equation (4) without any restriction on the step size
h > 0.

Now, we adapt the discretization scheme in deriving (4) to the following
generalized nonlinear non-autonomous delay differential equation

(5) x′(t) = −a(t)x(t) + b(t)G(t, x(t− τ1), x(t− τ2), . . . , x(t− τm)), t ≥ 0,

where a, b ∈ C(R+,R) are continuous functions, a(t) ≥ 0, x(t) ∈ X, a Banach
space with the norm ‖·‖, G : R+×Xm → X is a continuous function, G(t, 0) = 0,
τi, i ∈ m = {1, 2, . . . ,m}, are positive numbers involving time-delay. We
assume that 0 < τ1 < τ2 < · · · < τm and τi, i ∈ m, have a positive common
factor, namely h, that means there are integers r1, r2, . . . , rm such that τi =
hri, i ∈ m. By the same discretization scheme used in deriving (4) with step
size h, it follows from (5) that

(6) xn+1 =
1

1 + a(n)
xn +

b(n)

1 + a(n)
F (n, xn−r1 , xn−r2 , . . . , xn−rm), n ≥ 0,

where F (n, xn−r1 , . . . , xn−rm) = G(tn, ϕn1, . . . , ϕnm), a(n) = ha(tn+1) and
b(n) = hb(tn). In equation (6), each initial condition is defined by a sequence,
also denoted by φ, on Z[−rm, 0], that is x(n) = φ(n), n ∈ Z[−rm, 0]. For
convenience, we denote ‖φ‖ = maxn∈Z[−rm,0] ‖φ(n)‖.

First, we recall here that equation (6) is said to be globally exponentially
stable if there exist positive scalars β, γ such that any solution xn of (6) with
initial condition φ satisfies the inequality

(7) ‖xn‖ ≤ β‖φ‖e−γn, n ∈ Z+.

If there exists a scalar δ > 0 such that inequality (7) holds for any initial condi-
tion φ satisfying ‖φ‖ < δ, then equation (6) is said to be locally exponentially
stable.
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The main objective of this paper is to derive exponential stability conditions
for equation (6) subject to general growth conditions of the nonlinear func-
tion F . Inspired by the comparison techniques of discrete Halanay inequalities
[12,27,30], we derive explicit conditions that ensure global exponential stability
of equation (6) when the nonlinear function F satisfies a sublinear condition.
Different from existing results in the literature, in this paper, we will prove
that if the nonlinear function F satisfies a type of superlinear conditions, then
our derived conditions guarantee a local exponential estimate for (6). More-
over, as shown by numerical examples, our conditions are competitive and less
conservative than existing results in the literature.

3. Main results

3.1. Global exponential stability

We make the following assumptions.

(H1) a(n), |b(n)| are bounded functions satisfying

0 ≤ a+ ≤ a(n) ≤ a+, b+ ≤ |b(n)| ≤ b+, ∀n ∈ Z+,

where, for a bounded function g(n) on Z+, we denote g+ = infn∈Z+ g(n)
and g+ = supn∈Z+ g(n).

(H2) There exist a positive integer p, nonnegative bounded functions λi(n),
i ∈ p, and nonnegative scalars αij such that

∑m
j=1 αij = 1,∀i ∈ p, and

(8) ‖F (n, x1, x2, . . . , xm)‖ ≤
p∑
i=1

λi(n)

m∏
j=1

‖xj‖αij ,∀(x1, x2, . . . , xm) ∈ Xm.

Remark 3.1. It follows from (H2) that αij ≤ 1 for all i ∈ p, j ∈ m, and thus
condition (8) is referred to a sublinear condition of nonlinear function F .

We are now in a position to present our global exponential stability condi-
tions for equation (6) as given in the following theorem.

Theorem 3.2. Let assumptions (H1) and (H2) hold. If

(9) σ , lim inf
n→∞

{
a(n)− |b(n)|

p∑
i=1

λi(n)
}
> 0,

then equation (6) is globally exponentially stable. More precisely, there exist
positive constants β, γ such that any solution xn of (6) with initial condition
φ satisfies

(10) ‖xn‖ ≤ β‖φ‖e−γn, n ∈ Z+.

Proof. Note at first that, by (8) and (9), x = 0 is the unique equilibrium point
of (6). We now prove that this equilibrium point is globally exponentially
stable.
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By (9), there exists an integer N0 ≥ 1 such that

(11) inf
n≥N0

{
a(n)− |b(n)|

p∑
i=1

λi(n)
}
≥ σ

2
.

Therefore,

(12)

1 + |b(n)|
∑p
i=1 λi(n)

1 + a(n)
= 1−

a(n)− |b(n)|
∑p
i=1 λi(n)

1 + a(n)

≤ 1− 1

1 + a+
inf
n≥N0

{
a(n)− |b(n)|

p∑
i=1

λi(n)
}

≤ 1− σ

2(1 + a+)
, ρ ∈ (0, 1), ∀n ≥ N0.

From (6) we have

(13)

‖xn+1‖ ≤
1

1 + a(n)
‖xn‖+

|b(n)|
1 + a(n)

‖F (n, xn−r1 , . . . , xn−rm)‖

≤ 1

1 + a(n)
‖xn‖+

|b(n)|
1 + a(n)

p∑
i=1

λi(n)

m∏
j=1

‖xn−rj‖αij .

For any initial condition φ, ‖xn‖ ≤ ‖φ‖, ∀n ∈ Z[−rm, 0]. Thus, it follows from

(13) that ‖x1‖ ≤ 1+b+λ∗

1+a+
‖φ‖, where λ∗ =

∑p
j=1 λ

+
j . By induction, from (13)

we readily obtain

(14) ‖xn‖ ≤
(

1 + b+λ∗

1 + a+

)n
‖φ‖, n ≥ 0.

Suppose 1+b+λ∗

1+a+
> 1. Then, by (14), ‖xn‖ ≤ β0‖φ‖, ∀n ∈ Z[−rm, N0 − 1],

where β0 = max
{(

1+b+λ∗

1+a+

)N0−1
, 1
}

. Note that the above estimate obviously

holds if 1+b+λ∗

1+a+
≤ 1. This, in regard to (13)-(14), leads to

(15) ‖xn‖ ≤ β0ρ‖φ‖, ∀n ≥ N0.

Now, inspired by the Archimède algorithm, we rescale ZN0 by the following
sets

(16) Ik = {N0 + (k − 1)rm + s : s ∈ Z[0, rm − 1]} , k ≥ 1,

then it can be seen that

ZN0 = {n ∈ Z : n ≥ N0} = ∪∞k=1Ik.

We will prove by induction that

(17) ‖xn‖ ≤ β0ρk‖φ‖, ∀n ∈ Ik, ∀k ∈ Z+.
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Clearly, (17) holds for k = 1. Suppose (17) holds for some k ∈ Z+. Then, for
n = N0 + krm − 1, we have n− rj = N0 + (k− 1)rm + rm − 1− rj ∈ Ik. Thus,

‖xn+1‖ ≤
1

1 + a(n)
‖xn‖+

|b(n)|
1 + a(n)

p∑
i=1

λi(n)

m∏
j=1

‖xn−rj‖αij

≤ 1

1 + a(n)
β0ρ

k‖φ‖+
|b(n)|

1 + a(n)

p∑
i=1

λi(n)

m∏
j=1

(
β0ρ

k‖φ‖
)αij

≤
1 + |b(n)|

∑m
i=1 λi(n)

1 + a(n)
β0ρ

k‖φ‖

≤ β0ρk+1‖φ‖.

Now, for any n ∈ Ik+1, we write n = N0 + krm + s, s ∈ Z[0, rm − 1], then by
the same arguments we have

‖xn+1‖ ≤
1

1+a(n)
‖xn‖+

|b(n)|
1+a(n)

p∑
i=1

λi(n)

m∏
j=1

‖xn−rj‖αij

≤ 1

1+a(n)
‖xn‖+

|b(n)|
1+a(n)

p∑
i=1

λi(k)
∏
s<rj

(
‖xn−rj‖

)αij
∏
rj≤s

(
‖xn−rj‖

)αij

≤ 1

1 + a(n)
β0ρ

k+1‖φ‖+
|b(n)|

1 + a(n)

p∑
i=1

λi(k)
∏
s<rj

(
β0ρ

k‖φ‖
)αij

×
∏
rj≤s

(
β0ρ

k+1‖φ‖
)αij

≤
1 + |b(n)|

∑m
i=1 λi(n)

1 + a(n)
β0ρ

k‖φ‖

≤ β0ρk+1‖φ‖.

This shows that (17) holds for k + 1. By induction, (17) holds for all k ∈ Z+.
Finally, to get a global exponential estimate, we define γ = − 1

rm
log(ρ)

and β1 = ρ
1−N0
rm β0. For any n ≥ N0 there exists a unique k ≥ 1 such that

n = N0 + (k − 1)rm + s, s ∈ Z[0, rm − 1], and thus, n ≤ krm + N0 − 1 which

yields ρk ≤
(

rm
√
ρ
)n+1−N0

. Therefore, by (17), we have

(18)

‖xn‖ ≤ β0ρk‖φ‖ ≤ β0
(

rm
√
ρ
)n+1−N0‖φ‖

= β1‖φ‖e−γn, n ≥ N0.

In addition,

(19) ‖xn‖ ≤ β0‖φ‖ ≤ β0eγ(N0−1)‖φ‖e−γn, ∀n ∈ Z[0, N0 − 1].

A combination of (18) and (19) gives

‖xn‖ ≤ β‖φ‖e−γn, ∀n ≥ 0,
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where β = max
{
β0e

γ(N0−1), β1

}
. This shows the global exponential stability

of (6). The proof is completed. �

Remark 3.3. If condition a(n)−|b(n)|
∑p
i=1 λi(n) ≥ σ > 0 holds for all n ∈ Z+,

then β = 1 and any solution xn of (6) satisfies

(20) ‖xn‖ ≤ sup
n∈Z[−rm,0]

‖φ(n)‖e−γ̃n, ∀n ≥ 0,

where γ̃ = − 1
rm

log
(

1− σ
1+a+

)
.

By the same arguments used in the proof of Theorem 3.2 we obtain the
following result [22].

Corollary 3.4 ([22], Thm. 3.1). Let x(n) be a nonnegative sequence satisfying

x(n+ 1) ≤ 1

1 + ã(n)h
x(n) +

b̃(n)h

1 + ã(n)h
sup

n−k(n)≤j≤n
x(j), n ≥ n0,(21a)

x(n) = |ϕ(n)|, n ∈ [n0 − k∗, n0],(21b)

where h > 0, k(n), n ∈ Z, is a nonnegative bounded sequence of integers,
k∗ = sup k(n) is a positive integer, ϕ(n), n ∈ [n0 − k∗, n0], is a real valued

sequence and ã(n), b̃(n) are nonnegative bounded sequences of real numbers.
Suppose that

(22) σ̃ = inf
n∈Z

(ã(n)− b̃(n)) > 0.

Then, there exists a real number λ̃ > 1 such that

(23) x(n) ≤ sup
n0−k∗≤j≤n0

x(j)λ̃−(n−n0), n ≥ n0.

Proof. The proof is straightforward from Theorem 3.2 and Remark 3.3 by
setting a(n) = hã(n), b(n) = hb̃(n) and σ = hσ̃. Then, λ̃ is defined as

λ̃ =
(

1− hσ̃
1+hã+

)− 1
k∗

. �

Remark 3.5. In [22], by using the original technique of continuous Halanay

inequality, the existence of λ̃ was defined by the continuity of the function

F (λ) = sup
n∈Z

{ λ

1 + ã(n)h
+

b̃(n)h

1 + ã(n)h
λk

∗+1 − 1
}

and condition F (λ̃) ≤ − σ̃h
1+ã+h . In contrast, in Corollary 3.4 we give an explicit

convergent rate λ̃.

It is also worth to note that Theorem 3.2 in this paper encompasses some
recent results found in the literature, for instance, [17,26,27].
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Corollary 3.6 ([27]). The nonlinear difference equation

(24) xn+1 = (1− p)xn + f(n, xn, xn−h1 , . . . , xn−hm),

where hi ∈ Z+, p > 0, is globally exponentially stable if there exist qi ≥ 0,
qm > 0 satisfying

∑m
i=0 qi < p < 1 such that

(25) |f(n, xn, xn−h1
, . . . , xn−hm

)| ≤
m∑
i=0

qi|xn−hi
|.

Proof. We apply Theorem 3.2 for sequences

a(n) =
p+ q0

1− p− q0
, b(n) = 1, ∀n ∈ Z+

and p = m,λi(n) = qi
1−p−q0 , ∀n, αij = 1 if j = i and αij = 0 for j 6= i,

then it can be found that assumptions (H1) and (H2) are satisfied. Condition∑m
i=0 qi < p implies that

a(n)− b(n)

m∑
i=1

λi(n) ≥ σ :=
p−

∑m
i=1 qi

1− p
> 0, ∀n.

By Remark 3.3, equation (24) is globally exponentially stable. �

As an example, let us consider a linear non-autonomous difference equation
in Banach space X

(26) xn+1 =

k∑
i=0

Ai(n)xn−i, n ≥ 0,

where xn ∈ X and Ai(n) ∈ L(X) are linear continuous operators for all n ≥ 0.
The following result generalizes Corollary 2.6 in [17].

Corollary 3.7. Assume that

(27) lim sup
n→∞

k∑
i=0

‖Ai(n)‖ = α < 1.

Then, equation (26) is globally exponentially stable.

Proof. Denote F (n, x1, . . . , xk) =
∑k
i=1Ai(n)xi, then

‖F (n, x1, . . . , xk)‖ ≤
k∑
i=1

‖Ai(n)‖‖xi‖ =

k∑
i=1

λi(n)‖xi‖,

where λi(n) = ‖Ai(n)‖. Let ε = 1−α
2 , a(n) = 1−‖A0(n)‖−ε

‖A0(n)‖+ε and b(n) =
1

‖A0(n)‖+ε , then from (27) we have

(28) ‖xn+1‖ ≤
1

1 + a(n)
‖xn‖+

b(n)

1 + a(n)

k∑
i=1

λi(n)‖xn−i‖.



NON-AUTONOMOUS DIFFERENCE EQUATIONS IN BANACH SPACES 859

It is easy to verify that

lim inf
n→∞

{
a(n)− |b(n)|

k∑
i=1

λi(n)
}

= lim inf
n→∞

1− ε−
∑k
i=0 ‖Ai(n)‖

‖A0(n)‖+ ε

≥ 1− α
1 + α

= σ > 0.

Thus, by Theorem 3.2, equation (26) is globally exponentially stable. �

3.2. Local exponential stability

As discussed in [17], in many important practical models, function F does
not satisfy the sublinear condition (H2). In this section, we introduce the
following assumption including the case of superlinear functions.

(H3) There exist positive integers p, q, nonnegative bounded functions λi(n),
µk(n) and nonnegative scalars αij , βkj such that

∑m
j=1 αij = 1, i ∈ p,∑m

j=1 βkj > 1, k ∈ q, and the following condition holds

(29) ‖F (n, x1, x2, . . . , xm)‖ ≤
p∑
i=1

λi(n)
m∏
j=1

‖xj‖αij +

q∑
k=1

µk(n)
m∏
j=1

‖xj‖βkj

for all n ∈ Z+, (x1, x2, . . . , xm) ∈ Xm.

Remark 3.8. Assumption (H3) is obviously weaker than (H2). More precisely, if
nonlinear function F satisfies (H2), then F also satisfies (H3). In the following
theorem we will show that under weaker assumption (H3), condition (9) ensures
local exponential stability of (6) but does not guarantee global exponential
stability of (6).

Theorem 3.9. Under assumptions (H1) and (H3), equation (6) is locally ex-
ponentially stable provided that condition (9) holds.

Proof. Let condition (9) hold. Then, estimates (11) and (12) are still valid.
Similar to (13), we have
(30)

‖xn+1‖ ≤
1

1 + a+

{
‖xn‖+b+

( p∑
i=1

λ+i

m∏
j=1

‖xn−rj‖αij +

q∑
k=1

µ+
k

m∏
j=1

‖xn−rj‖βkj

)}
.

For a fixed δ0 > 0 and ‖φ‖ < δ0, by induction, it can be found from (30) that
‖xn‖ ≤ δn, n ∈ Z[0, N0], where (δn), n ∈ Z[0, N0], is a sequence of positive
numbers defined by

(31) δn+1 =
1

1 + a+

(
1 + b+λ∗ + b+

q∑
k=1

µ+
k δ
−1+

∑m
j=1 βkj

n

)
δn.

Since −1 +
∑m
j=1 βkj > 0 for all k ∈ q, it can be seen from (31) that δ ,

supn∈Z[0,N0] ‖xn‖ ≤ 1 for sufficiently small δ0.
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For n = N0, we have

‖xn+1‖ ≤
1

1 + a(n)
‖xn‖+

b(n)

1 + a(n)

( p∑
i=1

λi(n)

m∏
j=1

‖xn−rj‖αij

+

q∑
k=1

µi(n)

m∏
j=1

‖xn−rj‖βij

)
≤ 1

1 + a(n)

[
1 + b(n)

( p∑
i=1

λi(n) +

q∑
k=1

µk(n)δ−1+
∑m

j=1 βkj

)]
δ

≤
(

1− σ

2(1 + a+)
+

b+

1 + a+

q∑
k=1

µ+
k δ
−1+

∑m
j=1 βkj

)
δ.

Since 0 < 1− σ
2(1+a+) < 1 and −1 +

∑m
j=1 βkj > 0 for all k ∈ q, there exists a

δ̂ ∈ (0, 1] such that if δ ≤ δ̂, then

ρ = 1− σ

2(1 + a+)
+

b+

1 + a+

q∑
k=1

µ+
k δ
−1+

∑m
j=1 βkj ∈ (0, 1).

Therefore,

(32) sup
n≥N0

1

1 + a(n)

{
1 + b(n)

( p∑
i=1

λi(n) +

q∑
k=1

µi(n)δ−1+
∑m

j=1 βkj

)}
≤ ρ.

Moreover, by the induction method, we also have

(33) ‖xn‖ ≤ δ, ∀n ≥ N0.

Now, we define a function ϕ : R+ → R+ as follow
(34)

ϕ(η) = sup
n≥N0

( η

1 + a(n)
+

b(n)

1 + a(n)

p∑
i=1

λi(n)η1+
∑m

j=1 αijrj

+
b(n)

1 + a(n)

q∑
k=1

µi(n)δ−1+
∑m

j=1 βkjη1+
∑m

j=1 βkjrj
)
.

It is obvious that ϕ(·) is a continuous function on R+, ϕ(1) ≤ ρ < 1+ρ
2 < 1

and ϕ(η) → ∞ as η tends to infinity. Hence, there exists an η0 > 1 such that
ϕ(η0) < ρ̂ = 1+ρ

2 .
By (33) we have ‖xN0

‖ ≤ δ and thus η0‖xN0+1‖ ≤ ϕ(η0)δ ≤ ρ̂δ < δ. By
induction, once again, we readily obtain ηn0 ‖xN0+n‖ < δ, ∀n ≥ 0, which yields

(35) ‖xN0+n‖ < δη−n0 , ∀n ≥ 0.

This shows that the zero solution of (6) is locally exponentially stable. The
proof is completed. �
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Remark 3.10. The results of Theorem 3.2 and Theorem 3.9 can be easily ex-
tended to the case of time-varying delays rj = rj(k) satisfying rj(k) ≤ r+j ,
j ∈ m. The proof is then straightforward from the proof of Theorems 3.2 and
3.9 and thus let us omit it here.

4. Illustrative examples

In this section, three numerical examples are given to illustrate the effec-
tiveness of the obtained results presented in the preceding section.

Example 4.1. Let X be a finite-dimensional Banach space with basic {ek}Nk=1.
Consider the following difference equation
(36)

xn+1 =
1

1 + a(n)
xn +

b(n)

1 + a(n)

(
xn−1 +λ‖xn−1‖

1
3 ‖xn−2‖

2
3 e1 +µ‖xn−1‖xn−3

)
,

where a(n) = 2 + 1
2n , b(n) = 1 + 1

3n−1 and λ, µ are real parameters.
We have a+ = 3, a+ = 2, b+ = 4, b+ = 1 and

a(n)− b(n) = 1 +
1

2n
− 1

3n−1
≤ 2− 1

3n−1
.

(a) For λ = µ = 0, note that infn≥0{a(n) − b(n)} ≤ −1, the proposed
conditions in [17, 19, 22, 26] are not satisfied. However, it can be seen
that lim infn→∞{a(n) − b(n)} = 1. By Theorem 3.2 in this paper,
equation (36) with λ = µ = 0 is globally exponentially stable.

(b) Let µ = 0 then lim infn→∞{a(n)− b(n)
∑p
i=1 λi(n)} = 1− |λ|. In this

case, Theorem 3.2 ensures the global exponential stability of equation
(36) for |λ| < 1.

(c) For µ 6= 0 and |λ| < 1, by Theorem 3.9, equation (36) is locally ex-
ponentially stable. However, in this case, (36) is not globally expo-
nentially stable. For instance, let X = R2, λ = 0, µ = 1 and initial
sequence φ(n) = [δ 0]T ∈ R2, n ∈ Z[−3, 0], where δ > 1 is a con-
stant. It is found from (36) that the corresponding solution of (36)
satisfies ‖x(n)‖ > 1 for all n ≥ 0. This shows that (36) is not globally
exponentially stable.

Example 4.2. Let X = l2 be the Hilbert space of real sequences endowed with
Cauchy product (·, ·)l2 and induced norm ‖ · ‖l2 defined as

‖u‖l2 =
( ∞∑
j=1

|uj |2
) 1

2

, u = (uj)
∞
j=1 ∈ l2.

Consider the following equation in l2

(37) xk+1,j =
1

2− e−k
xk,j +

q

4j−1
xαk−1,jx

β
k−2,j , j ≥ 1,

where q ∈ R, α > 0, β > 0 are real parameters.
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Note that equation (37) can be written in the form of (6) with a(k) = 1−e−k
and b(k) = q(2 − e−k). The nonlinear function in the right-hand side of (37)
satisfies

(38) ‖F (k, u, v)‖l2 ≤
( ∞∑
j=1

41−j
) 1

2 ‖u‖αl2‖v‖
β
l2 =

2√
3
‖u‖αl2‖v‖

β
l2 , ∀u, v ∈ l

2.

Therefore,

(a) when α + β ≤ 1, condition (10) is satisfied if |q| <
√
3
4 . By Theorem

3.2, equation (37) is globally exponentially stable.
(b) when α+β > 1, by Theorem 3.9, equation (37) is locally exponentially

stable for all q ∈ R.

Example 4.3. Consider the following non-autonomous equation with delays

(39) x′(t) = −α(t)x(t) + β(t)x(t− τ(t))e−γ(t)x(t−τ(t)),

where α, β, γ and τ are continuous functions on R+ satisfying α(t) > 0, γ(t) > 0
and β(t) ≥ 0 for all t ∈ R+. Equation (39) represents a well-known biological
model, namely Nicholson’s blowflies model (see, [13] and the references therein).
It was proved in [13] that for any initial function ϕ ∈ C([−τ+, 0],R+), there
exists a unique nonnegative solution x(t, ϕ) of (39) on [0,∞). Assume that
there are positive numbers α+, η such that

α(t) ≥ α+, 0 ≤ β(t)

γ(t)
≤ η, ∀t ≥ 0.

Now, let h > 0 be a given step of discretization such that r = τ+

h ∈ Z+.
Then (39) is discretized as follows

(40) xn+1 =
1

1 + hα(tn+1)
xn +

hβ(tn)

1 + hα(tn+1)
xn−re

−γ(tn)xn−r .

In this case we have |F (n, xn−r)| = xn−re
−γ(tn)xn−r ≤ 1

γ(tn)e
. Therefore, (40)

satisfies (9) with λ1(n) = 1
γ(tn)e

, λ2(n) = 0 and hence

a(n)− b(n)

2∑
i=1

λi(n) = h
(
α(tn+1)− β(tn)

γ(tn)e

)
≥ h(α+ − η/e).

If α+ > η
e , then σ = h

(
α+ − η

e

)
> 0 and condition (10) is satisfied. By

Theorem 3.2, equation (40) is globally exponentially stable. For illustrative
purpose, let α(t) = 1.5 + | sin(t)|, β(t) = 3| cos(2t)| and γ(t) = 1 + | cos(2t)|.
We have α+ = inft≥0 α(t) = 1.5, α+ = supt≥0 α(t) = 2.5, β+ = supt≥0 β(t) = 3

and η = supt≥0
β(t)
γ(t) = 3/2. Thus, α+− η

e = 3/2(1−1/e) > 0 and equation (41)

is globally exponentially stable. This means that the discretization of (39) is
exponentially convergent for any bounded delay τ(t). It is worth noting that,
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for this example, stability conditions proposed in [8] (Theorem 5) ensure that
all solutions of (39) converge to zero provided that

(41)
α+

β+
e−α

+τ+

> ln

(
β+2 + α+β

+

β+2 + α2
+

)
which yields τ+ < 0.2042. This shows the effectiveness of our derived condi-
tions.
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