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APPLICATIONS ON THE BESSEL-STRUVE-TYPE

FOCK SPACE

Fethi Soltani

Abstract. In this work, we establish Heisenberg-type uncertainty prin-

ciple for the Bessel-Struve Fock space Fν associated to the Airy operator
Lν . Next, we give an application of the theory of extremal function and

reproducing kernel of Hilbert space, to establish the extremal function
associated to a bounded linear operator T : Fν → H, where H be a

Hilbert space. Furthermore, we come up with some results regarding the

extremal functions, when T are difference operators.

1. Introduction

Fock space F (called also Segal-Bargmann space [3, 4]) is the Hilbert space
of entire functions on C with inner product given by

〈f, g〉 :=
1

π

∫
C
f(z)g(z)e−|z|

2

dxdy, z = x+ iy.

This space was introduced by Bargmann [2] and it was the aim of many works
[3,4,21,23,24]. The study of several generalizations of the classical Fock spaces
has a long and rich history in many different settings [5, 9, 19,20,22].

In this paper we consider the Bessel-Struve kernel Sν , ν > −1/2:

Sν(z) := jν(iz)− i hν(iz), z ∈ C,

where

jν(z) := 2νΓ(ν + 1)
Jν(z)

zν
and hν(z) := 2νΓ(ν + 1)

Hν(z)

zν
.

Here Jν and Hν are the Bessel and the Struve functions [6, 25].
The kernel Sν is analytic and it can be expanded in the form

(1.1) Sν(z) =

∞∑
n=0

zn

cn(ν)
, cn(ν) =

√
π n! Γ(n2 + ν + 1)

Γ(ν + 1)Γ(n+1
2 )

,
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and possesses the following integral representation

Sν(z) =
2Γ(ν + 1)
√
πΓ(ν + 1

2 )

∫ 1

0

(1− t2)ν−
1
2 eztdt.

The Bessel-Struve kernel Sν(z), z ∈ C, solves the equation

Lνu(z) = u(z), u(0) = 1,

where Lν is the Bessel-Struve operator given by

Lνu(z) :=
d2

dz2
u(z) +

2ν + 1

z

[
d

dz
u(z)− d

dz
u(0)

]
.

During the last years, the Bessel-Struve operator have gained considerable
interest in various field of mathematics [1, 8, 11–14] and in certain parts of
quantum calculus [22]. The results of this work will be useful when discussing
the Fock space associated to this operator. This space is the background of
some applications in this contribution. Especially,

- we study the Bessel-Struve operator and its adjoint operator on the Bessel-
Struve-type Fock space;

- we establish Heisenberg-type uncertainty principle for the Bessel-Struve-
type Fock space;

- we give an application of the theory of extremal function and reproduc-
ing kernel of Hilbert space, to establish the extremal function associated to a
bounded linear operator T : Fν → H, where H be a Hilbert space;

- we come up with some results regarding the extremal functions associated
to the difference operators Tf(z) := 1

z2 (f(z) − zf ′(0) − f(0)) and Tf(z) :=
1

2z2 (f(z) + f(−z)− 2f(0)).
The contents of the paper are as follows. In Section 2, we establish Heisen-

berg-type uncertainty principle for the Bessel-Struve-type Fock space Fν . In
Section 3, we give an application of the theory of reproducing kernels to the
Tikhonov regularization problem for bounded linear operator T : Fν → H,
where H be a Hilbert space. Next, we come up with some results regarding
the Tikhonov regularization problem for the difference operators given above.

2. Uncertainty principle for Fν

We denote by
• mν , ν > −1/2, the measure defined on C by

dmν(z) :=
1

π2νΓ(ν + 1)
|z|2ν+2Kν(|z|2)dxdy, z = x+ iy,

where Kν is the Macdonald function [6].
• L2(mν), the Hilbert space of measurable functions on C, for which

‖f‖L2(mν) :=

[∫
C
|f(z)|2dmν(z)

]1/2
<∞.
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• H(C), the space of entire functions on C.
Let ν > −1/2. We define the Bessel-Struve-type Fock space Fν as

Fν := L2(mν) ∩H(C).

The space Fν is equipped with the norm ‖f‖Fν := ‖f‖L2(mν).
The space Fν,e of even functions of Fν is just the generalized Fock space

associated with the Bessel operator (see [5]).

Theorem 2.1 (See [9]). Let f, g ∈ Fν with f(z) =
∑∞
n=0anz

n and g(z) =∑∞
n=0bnz

n. One has

〈f, g〉Fν =

∞∑
n=0

anbn cn(ν),

where cn(ν) are the constants given by (1.1).

Theorem 2.2. (i) The function kν given for w, z ∈ C by

(2.1) kν(z, w) = Sν(zw),

is a reproducing kernel for the Bessel-Struve-type Fock space Fν . That is
kν(z, ·) ∈ Fν , and for all f ∈ Fν , one has 〈f, kν(z, ·)〉Fν = f(z).

(ii) If f ∈ Fν , then |f(z)| ≤ e|z|2/2‖f‖Fν , z ∈ C.
(iii) The space Fν equipped with the inner product 〈·, ·〉Fν is a Hilbert space;

and the set
{

zn√
cn(ν)

}
n∈N

forms a Hilbert’s basis for the space Fν .

Proof. (i) See [9].
(ii) Let f ∈ Fν and z ∈ C. From (i), we have

|f(z)| ≤ ‖kν(z, ·)‖Fν‖f‖Fν .

Using the fact that

(2.2) ‖kν(z, ·)‖2Fν = kν(z, z) = Sν(|z|2) ≤ e|z|
2

,

we deduce the result.
(iii) Let {fn}n∈N be a Cauchy sequence in Fν . We put f = limn→∞ fn,

in L2(mν). From Theorem 2.2(ii), we have |fn+p(z)− fn(z)| ≤ e|z|
2/2‖fn+p −

fn‖Fν . This inequality shows that the sequence {fn}n∈N is pointwise convergent

to f . Since the function z → e|z|
2/2 is continuous on C, then {fn}n∈N converges

to f uniformly on all compact set of C. Consequently, f is an entire function
on C, then f belongs to the space Fν . On the other hand, from Theorem 2.1,

we get 〈zn, zm〉Fν = cn(ν)δn,m. This shows that the family
{

zn√
cn(ν)

}
n∈N

is an

orthonormal set in Fν . Let f(z) =
∑∞
n=0 anz

n be an element of Fν such that
〈f, zn〉Fν = 0 for all n ∈ N. From Theorem 2.1, we deduce that an = 0 for all
n ∈ N. This completes the proof. �
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We consider the space Uν defined as the space of entire functions f(z) =∑∞
n=0 anz

n such that
∑∞
n=0 n

2|an|2cn(ν) <∞. This space is a subspace of the
Bessel-Struve-type Fock space Fν . For f ∈ Uν with f(z) =

∑∞
n=0 anz

n one has

Lνf(z) =

∞∑
n=0

(n+ 2)(n+ 2ν + 2)an+2z
n,

and

z2f(z) =

∞∑
n=2

an−2z
n.

Using the fact that cn+2(ν) = (n+ 2)(n+ 2ν + 2)cn(ν) one has

‖Lνf‖2Fν ≤ (1 + 2ν)

∞∑
n=0

n4|an|2cn(ν),

and

‖z2f‖2Fν ≤ 4(ν + 1)|a0|2 + 3(2ν + 3)

∞∑
n=0

n2|an|2cn(ν).

Therefore Lνf and z2f belong to Fν .
The Bessel-Struve operator Lν satisfies the following properties (see [9]).
(i) For f, g ∈ Uν , 〈Lνf, g〉Fν = 〈f, L∗νg〉Fν , where L∗νg(z) = z2g(z).
(ii) For f ∈ Uν , [Lν , L

∗
ν ]f(z) := (LνL

∗
ν−L∗νLν)f(z) = 4(ν+1)f(z)+Wνf(z),

where

Wνf(z) = 4z
d

dz
f(z) + (2ν + 1)z

d

dz
f(0).

(iii) If f ∈ Uν , then Wνf ∈ Fν and

(2.3) ‖L∗νf‖2Fν = ‖Lνf‖2Fν + 4(ν + 1)‖f‖2Fν + 〈Wνf, f〉Fν .

By applying the previous properties of Lν and the following result of func-
tional analysis.

Theorem 2.3 (See [7,10]). Let A and B be self-adjoint operators on a Hilbert
space H. One has

‖(A− a)f‖H‖(B − b)f‖H ≥
1

2
|〈[A,B]f, f〉H |

for all f ∈ Dom(AB) ∩Dom(BA), and all a, b ∈ R.

We obtain the following Heisenberg-type uncertainty principle for the Bessel-
Struve-type Fock space Fν .

Theorem 2.4. Let f ∈ Uν . For all a, b ∈ R, one has

(2.4) ‖(Lν + z2 − a)f‖Fν‖(Lν − z2 + ib)f‖Fν ≥
∣∣∣‖z2f‖2Fν − ‖Lνf‖2Fν ∣∣∣,

where i is the imaginary unit.
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Proof. Let us consider the following two operators on Uν by

(2.5) A = Lν + z2, B = i(Lν − z2).

It follows that, for a function f ∈ Uν , we have Lνf ∈ Fν and z2f ∈ Fν .
Therefore Af and Bf are in Fν . The operators A, B are self-adjoint on Fν and
[A,B] = −2i(4(ν+ 1)I +Wν). Thus the inequality (2.4) follows from Theorem
2.3 and (2.3). �

The Heisenberg-type uncertainty principle of Theorem 2.4 can be written as
the following.

Theorem 2.5. Let f ∈ Uν . Then

(2.6) ∆+
ν (f)∆−ν (f) ≥ ‖f‖4Fν

(
‖z2f‖2Fν − ‖Lνf‖

2
Fν
)2
,

where
∆±ν (f) = ‖f‖2Fν‖(Lν ± z

2)f‖2Fν − |〈(Lν ± z
2)f, f〉Fν |2.

Proof. Let f ∈ Uν . The operator A given by (2.5) is self-adjoint, then for any
real a we have

‖(A− a)f‖2Fν = ‖Af‖2Fν + a2‖f‖2Fν − 2a〈Af, f〉Fν .
This shows that

min
a∈R
‖(A− a)f‖2Fν = ‖Af‖2Fν −

|〈Af, f〉Fν |2

‖f‖2Fν
,

and the minimum is attained when a =
〈Af,f〉Fν
‖f‖2Fν

. In other words, we have

(2.7) min
a∈R
‖(Lν + z2 − a)f‖2Fν = ‖(Lν + z2)f‖2Fν −

|〈(Lν + z2)f, f〉Fν |2

‖f‖2Fν
,

and the minimum is attained when a =
〈(Lν+z2)f,f〉Fν

‖f‖2Fν
. Similarly, we have

(2.8) min
b∈R
‖(Lν − z2 + ib)f‖2Fν = ‖(Lν − z2)f‖2Fν −

|〈(Lν − z2)f, f〉Fν |2

‖f‖2Fν
,

and the minimum is attained when b = i
〈(Lν−z2)f,f〉Fν

‖f‖2Fν
.

Then by (2.4), (2.7) and (2.8) we deduce the inequality (2.6). �

3. Extremal functions on Fν

Let λ > 0 and let T : Fν → H be a bounded linear operator from Fν into a
Hilbert H. We denote by 〈·, ·〉T,λ the inner product defined on the space Fν by

〈f, g〉T,λ := λ〈f, g〉Fν + 〈Tf, Tg〉H ,

and the norm ‖f‖T,λ :=
√
〈f, f〉T,λ.

By using the theory reproducing kernels of Hilbert space and building on
the ideas of Saitoh [15,18] we examine the extremal functions associated to the
operator T on the Airy-type Fock space Fν .
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Theorem 3.1. Let λ > 0. The Fock space (Fν , 〈·, ·〉T,λ) possesses a reproduc-
ing kernel kT,λ(z, w); z, w ∈ C satisfying the equation (λI + T ∗T )kT,λ(z, ·) =
kν(z, ·), where kν is the kernel given by (2.1). Moreover the kernel kT,λ satisfies

(3.1) ‖TkT,λ(z, .)‖H ≤
e|z|

2/2

√
2λ

.

Proof. Let f ∈ Fν . From Theorem 2.2(ii), we have |f(z)| ≤ e|z|
2/2
√
λ
‖f‖T,λ.

Then, the map f → f(z), z∈C is a continuous linear functional on (Fν , 〈·, ·〉T,λ).
Thus (Fν , 〈·, ·〉T,λ) has a reproducing kernel denoted by kT,λ(z, w). On the other
hand, one has

f(z) = λ〈f, kT,λ(z, ·)〉Fν + 〈Tf, TkT,λ(z, ·)〉H
= 〈f, (λI + T ∗T )kT,λ(z, ·)〉Fν .

Thus (λI + T ∗T )kT,λ(z, ·) = kν(z, ·). Furthermore the precedent relation im-
plies that

λ2‖kT,λ(z, ·)‖2Fν + 2λ‖TkT,λ(z, ·)‖2H + ‖T ∗TkT,λ(z, ·)‖2Fν = ‖kν(z, ·)‖2Fν .
From this relation and using (2.2) we obtain (3.1). �

The main result of this section can then be stated as follows.

Theorem 3.2. For any h ∈ H and for any λ > 0, there exists a unique
function f∗λ,h, where the infimum

(3.2) inf
f∈Fν

{
λ‖f‖2Fν + ‖h− Tf‖2H

}
is attained. Moreover, the extremal function f∗λ,h is given by

(3.3) f∗λ,h(z) = 〈h, TkT,λ(z, ·)〉H ,

and satisfies the following inequality |f∗λ,h(z)| ≤ e|z|
2/2
√
2λ
‖h‖H .

Proof. The existence and unicity of the extremal function f∗λ,h satisfying (3.2)

is obtained in [16–18]. Especially, f∗λ,h is given by the reproducing kernel of Fν
with ‖ · ‖T,λ norm as

f∗λ,h(z) = 〈h, TkT,λ(z, ·)〉H .
This clearly yields the result. On the other hand, from (3.1) and (3.3), one has

|f∗λ,h(z)| ≤ ‖h‖H‖TkT,λ(z, ·)‖H ≤
e|z|

2/2

√
2λ
‖h‖H ,

which completes the proof of the theorem. �

Application 3.3. Let H be the prehilbertian space of entire functions,
equipped with the inner product

〈f, g〉H :=

∫
C
f(z)g(z)|z|4dmν(z).
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If f, g ∈ H with f(z) =
∑∞
n=0 anz

n and g(z) =
∑∞
n=0 bnz

n, then

〈f, g〉H =

∞∑
n=0

anbncn+2(ν), ‖f‖2H =

∞∑
n=0

|an|2cn+2(ν).

The space H is a Hilbert space with Hilbert’s basis
{

zn√
cn+2(ν)

}
n∈N

and repro-

ducing kernel

sν(z, w) =

∞∑
n=0

(zw)n

cn+2(ν)
=

1

(zw)2

(
Sν(zw)− zw

c1(ν)
− 1
)
.

1) Let T be the difference operator defined on Fν by

Tf(z) :=
1

z2
(f(z)− zf ′(0)− f(0)).

Then the operator T maps continuously from Fν into H, and ‖Tf‖H ≤ ‖f‖Fν .
If f, g ∈ Fν with f(z) =

∑∞
n=0 anz

n and g(z) =
∑∞
n=0 bnz

n, one has

〈f, g〉T,λ = λa0b0 + λa1b1c1(ν) + (λ+ 1)

∞∑
n=2

anbncn(ν).

Thus, for z, w ∈ C one has

kT,λ(z, w) =
( 1

λ
− 1

λ+ 1

)(
1 +

zw

c1(ν)

)
+

1

λ+ 1
Sν(zw),

TkT,λ(z, ·)(w) =
1

(λ+ 1)w2

(
Sν(zw)− zw

c1(ν)
− 1
)
,

and for all h ∈ H we deduce that

f∗λ,h(z) =
1

λ+ 1
z2h(z).

2) Let T be the difference operator defined on Fν by

Tf(z) :=
1

2z2
(f(z) + f(−z)− 2f(0)),

then the operator T maps continuously from Fν into H, and ‖Tf‖H ≤ ‖f‖Fν .
If f, g ∈ Fν with f(z) =

∑∞
n=0 anz

n and g(z) =
∑∞
n=0 bnz

n, one has

〈f, g〉T,λ = λa0b0 +

∞∑
n=1

[
λ+

1

2
(1 + (−1)n)

]
anbncn(ν).

Thus, for z, w ∈ C one has

kT,λ(z, w) =
1

λ
+

1

λ+ 1

∞∑
n=1

(zw)2n

c2n(ν)
+

1

λ

∞∑
n=0

(zw)2n+1

c2n+1(ν)
,

TkT,λ(z, ·)(w) =
1

λ+ 1

∞∑
n=0

(z)2n+2

c2n+2(ν)
w2n,
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and for all h ∈ H we deduce that

f∗λ,h(z) =
1

2(λ+ 1)
z2[h(z) + h(−z)].

Remark 3.4. Theorem 3.2 can be applied to other various operators. In paper
[23], the author compute the extremal functions associated to operators writ-
ten by means of Fourier transform and Segal-Bargmann transform. For thus,
we need more details about Fourier transform and Segal-Bargmann transform
associated to the Bessel-Struve operator.
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