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APPLICATIONS ON THE BESSEL-STRUVE-TYPE
FOCK SPACE

FETHI SOLTANI

ABSTRACT. In this work, we establish Heisenberg-type uncertainty prin-
ciple for the Bessel-Struve Fock space [, associated to the Airy operator
L,. Next, we give an application of the theory of extremal function and
reproducing kernel of Hilbert space, to establish the extremal function
associated to a bounded linear operator T' : F, — H, where H be a
Hilbert space. Furthermore, we come up with some results regarding the
extremal functions, when T are difference operators.

1. Introduction

Fock space F (called also Segal-Bargmann space [3,4]) is the Hilbert space
of entire functions on C with inner product given by

(f,9) = l/ f(z)ﬁe_lzlzdxdy, z=x+1y.
™ Jc

This space was introduced by Bargmann [2] and it was the aim of many works
[3,4,21,23,24]. The study of several generalizations of the classical Fock spaces
has a long and rich history in many different settings [5,9,19,20,22].

In this paper we consider the Bessel-Struve kernel S,, v > —1/2:

Sy(2) := 4, (iz) —ih,(iz), z€C,
where
Ju H,
ZEJZ) and h,(z) :=2"T(v + 1)%

Here J, and H, are the Bessel and the Struve functions [6,25].

The kernel S, is analytic and it can be expanded in the form

gu(z) =2"T(v+1)

B 2" Vanll(5 +v+1)
0 se=Y T we =Y,
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and possesses the following integral representation

S,(z) = L“i /1(1 — 23t
V(v +35) Jo
The Bessel-Struve kernel S, (2), z € C, solves the equation
Lyu(z) = u(z), u(0)=1,
where L, is the Bessel-Struve operator given by

Lyu(z) = %u(z) + vl [;Zu(z) - %u(O)

z

During the last years, the Bessel-Struve operator have gained considerable
interest in various field of mathematics [1,8,11-14] and in certain parts of
quantum calculus [22]. The results of this work will be useful when discussing
the Fock space associated to this operator. This space is the background of
some applications in this contribution. Especially,

- we study the Bessel-Struve operator and its adjoint operator on the Bessel-
Struve-type Fock space;

- we establish Heisenberg-type uncertainty principle for the Bessel-Struve-
type Fock space;

- we give an application of the theory of extremal function and reproduc-
ing kernel of Hilbert space, to establish the extremal function associated to a
bounded linear operator T : F,, — H, where H be a Hilbert space;

- we come up with some results regarding the extremal functions associated
to the difference operators Tf(z) := % (f(2) — zf'(0) — f(0)) and Tf(2) :=
22 (J(2) + f(~2) — 27(0)).

The contents of the paper are as follows. In Section 2, we establish Heisen-
berg-type uncertainty principle for the Bessel-Struve-type Fock space F,. In
Section 3, we give an application of the theory of reproducing kernels to the
Tikhonov regularization problem for bounded linear operator T' : F, — H,
where H be a Hilbert space. Next, we come up with some results regarding
the Tikhonov regularization problem for the difference operators given above.

2. Uncertainty principle for F,
We denote by
e m,, v > —1/2, the measure defined on C by
_ 1
- m2vT(v + 1)
where K, is the Macdonald function [6].
e L2(m,), the Hilbert space of measurable functions on C, for which

dm,(2) : |2 T2 K, (|2)%)dedy, 2z =z + iy,

Wi = | [ 151 Ram 2] <o
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e H(C), the space of entire functions on C.
Let v > —1/2. We define the Bessel-Struve-type Fock space F, as

F, := L?(m,) N H(C).

The space I, is equipped with the norm || f|[r, := ||f|l £2(m.)-
The space F, . of even functions of I, is just the generalized Fock space
associated with the Bessel operator (see [5]).

Theorem 2.1 (See [9]). Let f,g € F, with f(z) = > .° janz" and g(z) =
Yool obnz™. One has

<f7 g>FV = Z anacn(l/)a
n=0

where ¢, (V) are the constants given by (1.1).
Theorem 2.2. (i) The function k, given for w,z € C by
(2.1) ky(z,w) = S, (Zw),

is a reproducing kernel for the Bessel-Struve-type Fock space F,. That is
ky(z,-) € Fy, and for oll f € F,, one has (f, k.(z,))r, = f(2).

(i) If f € Fy, then |f(2)| < /2| f]s, . z € C.

(iil) The space F, equipped with the inner product (-, )y, is a Hilbert space;

v

and the set { 2 } forms a Hilbert’s basis for the space FF,,.
neN

\ cn (V)

Proof. (i) See [9].
(ii) Let f € F, and z € C. From (i), we have

[f < Nk (z,0) e, [ f 1], -

Using the fact that

2

(2.2) ko (2, )15, = Ku(z,2) = Su(|2) < e

v

we deduce the result.

(iii) Let {fn}nen be a Cauchy sequence in F,. We put f = lim,—co fn,
in L2(m,,). From Theorem 2.2(ii), we have |f,1,(2) — fu(2)| < 6‘2‘2/2\\fn+p -
fullr, - This inequality shows that the sequence { f,, } nen is pointwise convergent
to f. Since the function z — el#1°/2 i5 continuous on C, then { f, }nen converges
to f uniformly on all compact set of C. Consequently, f is an entire function
on C, then f belongs to the space F,. On the other hand, from Theorem 2.1,

we get (2™, 2™)g, = ¢, (V)0n,m. This shows that the family { Zn( ) } is an
Cn (V neN

orthonormal set in F,. Let f(z) = Y.~ anz" be an element of F, such that
(f,z™r, =0 for all n € N. From Theorem 2.1, we deduce that a,, = 0 for all
n € N. This completes the proof. (I
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We consider the space U, defined as the space of entire functions f(z) =
>0 o anz™ such that -7 n?|an,|*c,(v) < oo. This space is a subspace of the
Bessel-Struve-type Fock space F,. For f € U, with f(z) =Y, a,z" one has

oo

L,f(z) = Z(n +2)(n+2v + 2)an422",

n=0

and
2f(2) = Z ap—22".
n=2

Using the fact that ¢,12(v) = (n 4+ 2)(n + 2v + 2)c¢, (v) one has

ILLFIE, < (14 20) Y ntlanPen(v),

n=0
and

oo
122 fllE, < 4(v+1)]aol” +3(2v + 3) Z n?lan|*cn (V).

n=0
Therefore L, f and 22 f belong to F,,.
The Bessel-Struve operator L, satisfies the following properties (see [9]).
(i) For f,g € Uy, (Lu f, 9)r, = (f, L} g)¥,, where Ljg(z) = Zzg(z)'
(i) For f € Uy, [Lu, LiLF(2) = (Ly L — L3 L) f(2) = A1) (=) + Wi £(2),
where

W f(z) = 4z%f(z) + (2v + 1)z%f(0).
(iii) If f € U,, then W, f € F, and
(2.3) 1L FIF, = ILu fIIR, + 4+ DIFIE, + (Wo f, FE, -

By applying the previous properties of L, and the following result of func-
tional analysis.

Theorem 2.3 (See [7,10]). Let A and B be self-adjoint operators on a Hilbert
space H. One has

(A~ )l |(B = 0) 7l > LA BIf.
for all f € Dom(AB) N Dom(BA), and all a,b € R.

We obtain the following Heisenberg-type uncertainty principle for the Bessel-
Struve-type Fock space F,,.

Theorem 2.4. Let f € U,. For all a,b € R, one has

(24)  (Zv + 2" = a) fllw, I(Ly = 2% + ) flls, = |II22FIIF, — 1L fIE, |,

where i is the imaginary unit.
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Proof. Let us consider the following two operators on U, by
(2.5) A=L,+2* B=i(L,—2%.

It follows that, for a function f € U,, we have L,f € F, and 22f € F,.
Therefore Af and Bf are in F,,. The operators A, B are self-adjoint on F,, and
[A, B] = —2i(4(v +1)I + W,)). Thus the inequality (2.4) follows from Theorem
2.3 and (2.3). O

The Heisenberg-type uncertainty principle of Theorem 2.4 can be written as
the following.

Theorem 2.5. Let f € U,. Then
(2.6) AFHAL () = IR, (12 F13, = 1L F112,)°
where

AE(F) = IFIB(Ly £ 22 FIF, — Ly £ 2°)f, fr, .

Proof. Let f € U,. The operator A given by (2.5) is self-adjoint, then for any
real a we have

(A= a)fIE, = IAfII, +a®fIIF, —2a{Af. f)s, -
This shows that
[(Af, f)r, I?
11,

. In other words, we have

[((Ly +22)f, f)s,
I£1%, ’

. Similarly, we have

[((Ly — 2°)f, s,

. N2 — 2 _
min [[(A = a)flz, = [ Afllg,

(Af7 >Fu

and the minimum is attained when a = e
Fy

2

(2.7)  min||(L, +2* —a)flIF, = [(Lv +2*)fllF, —

(Ly+z%) f.f)w,

and the minimum is attained when a = B
Fy

2

(2.8)  min (L, — 2 +ib)flE, = (L — 2 fII%, -

1%, ’
and the minimum is attained when b = ZW
Fu
Then by (2.4), (2.7) and (2.8) we deduce the inequality (2.6). O

3. Extremal functions on F,

Let A >0 and let T : F, — H be a bounded linear operator from F, into a
Hilbert H. We denote by (-, )7, the inner product defined on the space F, by

<fa g>T,)\ = )‘<f7 g>Fu + <Tfa Tg>H7

and the norm || f|lz7.x :== /{f, f)T.x-

By using the theory reproducing kernels of Hilbert space and building on
the ideas of Saitoh [15,18] we examine the extremal functions associated to the
operator T on the Airy-type Fock space F, .
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Theorem 3.1. Let A > 0. The Fock space (F,,(-,-)7,x) possesses a reproduc-
ing kernel kr x(z,w); z,w € C satisfying the equation (A + T*T)kyp x(z, ) =
ky(z,-), where k, is the kernel given by (2.1). Moreover the kernel kr x satisfies
ol2%/2

V2

Proof. Let f € F,. From Theorem 2.2(ii), we have |f(z)| < ¢ ey
Then, the map f — f(z), z€C is a continuous linear functional on (F,, (-, >T7>\)
Thus (F,, (-, -)7,x) has a reproducing kernel denoted by k7 x(z, w). On the other
hand, one has

(3.1) I Tkra(z, )l <

\zl /2

f(z) = )‘<f7 kT)\(Zv ')>Fu + <Tf7 TkT,)\(Z’ )>H
= <fv ()‘I + T*T)kT,A(za ')>]Fu'

Thus (AT 4+ T*T)kr x(z,-) = ku(z,-). Furthermore the precedent relation im-
plies that

N lkra(z, ) lf, + 2MThea(z, ) EH + 1T Thea(z, )%, = [k (2,17, -
From this relation and using (2.2) we obtain (3.1). O
The main result of this section can then be stated as follows.

Theorem 3.2. For any h € H and for any A > 0, there exists a unique
function f3 . where the infimum

; 2 _ 2
(3.2) Jnf (NI, +Ih =771 }
is attained. Moreover, the extremal function [, is given by
(3.3) Fan(z) = (h, Tkr (2, ) =,

and satisfies the following inequality |f5 ; (2)] < el\z‘ﬁm (1]l g -
Proof. The existence and unicity of the extremal function f5 , satisfying (3.2)
is obtained in [16-18]. Especially, f; ,, is given by the reprodﬁcing kernel of F,,
with || - |7,x norm as

f;:,h(z) = <h7 TkT)\(Za )>H
This clearly yields the result. On the other hand, from (3.1) and (3.3), one has

e\ 2272

which completes the proof of the theorem. O

X nG < Alla [Tz (2, )l <

Application 3.3. Let H be the prehilbertian space of entire functions,
equipped with the inner product

. 9V —/f ()2 dm (2).
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If f,g € H with f(z) =37 ya,2" and g(z) = Y >, b,z", then

(£,9)8 =Y anbncnia(v),  [Ifllr =D lanensa(v).
n=0 n=0

n

The space H is a Hilbert space with Hilbert’s basis {m}nEN and repro-

ducing kernel

su(z,w) = i (zw)" = (E;)Q (S,,(Ew) — Eiw) — 1).

= enga(V) e (v

1) Let T be the difference operator defined on F,, by
1
Tf(z):= 5 (f(z) = 2f'(0) = £(0)).
Then the operator 7' maps continuously from F, into H, and [|Tf||z < ||f]|F, -
If f,g € F, with f(z) =>0" janz" and g(z) = >_.° b, 2™, one has

<f5 g>T,)\ - )\do% + AG1EC1(V) + ()\ + 1) Z anECn(V)-

n=2

Thus, for z,w € C one has

kT,A(z,w)z(i— 1 )(1+ E“’))+ L s, Gw),

A+1 a(v A+1
1 Zw
Tk Nw) = ———— (S, (zw) — —1),
) @) = e (S60) = 2 1)
and for all h € H we deduce that
N 1
f/\,h(z) = A+l 1Z2h(2)-

2) Let T be the difference operator defined on F, by

TF(s) = == (f(2) + f(—2) — 2/(0)),

222
then the operator T' maps continuously from F, into H, and ||Tf||g < || f|lr, -
If f,g € F, with f(z) =Y 0" janz" and g(z) = .2 b, 2", one has
& 1 . _
(fs9)T.x = Aagbo + 7; [)\ + 5(1 +(-1) )} anbpcn (V).

Thus, for z,w € C one has

o0 Ew)Qn 2n+1
kT )\(Z ’LU) )\+ 1 g (I/) )\ Z 02n+1
0 2n+2
Tkr (2, i1 Z )
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and for all h € H we deduce that

Bl = gy ) + (=2

Remark 3.4. Theorem 3.2 can be applied to other various operators. In paper
[23], the author compute the extremal functions associated to operators writ-
ten by means of Fourier transform and Segal-Bargmann transform. For thus,
we need more details about Fourier transform and Segal-Bargmann transform
associated to the Bessel-Struve operator.
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