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A NEW TYPE OF THE ADDITIVE
FUNCTIONAL EQUATIONS ON INTUITIONISTIC
FUZZY NORMED SPACES

MOHAN ARUNKUMAR, ABASALT BODAGHI, THIRUMAL NAMACHIVAYAM,
AND ELUMALAI SATHYA

ABSTRACT. In this paper, we introduce a new type of additive functional
equations and establish the generalized Ulam-Hyers stability for it in
intuitionistic fuzzy normed space by using direct and fixed point methods.

1. Introduction

Fuzzy theory was initiated by Zadeh [31] in 1965. Nowadays, this theory
is a powerful tool for modeling uncertainty and vagueness in miscellaneous
problems arising in the field of science and engineering. The concept of intu-
itionistic fuzzy normed spaces initially was introduced by Saadati and Park in
[27]. Later, Saadati et al. have obtained a modified case of intuitionistic fuzzy
normed spaces by improving the separation condition and strengthening certain
conditions in the definition of [28]. Intuitionistic fuzzy sets and intuitionistic
fuzzy metric spaces are studied in [4] and [23], respectively.

The stability problems for functional equations is connected to a question
of Ulam [29] regarding the stability of group homomorphisms and positively
answered for an additive functional equation on Banach spaces by Hyers [15]
and Aoki [2]. It was an advance generalized and admirable outcome obtained
by a number of mathematicians; for instance, see [5,14,18,22,24,25,30]. On the
other hand, Cadariu and Radu noticed that a fixed point alternative method
is very important for the solution of the Ulam problem. In other words, they
employed this fixed point method to the investigation of the Cauchy functional
equation [13] and for the quadratic functional equation [12] (for more appli-
cations of this method, see [8-10]). The generalized Hyers-Ulam stability of
different functional equations in intuitionistic fuzzy normed spaces has been
studied by a number of authors (see [3,6,7,11,20,21]). Over the last seven
decades, the above problem has been tackled by numerous researchers and its
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solutions via various forms of functional equations were discussed. We refer the
interested readers for more information on such problems to the monographs
[1,16,17,26].

In this paper, we establish the generalized Ulam-Hyers stability of (r, s)-type
additive functional equation

s = (55 v+ (T50) fa -

where r,s € R with r # +s, in intuitionistic fuzzy normed space using direct
and fixed point methods.

2. Definitions and notations

In this section, we state the basic definitions and notations in the setting of
intuitionistic fuzzy normed space.

Definition 2.1 ([31]). Let X be an arbitrary set. A fuzzy set M in X is a
function with domain X and values in [0, 1].

Definition 2.2. A binary operation * : [0,1] x [0,1] — [0, 1] is said to be
continuous t-norm if * satisfies the following conditions:

(1) * is commutative and associative;

(2) * is continuous;

(3) ax1=aforall a €[0,1];

(4) a*xb < cxd whenever a < c and b < d for all a,b,c,d € [0,1].

Definition 2.3. A binary operation ¢ : [0,1] x [0,1] — [0, 1] is said to be
continuous ¢-conorm if ¢ satisfies the following conditions:
(i) ¢ is commutative and associative;
(ii) © is continuous;
(iii) ao0 =a for all a € [0, 1];
(iv) aob < cod whenever a < ¢ and b < d for all a,b,c,d € [0,1].

Using the notions of continuous ¢-norm and ¢-conorm, Saadati and Park [27]
introduced the concept of intuitionistic fuzzy normed space as follows:

Definition 2.4. The five-tuple (X, p, v, *,¢) is said to be an intuitionistic fuzzy
normed space (for short, IFNS) if X is a vector space, * is a continuous ¢-norm,
¢ is a continuous t-conorm, and pu, v are fuzzy sets on X x (0, 00) satisfying the
following conditions. For every x,y € X and s,t > 0

(IFN1) p(z,t) + l/(x t) <1,

(IFN2) p(z,t) >

( ) ,u(:l:,t)—l if and only if 2 = 0,

(IFN4) p(az,t) = p(z, L) for each a # 0,

(IFN5) u(wvt)*u(y, )<u(af+y,t+s),

( ) p(z,-) : (0,00) = [0,1] is continuous,

(IFN7)

T )
1 u(x,t) =1 and hm ,u(x t) =0,
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(IFN8) v(z,t) < 1,

(IFN9) v(z,t) =0, if and only if z =0,
(IFN10) v(az,t) = v (x, L) for each o # 0,
(IFN11) v(x,t)ov(y,s) > v(z +y,t +s),
(IFN12) v(x,-): (0,00) — [0, 1] is continuous,
(IFN13) lim v(z,t) =0 and lim v(x,t) = 1.

t—o0 t—0

In this case, (u,v) is called an intuitionistic fuzzy norm (on X).

Example 2.5. Let (X, |-||) be a normed space. Let a xb = ab and aob =
min {a + b,1} for all a,b € [0,1]. For all z € X and every ¢ > 0, consider

if t>0; l=zll 3¢ ¢ > 0,

t
y = & 4 viat) =] el
i, 1) {0 R R T L

Then, (X, u, v, x,0) is an IFNS.

The concepts of convergence and Cauchy sequences in an intuitionistic fuzzy
normed space are investigated in [27].

Definition 2.6. Let (X, p,v,*,0) be an IFNS. Then, a sequence z = {x} is
said to be intuitionistic fuzzy convergent to a point L € X if

lim p(xx — L,t)=1 and lim v(zyp — L,t) =0
k—o00 k—o00

for all £ > 0. In this case, we write g B as k — oo

Definition 2.7. Let (X, u, v, x,¢) be an IFNS. Then, x = {z} is said to be
intuitionistic fuzzy Cauchy sequence if

lm p(zpyp — 2k, t) =1 and  lim v (xg4p — 2k, t) =0
k—oo k—o0
forallt >0,and p=1,2,....

Definition 2.8. Let (X, u,v, *,¢) be an IFNS. Then, (X, u, v, *,0) is said to
be complete if every intuitionistic fuzzy Cauchy sequence in (X, u,v, *,0) is
intuitionistic fuzzy convergent (X, p, v, *,©).

3. Stability results: direct method

In this section, we investigate the generalized Ulam-Hyers stability of the
functional equation (1.1) in INFS using direct and fixed point ways. Here and
subsequently, assume that X is a linear space, (Z,y/,7') is an intuitionistic
fuzzy normed space and (Y, i, v) is an intuitionistic fuzzy Banach space. Now,
we use the following notation for a given mapping f : X — Y such that

DSl = flra-+59) = (5 ) st 9) = (55) s )

where 7, s € R with r # +s for all z,y € X.
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Theorem 3.1. Let T € {1,—-1}. Let K,,, K, : X x X — Z be a mapping such
that for some 0 < (%)T <1, and

(31) { p“/ (KIL (an‘rx’ a‘nTy) 7t)

and
lim ¢/ (K, (a™"z,a™y),a™t) =1
(3.2) nree ™ ™ ™
lim v (K, (a™x,a™y),a™t) =0
n—oo

forall x,y € X and allt > 0. Let f: X — Y be a mapping satisfying the
inequality

(33) { 2 (Df(T,s) (Iay)at) > ,ul (KIL (l‘,y> 7t)

v (Df(r,s)(xay)a t) < v (KV (Z‘,y) at)
for all x,y € X and all t > 0. Then, there exists a unique additive mapping
A: X — Y satisfying (1.1) and

1 (F(@) — A(2),8) > 1 (K, (z),2]2 - plt)
(3:4) {V(f(x)—A() 1) < v (Ko (2),2]2 — plt),

u(F 25 ) ) e (K (7 75 ) o) oo (K (75075 ) 1)

(K (
(K (e 72 ) o) o (K (50 755) o) v (190 (550 75) )
forallz € X and all t > 0.

Proof. Case (i) Let 7 = 1. Letting (z,y) by (25, Z¥) in (3.3), we get
(3.6) {u(f(’"+3<w+y))—7"+9fx+y t) > ' (K %’%)7)
' v(f (T +y) - f @ty )SV( ii) t)

u (
.
for all z,y € X and all ¢t > 0. Putting ( ,y) by ( S ) in ( we find
p(f (52 (z—y) (“3
o {22 (=2

p
for all z,y € X and all ¢ > 0. It follows from (3 6), (3.7) and (IFNS) (IFNll)
that

L0 T o R (250 0, (5,059) 0
> (K (x,y),t) « o/ (K (552, 52) ,t) «p/ (K, (552, %55) .t
(3:8) v (f (52— ) — 552 F (2 — 1) 1) F

<V (K, (2,y) 1) o/ (K, (52, 552) 1) o (K (%52, 157 1 1)
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for all z,y € X and all ¢ > 0. Replacing = and y by
respectively in (3.8), we have

p(f(@+y) = fx)—f(y).1)
> (5 ( imﬂs,rimzs),t)w (0 (7 752) 1)
*u (K _y)7t

Y x _ Y
r+s + r—s and r+s r—s?

r—s’r—s

=V (K <7‘+5 + 7'237 T"T‘S o 7&3) ’t) ov! <KV (Tj's7 7'—?—3) ,t)
o/ (Ky (rgsv T__ys) 7t>

for all z,y € X and all ¢ > 0. Finally, by putting y = z in (3.9), we obtain
’ V(f(ZI)*Qf(I),t)SI/’(KV(I),t)

for all z,y € X and all t > 0, where

(3.11)

/

~

"
o

~

(K ()
(Kﬂ( 21:22’ T*22735$2) 7t) *N/(Kﬂ(ﬁ’ T‘T’S) ’t) *M/(KH<7‘IS’ T:xs) ’t)
(K

v (
(e 22) )t () ) o (2 22) )
Using (IFN4) and (IFN10) in (3.10), we arrive

p( 252 - f(@), 5
v(£52 — @), 4) <V (Ko(2),t)

(3.12)

for all z € X and all ¢ > 0. Substituting z by 2"z in (3.12), we have
n+ll‘ n
(1252 — poma),
(313) f(2"+1$) t 7
V(f = f(2"z),5) <V (K, (2"2),1)

for all z € X and all ¢ > 0. It is easy to verify from (3.13) and using (3.1),
(IFN4), (IFN4) that

n+1 n
o f(22(n+1)ac) - f(;nnc)’ 2nt+1 > M/ (Ku(l‘), 1%)
(3]‘4) f@ o) f(2"z) t / t
v o(n+1) ~— T on  » 9n+l <v <KV($)7 pT)
for all z € X and all ¢ > 0. Interchanging ¢ into p™r in (3.14), we have

gn+1 on )
p(L52 - 1552, 357 ) > (Ku(@), 1)

gn+1 on on
14 f(g(n+1)z) - f(2nz)’ gtnal <V (Ku(x)at)

(3.15)
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for all x € X and all ¢t > 0. It is easy to see that

g z+1 7
(3.16) f(; Z < f( 2z+1) B f(;x)

for all € X. From equations (3.14) and (3.15), we get
(3.17)
(152 — f(2), Cisy Bt ) =

n 1 f(21+1x) f(21a:) Zn lﬂ)

7, 2(i+1) 2i+1
f@2"x) n—1 p' t n 1 JICE ¢ 2 m) 1p't
V=5 — f(z), Zi:O it | =V z 2G+D) E 2iF1

(3. 17) we have
(f(z"“x) _ f@'z) p t)

for all x € X and all ¢ > 0. From (3 16)

p(£52 - fa) 8

nd
> [lizo
I

on i= 0 5T i= 26T D) 27 ) 2ifT
(318) ng 1 ity iz
v (152 - f@). T ;zﬂ) : v (L - 162, 28,
where [T, Oc,—cl*CQ* cokep and [[[2y dj =dyodao---od, forallz € X
and all ¢ > 0. Hence
(3.19)

(15 = ), i Bt ) = TS # (K@), 1) = 1 (K (2), 1)
v(H52 - f@), 0 4F) < Lo v/ (Ko@), t) =/ (Ko@), 1)
for all z € X and all ¢ > 0. Replacing by 2™z in (3.19) and using (3.2),
(IFN4), (IFN10), we obtain
(3.20)
n+m m
n( Hmmr? — 1w, 005 22(%)) > (Ku(2ma),t) =/ (Ku(:zc), m)
v FEMT) f(2 r)7zn 1L> <V (K,(2mz),t) =/ (Ku(x) 577)

2(n+m) om i=0 2.2(i+m) ar

for all x € X and all ¢ > 0 and all m,n > 0. Replacing ¢ by p™t in (3.20), we
get

ontm 2M 1 itm
(3.21) K f(Z("“”)m) N f(2m : ' Dico agwrr ) = H (Ku(2),1)
’ gntm 2m 1+'m
(L) 10 st g s g (),

for all z € X and all ¢ > 0 and all m,n > 0. The relation (3.20) implies that
lll/(f(zniﬂnx) - f(gizx),t) Z M/ (K n—1 _pt )
Zz m 2.2

2(n+m)
on+m om
(5 12.0) < (0 )

2.27

(3.22)

holds for all z € X and all ¢ > 0 and all m,n > 0. Since 0 < p < 1, we have

> (%)Z < 00. The Cauchy criterion for convergence in IFNS shows that the

=0
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sequence {w} is Cauchy in (Y, u,v). Since (Y, p,v) is a complete IFNS

this sequence converges to some point A (z) € Y. That is,

lim g (mnx) —A(x),t) — 1, lim v (f(%") —.A(:c),t) ~0

for all z € X and all ¢ > 0. So f(g:z) ELN A(z) as n — oo. Letting m = 0 in
(3.22), we arrive at

u(% - f(x),t) > (Ku(x)’ t)
>0 220

p(122 — fa).0) < v (fmz), )

(3.23)

P
i=0 3.97

for all z € X and all ¢ > 0. Letting n tend to infinity in (3.23), we have
n(A@) = f@),t) = ' (Ku(2),2 42 - p])
v(Al) - f(2),1) </ (K, (@),2 42~ pl)

for all x € X and all ¢ > 0. To prove A satisfies (1.1), replacing (z,y) by
(2"z,2™y) in (3.3) respectively, we obtain

s (DI 2 ) 0) > i (K2, 27), 200
’ v (%Df(,n’(g)(?”x, 2"y),t) <V (K,(2"z,2"y),2"t)

for all z,y € X and all ¢ > 0. Now,

(Al + sy) - (“2”) Alw) - (T 3 5) Aw))

> ,u(.A(m“ + sy) — %f(rx + sy), 2)

(- (52) 4w+ g () £ )

(3.24)

(3.26) * [

and

v
N
N
PN
—
=
8
+
»
<
S~—
|
~
—
=3
8
_|_
VA
<
:—/
| o
N—




922 M. ARUNKUMAR, A. BODAGHI, T. NAMACHIVAYAM, AND E. SATHYA

1 1 /r+s 1 (r—s t
s21) oo 1 1 ,f)
B2 ov(gatte ) - 5 (S50) 50 - 5 (U57) S0 g

for all z,y € X and all ¢ > 0. On the other hand,

(3.28) lim u(%Df(r o(@2mz,2my), &
7}1_>H;OV(271Dfrs)(2 x,2"y), %) =0

for all z,y € X and all ¢ > 0. Letting n — oo in (3.26), (3.27) and using
(3.28), we observe that A fulfills (1.1). Therefore, A is an additive mapping.
Let A’(z) be another mapping satisfying (1.1) and (3.4). Hence,

p(A(z) — A'(@),t) > 1 (AQ2"z) — f(2" )* (f(2"x) — A'(2"2), 157)

> ,u' (Ku(an) 2t 2"|2 p\ / Ku(a: 7 2t 2"\2 p|) ’
v(A(z) — A'(z),t) < v (A@2"z) — f(2" i) ov (f(2"z) — A'(2"2), %n)
SV(KAwwﬁﬁ%kﬂ)sV(KA@E%%?E)
for all x € X and all ¢ > 0. Since nl;ngo %}‘f*”l = 00, we obtain

lim ' (K, (2), 25222 ) =1

n—00 2p

2t 27(2—p|
lim v/ (K T), =51+) =0
" 1/( )a 2.pn

for all z € X and all ¢ > 0. Thus

{ p(A(z) — A'(x), 1)
v(A(z) — A'(),1)

1
0

for all x € X and all ¢ > 0. Hence, A(x) = A’(z). Therefore, A(x) is unique.
Case (ii) For 7 = —1. Putting x by J in (3.10), we get

p(f(@) =21 (5).t) = 1 (K, (3) 1)
3.29 2 2
(529 R e A N
for all z,y € X and all t > 0. The rest of the proof is similar to that of Case
(i). This completes the proof. O

The following corollary is an immediate consequence of Theorem 3.1, re-
garding to the stability of (1.1).
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Corollary 3.2. Let X be a normed space with norm || - ||, and let zy € Z.
Suppose that the mapping f : X — Y satisfies the double inequality

(3.30)

()‘207 )a

(A (el + [1y11°) 20, ) ,

(Ml l1*ly[[=0, 1) ,

ALl Tyl + (2l + [y l1*+°) } 20, )
>\ZO, ),

(
E (=l + llyll°) 20, ) ,

~ T~

12 (Df('r‘,s) (x,y),t) >

~ <

T E®EE®ET

v (PFen@1) <0y ey, 6.

A1 ll® + (el [+ + [lyl]2*+*) } 20, )

for all x,y € X and all t > 0, where X\, a,b are constants with A > 0. Then,
there exists a unique additive mapping A: X — Y such that

(3.31)

~ 0~ N X

AN N NN

' (3Mz0,2|2 — plt)

/ [Auzn (@Url” +lrs|”+lr—s|")
H R
R e T >] 20,22 = plt)

/L(f(l‘)—.A(x),t)Z a+bg(a+b), a b a+b ~ \a+b
! (Al i) A=) 202 plt)
a+b
o (el (20| 4 25| 42 + sfo+?
+2|r—s|otb2latblpagh 4 (4 g)ath) 2 212—plt),
V' (3A20,2|2 = plt)
Allz|[*(2]r]* +|7‘+5\ +lr—s|*)

v

[r2—s2]a
AMlzll”2ls]”+[r+s["+|r—s|") _
v(f(z) — A(x),t) < ):lil;ja+b2(a+b)J:zbfjlis)a+b+(r:|jg:rz2 p|t> ’
v (2 _g2)a+t 2072|2_p‘t) 5

a+b
v (A (20t + 205|040 4+ 2fr + o]0t
+2|r—s|etb2(atblpaghy (r45)att) ), 212—plt)

forallx € X and allt > 0.
We close this section by an example related to Theorem 3.1.

Example 3.3. Let X be a normed space. Also u, v and p’, v/ be intuitionistic
fuzzy norms on X and R, respectively defined by

¢
’ 0, t<0, z€X,

t
NIE T S
’ 0, t<0, zcR,
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and

lll
v(wt) = Bl >0 TEX,
0, t<0, xe€X,

0, t<0, z€R.

Let o), = a, : R — R be functions such that o, (2t) < pay, (t) for all t > 0
and 1 < p < 2. Define

Bu (337 y) =B (:Ua y)

au<nrz%sy|>\

o]
V (2,t) = { e >0 TER,

r+s r—
2 2
for all z,y € X, where r,s € R with » # +s. Let o € X be a unit vector

and define f : X — X through f (z) = o, (|z]) zo. Now for any z,y € X and
r > 0, we have

*ay (I — 1)

ay ([l —yl) -

t
# (Dfee)@9):8) =
t /
> m = (Bu (2,9) 1)
and
/ t
e (2, 20), 1) = e o 3
t ’
> m = (p Bu(z,y),1).
Also, for any z,y € X and ¢ > 0, we have
1B @yl ol
v (Dfrs(2,9),t) = t+ 18, (z,y)| [|zo]
|ﬂv ($,y)| _ ./
< m =V (ﬂy (x,y),t)
and
v (22,2
z/wu@%2wa”:t+ﬁéf%ﬂgﬂ
A )L
St plB @y (P By (,9) 1) .

Hence, the inequalities (3.1) and (3.3) are satisfied. Using Theorem 3.1, there
exists a unique additive mapping A : X — Y such that

p(f(z) — A(z),t) > i (Bu(z),2]2 — p|t)
v(f(z) — A(z),t) < v (Bu(2),2|2 —p|t),
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where

2 -2
ﬂ/ (B/L (l') ,t) = .u/ <B/L <742ix827 712_5:2> ’t> *‘u/ <B/L <T—T—s, T—T—S) ,t)

, x —x
*H <ﬁ“ (r—s’r—5>7t>

forall z € X and ¢t > 0.

4. Stability results: fixed point method

In this section, we apply a fixed point theorem for achieving stability of the
additive functional equation (1.1). Here, we present the upcoming result due
to Margolis and Diaz [19] for fixed point theory.

Theorem 4.1. Suppose that for a complete generalized metric space (£2,0) and
a strictly contractive mapping T : Q — Q with constant L. Then, for each
giwven x € §, either
d(T"z,T”+1x) =ooVn>0,

or there exists a natural number ng such that
(FP1) d(T"z,T"'z) < o0 for all n > ny;
(FP2) The sequence (T™x) is convergent to a fized to a fized point y* of T}
(FP3) y* is the unique fized point of T in the set A = {y € Q: d(T™z,y) <

oo}
(FP4) d(y*,y) < 1=27d(y, Ty) for all y € A.

Applying the above theorem, we now obtain the generalized Ulam-Hyers
stability of the functional equation (1.1).

Theorem 4.2. Let f : X — Y be a mapping for which there exists a mapping
K : X x X — Z with the double condition

lim p' (K (X, x7'y) , xi't) = 1
(4'1) n'—)oo / n n n
lim v/ (K (xi'2, Xi'y) , xi't) = 0
for all x,y € X and all t > 0 where
2 4f i=0
(4.2) Xi—{ % Zf i=1

and the double functional inequalities hold

1 (Df sy (@,y), 1) > 1 (K (,9) 1)
(43) { v (Df(Tvs)(:E? y)’ t) S V/ (K (I7 y) ’t)

for all z,y € X and all t > 0. If there exists L = L(i) such that the mapping

(14) o) = 5K (5.5).
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has the property

/ pP(xiz) _ T
(4.5) M/ LP(:;:) ’ t) Iu/ (p( -
v LT’t) =1 (p(x),t)

for all x € X and all t > 0, then there exists a unique additive mapping
A: X — 'Y satisfying the functional equation (1.1) and

(@),8) = 1 (ple), £71)

(40 (p(w), iit)

—
=
=
&

\
P

for allx € X and allt > 0.

Proof. Consider the set A = {h|h : X — Y, h(0) = 0} and introduce the
generalized metric on A,

(4.7)

d(h, f) = inf { M e (0,00):{ 10~ 110

t
v(h(z) — f(2),t

W (p(x), Mt),z € X }}
Vip(x), Mt),z € X ’

IN IV

)
)
It is easy to see that A is complete with respect to the above metric. Define

J: AN — Aby Jh(z) = Xih(xzx) forallaz € X. If h, f € Asothat d(h, f) < M,
then

), Mt) (x e X)

> W(p(xiz), xiMt)  (z € X)
> W (p(x), MLt)  (z € X)

> W (p(x), ML)  (z € X)

and

— f(@),t) <v'(p(z), Mt)  (z€X)

"(p(xiz), xiMt)  (x € X)
"(p(x), MLt)  (z € X)
<V'(p(x), MLt) (x € X).

This implies d(Jh, Jf) < Ld(h, f), i.e., J is a strictly contractive mapping on
A with Lipschitz constant L. It follows from (4.7) and (3.10) that

(4.8)
f(2$) - 2f($),t < v (K(va)at)

v

{ uEf(zm - 2f(x),t§ > 1 (K (2, 2),1)
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for all x € X and all ¢ > 0. Now, from (4.8) and (4.5) for the case i = 0, we

reach

, ) w (K (x,x),2t
= u(Jf(@) = f(2),t) = ' (p(x), Lt)
= u(Jf(@) = f(2),t) = ' (p(x), Lt)
= u(Jf(@) = f(x),t) = ' (p(x), Lt)

v(1@e) = 2/(0),t) <V (K(2,2),0)
— (L8 — f(a),t) <V (K(z,2),20)
= v(Jf(x) = f(2),t) < v (p(x), Lt)
= v(Jf(x) = f(2),t) <V (p(x), Lt)
= v(Jf(2) = f(2),t) <V (p(x), Lt)

forall z € X and all t > 0, i.e.,

(4.10)

d(Jf, f) < L=L""=L'""

Again by interchanging x into 3 in (4.9) and (4.5) for the case i = 1, we get

(4.11)

u(F22) = 2f(2),t) = 1 (K(3, %), at)
= u( f(@) = Jf(x),t) > 4’ (p(2), 1)
= pu(f(&) = Jf(2),t) = 1 (p(2), 1)
= pu(f(&) = Jf(x),t) = ' (p(x), 1)
v(£@r) = 2/(2)t) <V (K(5,%),at)
= v flx) - Jf(x),t) <V (p(x),t)
= v{f(@) = Jf(@),t) <V (p(x),1)
= v [f(z) = Jf(2),t) <V (p(x),1)

forall z € X and all t > 0, i.e.,

(4.12)

d(f,Jf) <1=L'"1t=L1'""

Thus, from (4.10) and (4.12), we see that the property (FP1) holds. By (FP2),

it follows that there exists a fixed point A of J in A such that

n—00 n—00 X?

(2

i (205 a0) =1, o (£02) ) o

for all x € X and all ¢t > 0. Replacing (z,y) by (x"z, x"y) and dividing by x}
in (4.3) and using the definition of A(x), and then letting ¢ — oo, we see that
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A satisfies (1.1) for all z,y € X and all z € X. By (FP3), A is the unique fixed
point of J in the set A = {4 € A : d(f,A) < oo}, A is the unique mapping
such that

u(f(@) = A(z), t) = 1 (p(x), L' '), v € X

v(f(z) — A(2),t) < v'(p(z), L"), v € X

for all z € X and all ¢ > 0. Finally by (FP4), we obtain

p(f(z) — A(x),t) > ' (p(z), & L)

v (f(z) = A@),t) < v/ (pla), %,Lt)

for all x € X and all £ > 0. So, the proof is complete. O

The next corollary is a direct consequence of Theorem 4.2 which shows that
(1.1) can be stable.

Corollary 4.3. Let X be a normed space with norm || - ||, and let zp € Z.
Suppose that a mapping f : X — Y satisfies the double inequalities

(4.13)

()\Zo, )

(A (lf]|* + [lyl1*) 20, 1) ,

(All=(1]lyl*z0, 1) ,

Al Tyl + (P + 1lyl**) } 20, 8)
( 20, )7

A (el + [lyll*) 20, 1) ,

(Allzl*lyll*z0, 1) ,

Al 1yl + (P + [lyl**) } 20, 8)

forallx,y € X and allt > 0, where \,a are constants with A > 0. Then, there
exists a unique additive mapping A : X — Y such that the double inequalities

(4.14)

L
/”'(Df(r,s)(xvy)yt) > Z
L

/
/!
!/
!/
/

/
/
/

v (Df('r,s) (xay),t) <

v
14
v
14

p(f(@) = Ax),1)
' (3Xz0,2|2 — plt),
(P 2l + 201 + 201 + 517 4+ 207 — s19)20,212 = plt)
> 2a
=\ (P (22a|r|a|s\a+|r+s|2a+|r—s\2a)zo,2|2—p\t),
>\ a a a a a a a
(A (220l sl + 122 + [sf2] + 317 + 122 + |7 — s[2%])20,212 — plt)
v (f(z) — Al), 1)
V' (3Xz20,2[2 — plt),
v &”ﬁ;“zla(mrw+2|s|a+2\r+s|a+2|r—s|a>zo72\z—p|t)7

< a
S\ (g 22l I+ 5[ 5[ 20,212 )
/ AHEH?“

v (el 22 0rjo)s|” + [r[2e + [5f2] + 3]l + s[2* + | — 5[4])20,2I2 — plt)

hold for all x € X and all t > 0.
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Proof. Set

/

w (Nz0, XFt)

(Al + [yl )Zo,x,‘ t),

u/ (All] [yl 20, xF 2

(Al Myl +(|Ix\|2“+||y||2“)}20, )

—lask —

—lask = o

—lask — o

—lask — o0

1 (K (P, xy), xit)

/

v ()\zo,x7 ),

vl + Tyl )Zo,x,‘ t),

v (Al |yl 20, X7 ) ,

vyl + (I\w||2“+||y||2")}20, )

—0as k — o0
—0ask —>
—0as k— o0
—0as k —

vV (K(XPz, xy), X5t

for all z € X and all ¢t > 0. Thus, the relation (4.1) holds. It follows from
(4.4), (4.5) and (4.13) that

1 T T

/

7K(7a7)7t
“(2 272 >

p,' ()\ZOa )
i ()2l b DI
2 22 |r|*]s| +|T’+9|2a+|r 2|22
K [r2—s2|2e <0 t)
2a 2a 2a 2a 2a 2a
' @ r[“Is|*+|r["* +|s ||T]J_r§>[||7“+5| Hr—s["*DAllz]| 0,t>

and

(4G 3))

!

v ()‘ZOa )

s E(r|*+s|*)+2(|r—s|*+|r+s|*DAl]=]|*

, S S S T
Z 229 |p|®|s|*+|r+5]2%+|r—s|>*)A||z||?*

(el sl

v

O e e o e e el i D DY 7 O
[r2—s2]2a 205
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for all ,y € X and all t > 0. Also from (4.5), we have

V/ ()\z07szt)
o @4 Hls|®)2(lr—s|*+r+s[*DA[=[* | k—a
v <p(Xix) t) b e Fu‘\ e t
i ) Nl \’7 b 20, Xi k— Qat
22a 2a 2a 3 . 2a 2a )\ J 2a _
o @l *Is[*+[r|™+|s ‘|r2]ts2“|zjs‘ +r—=s["*DAllz]] Zo,Xik 2at>
V/ ()\207 XL
o (| Hls|*) 2[|r—s|"+[r+s| DA =] k—
) p(Xﬂ)t B v 2 e ;sl ) 2 20, 3Xi at)
v v )7 (2 Arlt]s|® +\‘r+i\ ‘+|7 sPOA ||| 20, xi* 20
a 2a 2a 2a 2a 2a
' (2%]|r|*|s|*+|r|*+]s I‘ ]+§H‘T+9\ +r—s["*DAllz]] 20 7Xik72at>

for all z € X and all ¢ > 0. Hence, the inequality (4.6) is true for

L a(i =0) L a(i=1)
O 0 2710
(Im) 2k a<1 207k g >1
(III)  2k~2 2a < 1 22—k 9¢ > 1
(Iv)  ok-2a 2a < 1 22e=k 94 > 1.

Now, for the condition (I) and i = 0, we have
0
i (f(@) = A).t) = (p(m,‘i 1) = i (p(x),~20)
—0
v (f(@) = A@), 1) <V (ple), 35t ) =/ (p(), ~21)
for all x € X and all t > 0. Also, for the condition (I) and i = 1, we get
—1\1—-1
)2 4 (pla), Pgd=t) = 1 (p(a), 20)
) < (o), Egdert) =/ (o). 20)
for all x € X and all t > 0. Again, for the condition (II) and ¢ = 0, we obtain

k—ay\1—0 k
)2 1 (o), Egart) = (o). 52e1)
Qk—a 1-0

k
v (F(@) = A@),t) < v (ple), Eagt) =¥ (pl@), 52501)
for all x € X and all ¢ > 0. Also, for the condition (II) and ¢ = 1, we arrive
a—kyl—1 &
2 (f(m) - A($)7t> > (P(fv)a %t) = (P(l‘)7 QkaQat)
a—k\1—-1 k
v (F(@) = A@),t) < v (ple), Egt) = v (pl@), 525et)

for all z € X and all ¢ > 0. The rest of the proof is similar to that of previous
cases. This finishes the proof. (I

Y

R =
~—~ —~
Kﬁ &03
~—~ —~
ONC

| |
> =
— —~

& K
=

G

=
—
=
—
g
[
=~
oy
8
:_/
~+~
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