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GENERALIZED BI-QUASI-VARIATIONAL-LIKE

INEQUALITIES ON NON-COMPACT SETS

Yeol Je Cho, Mohammad S. R. Chowdhury, and Je Ai Ha

Abstract. In this paper, we prove some existence results of solutions for

a new class of generalized bi-quasi-variational-like inequalities (GBQVLI)
for (η-h)-quasi-pseudo-monotone type I and strongly (η-h)-quasi-pseudo-

monotone type I operators defined on non-compact sets in locally convex
Hausdorff topological vector spaces. To obtain our results on GBQVLI

for (η-h)-quasi-pseudo-monotone type I and strongly (η-h)-quasi-pseudo-

monotone type I operators, we use Chowdhury and Tan’s generalized
version of Ky Fan’s minimax inequality as the main tool.

1. Introduction

Let E, F be topological spaces and let g : E → 2F be a multi-valued
mapping.

The mapping g is said to be upper semi-continuous on E if, for all x0 ∈ E
and for each open set G in F with g(x0) ⊂ G, there exists an open neighborhood
N(x0) of x0 such that g(x) ⊂ G for all x ∈ N(x0). The mapping g is said to
be lower semi-continuous on E if, for all x0 ∈ E and for each open set G in F
with g(x0) ∩G 6= ∅, there exists an open neighborhood N(x0) of x0 such that
g(x) ∩G 6= ∅ for all x ∈ N(x0). The mapping g is said to be continuous on E
if g is both upper semi-continuous and lower semi-continuous on E.

Note that a multi-valued mapping g is upper semi-continuous (resp., lower
semi-continuous) if the inverse image of a closed set (resp., an open set) is
closed (resp., open), where, if A ⊂ E, then the set

g(A) = ∪x∈Ag(x) = {y ∈ F : g−1(y) ∩A 6= ∅}
is called the image of A under g. If B ⊂ F , the set

g−1(B) = ∪y∈Bg−1(y) = {x ∈ E : g(x) ∩B 6= ∅}
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is called the inverse image of B under g.
Let E be a topological vector space over the field Φ, F be a vector space

over Φ and 〈·, ·〉 : F × E → Φ be a bilinear functional. For each x0 ∈ E, for
each nonempty subset A of E and ε > 0, let

W (x0; ε) = {y ∈ F : |〈y, x0〉| < ε}

and

U(A; ε) = {y ∈ F : sup
x∈A
|〈y, x〉| < ε}.

Let σ〈F,E〉 be the topology on F generated by the family

{W (x0; ε) : x ∈ E, ε > 0}

as a subbase for the neighborhood system at 0 and let δ〈F,E〉 be the topology
on F generated by the family

{U(A; ε) : A is a nonempty compact subset of E, ε > 0}

as a base for the neighborhood system at
We note then that F , when equipped with the topology σ〈F,E〉 or the

topology δ〈F,E〉, becomes a locally convex topological vector space, but not
necessarily a Hausdorff topological vector space. Furthermore, for a net {yα}
in F and y ∈ F , we have the following:

(1) yα → y in σ〈F,E〉 if and only if 〈yα, x〉 → 〈y, x〉 for each x ∈ E;
(2) yα → y in δ〈F,E〉 if and only if 〈yα, x〉 → 〈y, x〉 uniformly for each

x ∈ A, where A is a nonempty compact subset of E.

Definition 1.1. Let X be a nonempty subset of E. A mapping T : X → 2F

is said to be monotone with respect to the bilinear functional 〈·, ·〉 if, for any
x, y ∈ X, ∀u ∈ T (x) and ∀w ∈ T (y),

Re〈w − u, y − x〉 ≥ 0.

Remark 1.1. (1) When F = E∗, the vector space of all continuous linear
functionals on E, and 〈·, ·〉 is the usual pairing between E∗ and E, then the
monotonicity notion coincides with the usual definition, i.e.,

Re〈Ty − Tx, y − x〉 ≥ 0

for any x, y ∈ X, when T : X → E∗ is single-valued, and

Re〈w − u, y − x〉 ≥ 0

for any x, y ∈ X, ∀u ∈ T (x) and ∀w ∈ T (y), when T : X → 2E
∗

is set-valued.
(2) A mapping T : X → 2F is monotone if and only if its graph G(T ) =

{(x, y) : y ∈ T (x)} is a monotone subset of X×F , i.e., for all (x1, y1), (x2, y2) ∈
G(T ),

Re〈y2 − y1, x2 − x1〉 ≥ 0.
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In 1989, Shih and Tan [30] introduced the following problem:
Let E and F be vector spaces over Φ, 〈·, ·〉 : F ×E → Φ be a bilinear functional
and X be a nonempty subset of E.

If S : X → 2X and M,T : X → 2F , then the generalized bi-quasi-variational
inequality problem (GBQVI) for the triple (S,M, T ) is as follows:

Find ŷ ∈ X such that
(1) ŷ ∈ S(ŷ);
(2) infw∈T (ŷ)Re〈f − w, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ) and f ∈M(ŷ).

If T is a single-valued mapping, then a generalized bi-quasi-variational inequal-
ity problem will be called a bi-quasi-variational inequality problem.

We have the following special cases of the problem (GBQVI):
Suppose the E is a topological vector space, F = E∗, the vector space of all

continuous linear functionals on E and 〈·, ·〉 is the usual duality pairing between
E∗ and E.

(I) If T = 0, then a generalized bi-quasi-variational inequality problem for
(S,M, 0) becomes a generalized quasi-variational inequality problem:

Find ŷ ∈ X such that
(1) ŷ ∈ S(ŷ);
(2) Re〈f, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ) and f ∈M(ŷ).
This problem was studied by Chan and Pang [7] in the finite-dimensional

case and, by Shih and Tan [31], in the infinite-dimensional case.
(II) If T = 0 and M is single-valued, then a generalized bi-quasi-variational

inequality problem for (S,M, 0) becomes a quasi-variational inequality problem:
Find ŷ ∈ S(ŷ) such that

Re〈M(ŷ), ŷ − x〉 ≤ 0

for all x ∈ S(ŷ).
This problem was introduced by Bensoussan and Lions in 1973 in connection

with impulse control (see Aubin [1], Baiocchi and Capelo [3], Bensoussan and
Lions [4]).

(III) If S(x) = X, M = 0 and T is single-valued, then a generalized bi-quasi-
variational inequality problem becomes a variational inequality problem:

Find ŷ ∈ X such that

Re〈T (ŷ), ŷ − x〉 ≥ 0

for all x ∈ X.
This problem was introduced by Stampacchia [32].
(IV) If S(x) = X and M = 0, then a generalized bi-quasi-variational in-

equality problem becomes a generalized variational inequality problem:
Find ŷ ∈ S(ŷ) and w ∈ T (ŷ) such that

Re〈w, ŷ − x〉 ≤ 0

for all x ∈ S(x).
This problem was studied by Browder [6] and Yen [34].
Also, Shih and Tan proved the following theorems:
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Theorem 1.1. Let E be a locally convex Hausdorff topological vector space
over Φ, X be a nonempty compact convex subset of E and F be a topological
vector space over Φ. Let 〈·, ·〉 : F × E → Φ be a bilinear functional which is
continuous on compact subsets of F ×X. Suppose that

(a) S : X → 2X is an upper semi-continuous mapping such that each S(x)
is closed convex;

(b) M : X → 2F is a monotone mapping with respect to 〈·, ·〉;
(c) T : X → 2F is an upper semi-continuous mapping such that each T (x)

is compact;
(d) the set

Σ = {y ∈ X : sup
x∈S(y)

sup
f∈M(x)

inf
w∈T (y)

Re〈f − w, y − x〉 > 0}

is open in X.
Then there exists a point ŷ ∈ X such that

(1) ŷ ∈ S(ŷ);
(2) infw∈T (ŷ)Re〈f − w, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ) and f ∈M(x).
In addition, if M is lower semi-continuous along the line segments in X to

the topology σ〈F,E〉 on F , then
(3) infw∈T (ŷ)Re〈f − w, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ) and f ∈M(ŷ).
Moreover, if S(x) = X for all x ∈ X, then E is not required to be locally

convex and, if T ≡ 0, then the continuity assumption on 〈·, ·〉 can be weakened
to the assumption that, for each f ∈ F , the mapping x 7→ 〈f, x〉 is continuous
on X.

Theorem 1.2. Let E be a locally convex Hausdorff topological vector space
over Φ, X be a nonempty compact convex subset of E and F be a topological
vector space over Φ. Let 〈·, ·〉 : F × E → Φ be a bilinear functional which is
continuous on X and let F equip with the topology δ〈F,E〉. Suppose that

(a) S : X → 2X is an upper semi-continuous mapping such that each S(x)
is closed convex;

(b) M : X → 2F is a monotone mapping with respect to 〈·, ·〉 and lower
semi-continuous;

(c) T : X → 2F is an upper semi-continuous mapping such that each T (x)
is compact.
Then there exists a point ŷ ∈ X such that

(1) ŷ ∈ S(ŷ);
(2) infw∈T (ŷ)Re〈f − w, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ) and f ∈M(ŷ).

Remark 1.2. Since the results of Shih and Tan, some authors have obtained
many results on generalized (quasi-)variational inequalities, generalized (quasi-
)variational-like inequalities and generalized bi-quasi-variational inequalities in
topological vector spaces (see [9–24]).
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In this paper, we obtain some existence results for solutions for a new class
of generalized bi-quasi-variational-like inequalities (GBQVLI) for (η, h)-quasi-
pseudo-monotone type I and strongly (η, h)-quasi-pseudomonotone type I oper-
ators defined on non-compact sets in locally convex Hausdorff topological vector
spaces. In fact, the generalized bi-quasi-variational-like inequalities (GBQVLI)
are the extensions of the generalized bi-quasi-variational inequalities (GBQVI)
which was first introduced by Shih and Tan [31] in 1989.

2. Preliminaries

In 2010, Chowdhury and Tan [17] obtained the generalized bi-quasi-varia-
tional inequalities for quasi-pseudomonotone type I and strongly quasi-pseudo-
monotone type I operators on non-compact sets. As we have mentioned above,
we are going to obtain some results for solutions for a new class of gener-
alized bi-quasi-variational-like inequalities (GBQVLI) for (η, h)-quasi-pseudo-
monotone type I and strongly (η, h)-quasi-pseudomonotone type I operators
on non-compact sets. For this, we now introduce the following definition of
generalized bi-quasi-variational-like inequality (GBQVLI):

Let S : X → 2X be a set-valued mapping, M,T : X → 2F be two set-valued
mappings and η : X × X → E be a single-valued mapping. The generalized
bi-quasi-variational-like inequality problem (GBQVLI) is as follows:

Find a point ŷ ∈ X and a point ŵ ∈ T (ŷ) such that
(1) ŷ ∈ S(ŷ);
(2) Re〈f − ŵ, η(ŷ, x)〉 ≤ 0 for all x ∈ S(ŷ) and f ∈M(ŷ);

or
Find a point ŷ ∈ X, a point ŵ ∈ T (ŷ) and a point f̂ ∈M(ŷ) such that
(1) ŷ ∈ S(ŷ);

(3) Re〈f̂ − ŵ, η(ŷ, x)〉 ≤ 0 for all x ∈ S(ŷ).
If η(ŷ, x) = ŷ − x, then the generalized bi-quasi-variational-like inequal-

ity (GBQVLI) is equivalent to the generalized bi-quasi-variational inequality
(GBQVI) introduced by Chowdhury and Tan in [14] and Shih and Tan in [31].

Now, we first introduce the following definition of (η, h)-quasi-pseudomo-
notone (resp., strongly (η, h)-quasi-pseudomonotone) type I operators which
is a slight modification of the quasi-pseudomonotone (resp., strongly quasi-
pseudomonotone) type I operators (see Definition 1.1 in [15] given by Chowd-
hury and Tan in 2010):

Definition 2.1. Let E be a topological vector space over Φ, X be a non-empty
subset of E and F be a topological vector space over Φ which is equipped with
the σ〈F,E〉 topology. Let 〈·, ·〉 : F ×E → Φ be a bilinear functional. Consider
the following four mappings:

(1) M : X → 2F is a multi-valued mapping;
(2) T : X → 2F is a multi-valued mapping;
(3) h : E × E → R is a single-valued mapping;
(4) η : X ×X → E is a single-valued mapping.
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Then the mapping T is said to be an (η, h)-quasi-pseudomonotone type I (resp.,
strongly (η, h)-quasi-pseudomonotone type I) operator if, for each y ∈ X and
net {yα}α∈Γ in X converging to y (resp., weakly to y) with

lim sup
α

[ inf
f∈M(y)

inf
u∈T (yα)

Re〈f − u, η(yα, y)〉+ h(yα, y)] ≤ 0,

we have

lim sup
α

[ inf
f∈M(x)

inf
u∈T (yα)

Re〈f − u, η(yα, x)〉+ h(yα, x)]

≥ inf
f∈M(x)

inf
w∈T (y)

Re〈f − w, η(y, x)〉+ h(y, x)

for all x ∈ X.

Remark 2.1. The above operator T reduces to an h-quasi-pseudomonotone type
I (resp., strongly h-quasi-pseudomonotone type I) operator due to Chowdhury
and Tan in [17] if T is an (η, h)-quasi-pseudomonotone type I (resp., strongly
(η, h)-quasi-pseudomonotone type I) operator with η(x, y) = x−y for all x, y ∈
X and, for some h′ : E → R, h(x, y) = h′(x)− h′(y) for all x, y ∈ E.

Also, T reduces to a quasi-pseudomonotone type I (resp., strongly quasi-
pseudomonotone type I) operator due to Chowdhury and Tan in 15] if T is an
h-quasi-pseudomonotone type I (resp., strongly h-quasi-pseudomonotone type
I) operator with h ≡ 0.

Remark 2.2. (1) When M ≡ 0 and T is replaced by −T , an h-quasi-pseudo-
monotone type I operator is reduced to an h-pseudomonotone (or an h-demi-
monotone) operator defined in [10].

(2) The h-pseudomonotone (or h-demi-monotone) operators defined in [10]
are slightly more general than the definition of h-pseudomonotone operators
given in [13].

(3) Later, in the year 2000, Chowdhury renamed the above h-pseudomono-
tone (or h-demi-monotone) operators as pseudomonotone type I operators [8].
The pseudomonotone type I operators are set-valued generalization of the clas-
sical (single-valued) pseudomonotone operators with slight variations. The
classical definition of a single-valued pseudomonotone operator was introduced
by Brézis et al. in [5].

(4) The authors first introduced quasi-pseudomonotone type I operators in
[15, Definition 1.1] as a generalization of pseudomonotone type I operators.

We state the following result given in [17]:

Proposition 2.1. Let X be a non-empty subset of a topological vector space
E. Let T : X → E∗ and M : X → E∗ be two single-valued maps. Suppose that
the operator T is monotone, and both M and T are continuous maps from the
relative weak topology on X to the weak∗ topology on E∗. Then T is both quasi-
pseudomonotone type I and strongly quasi-pseudomonotone type I operator.

For the proof, see in [17, pp. 424–425].
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The following result justifies the validity of an (η-h)-quasi-pseudo-monotone
type I and strongly (η-h)-quasi-pseudo-monotone type I operators:

Proposition 2.2. Let X be a non-empty subset of a topological vector space
E. Let T : X → E∗ and M : X → E∗ be two single-valued maps. Suppose
that h : X ×X → R is a real valued function such that for each y ∈ X, h(·, y)
is continuous and h(X ×X) is bounded. Let η : X ×X → E be a continuous
mapping.

Further suppose that the operators T and M are η-monotone (i.e., for each
x, y ∈ X, we have Re〈T (y) − T (x), η(y, x)〉 ≥ 0 (respectively, Re〈M(y) −
M(x), η(y, x)〉 ≥ 0)), and also both M and T are continuous mappings from
the relative weak topology on X to the weak∗ topology on E∗. Then T is both
(η-h)-quasi-pseudo-monotone type I and strongly (η-h)-quasi-pseudo-monotone
type I operator.

Proof. Suppose that {yα}α∈Γ is a net in X and y ∈ X with yα → y (respec-
tively, yα → y weakly) and that

lim sup
α

Re〈M(y)− T (yα), η(yα, y)〉+ h(yα, y) ≤ 0.

Let x ∈ X be arbitrarily fixed. Then

(2.1)

lim sup
α

[Re〈M(x)− T (yα), η(yα, x)〉+ h(yα, x)]

≥ lim sup
α

[Re〈M(x)− T (yα), η(yα, x)〉] + lim inf
α

h(yα, x).

Since M and T are η-monotone, we have

Re〈(M(x)− T (yα))− (M(x)− T (y)), η(yα, x)〉 ≥ 0.

Thus we have

Re〈M(x)− T (yα), η(yα, x)〉 ≥ Re〈M(x)− T (y), η(yα, x)〉.

Hence, we have,

(2.2)

lim sup
α

[Re〈M(x)− T (yα), η(yα, x)]

≥ lim sup
α

[Re〈M(x)− T (y), η(yα, x)〉].

Therefore, from equations (2.1) and (2.2) we have,

lim sup
α

[Re〈M(x)− T (yα), η(yα, x)〉+ h(yα, x)]

≥ lim sup
α

[Re〈M(x)− T (y), η(yα, x)〉] + lim inf
α

h(yα, x)

= Re〈M(x)− T (y), η(y, x)〉+ h(y, x)

for all x ∈ X.
Consequently, T is both (η-h)-quasi-pseudo-monotone type I and strongly

(η-h)-quasi-pseudo-monotone type I operator. �
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In this paper, we obtain some general theorems on solutions for a new class
of generalized bi-quasi-variational-like inequalities for (η, h)-quasi-pseudomono-
tone type I and strongly (η, h)-quasi-pseudomonotone type I operators defined
on non-compact spaces in topological vector spaces. To obtain these results,
we mainly use the following generalized version of Ky Fan’s minimax inequality
[27] due to Chowdhury and Tan [10] which was stated and proved as Theorem
2.1 in [16] and is a slight modification of Theorem 1 in [10]:

Theorem 2.3. Let E be a topological vector space, X be a nonempty convex
subset of E, F(X) denote the family of all non-empty finite subsets of X and
f : X ×X → R ∪ {−∞,+∞} be such that

(a) for each A ∈ F(X) and fixed x ∈ co(A), y 7→ f(x, y) is lower semi-
continuous on co(A);

(b) for each A ∈ F(X) and y ∈ co(A), minx∈A f(x, y) ≤ 0;
(c) for each A ∈ F(X) and x, y ∈ co(A), every net {yα}α∈Γ in X converging

to y with f(tx+(1−t)y, yα) ≤ 0 for all α ∈ Γ and t ∈ [0, 1], we have f(x, y) ≤ 0;
(d) there exist a nonempty closed and compact subset K of X and x0 ∈ K

such that f(x0, y) > 0 for all y ∈ X \K.
Then there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X.

Definition 2.2. A function φ : X ×X → R∪{±∞} is said to be 0-diagonally
concave (in short, 0-DCV) in the second argument [26] if, for any finite set
{x1, . . . , xn} ⊂ X and λi ≥ 0 with

∑n
i=1 λi = 1, we have

∑n
i=1 λiφ(y, xi) ≤ 0,

where y =
∑n
i=1 λixi.

Let E be a topological vector space over Φ, F be a vector space over Φ and
X be a non-empty subset of E. Let 〈·, ·〉 : F ×E → Φ be a bilinear functional.
Throughout this paper, Φ denotes either the real field R or the complex field
C.

Now, we state the following definition given in [25]:

Definition 2.3. Let X, E, F be the sets defined above and T : X → 2F ,
η : X ×X → E, g : X → E be mappings.

(1) The mappings T and η are said to have 0-diagonally concave relation (in
short, 0-DCVR) if the function φ : X ×X → R ∪ {±∞} defined by

φ(x, y) = inf
w∈T (x)

Re〈w, η(x, y)〉

is 0-DCV in y;
(2) The mappings T and g are said to have 0-diagonally concave relation if

T and η(x, y) = g(x)− g(y) have the 0-DCVR.

We first state the following result which is Lemma 1 of Shih and Tan in
[25, pp. 334–335]:

Lemma 2.4. Let X be a nonempty subset of a Hausdorff topological vector
space E and S : X → 2E be an upper semi-continuous mapping such that S(x)
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is a bounded subset of E for each x ∈ X. Then, for each continuous linear
functional p on E, the functional fp : X → R defined by

fp(y) = sup
x∈S(y)

Re〈p, x〉

is upper semi-continuous, i.e., for each λ ∈ R, the set

{y ∈ X : fp(y) = sup
x∈S(y)

Re〈p, x〉 < λ}

is open in X.

The following result is Lemma 3 of Takahashi in [33, pp. 177] (see also
Lemma 3 in [31, pp. 71–72]):

Lemma 2.5. Let X and Y be topological spaces, f : X → R be non-negative
and continuous and g : Y → R be lower semi-continuous. Then the functional
F : X × Y → R defined by

F (x, y) = f(x)g(y)

for all (x, y) ∈ X × Y is lower semi-continuous.

The following result, which was stated and proved as Lemma 2.2 in [16],
follows from slight modification of Lemma 3 of Chowdhury and Tan given in
[10]:

Lemma 2.6. Let E be a Hausdorff topological vector space over Φ, A ∈ F(E)
and X = co(A) where co(A) denotes the convex hull of A. Let F be a vector
space over Φ and 〈, 〉 : F × E → φ be a bilinear functional such that 〈, 〉
separates points in F . We equip F with the σ〈F,E〉-topology. Suppose that, for
each w ∈ F , x 7→ Re〈w, x〉 is continuous. Let η : X ×X → E be continuous.
Let T : X → 2F be upper semi-continuous from X into 2F such that each T (x)
is σ〈F,E〉-compact. Let f : X ×X → R be defined by

f(x, y) = inf
w∈T (y)

Re〈w, η(y, x)〉

for all x, y ∈ X.
Suppose that 〈, 〉 is continuous on the (compact) subset [∪y∈XT (y)]× η(X ×

X) of F ×E. Then, for each fixed x ∈ X, y 7→ f(x, y) is lower semi-continuous
on X.

For completeness we include the proof here given in [16]:

Proof. Let λ ∈ R be given and let x ∈ X = co(A) be arbitrarily fixed. Let
Aλ = {y ∈ X : f(x, y) ≤ λ}. Suppose that {yα}α∈Γ is a net in Aλ and
y0 ∈ co(A) = X such that yα → y0. Then for each α ∈ Γ,

λ ≥ f(x, yα) = inf
w∈T (yα)

Re〈w, η(yα, x)〉.
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Since F is equipped with the σ〈F,E〉-topology, for each x ∈ E, the function
w 7→ Re〈w, x〉 is continuous. Also, η(yα, x) → η(y0, x) because η(·, x) is con-
tinuous. By the σ〈F,E〉-compactness of T (yα), there exists wα ∈ T (yα) such
that

λ ≥ inf
w∈T (yα)

Re〈w, η(yα, x)〉 = Re〈wα, η(yα, x)〉.

Since T is upper semi-continuous from X = co(A) to the σ〈F,E〉-topology on
F , X is compact, and each T (z) is σ〈F,E〉-compact, ∪z∈XT (z) is also σ〈F,E〉-
compact by Proposition 3.1.11 of Aubin and Ekeland [2]. Thus there is a subnet
{wα′}α′∈Γ′ of {wα}α∈Γ and w0 ∈ ∪z∈XT (z) such that wα′ → w0 in the σ〈F,E〉-
topology. Again, as T is upper semi-continuous with the σ〈F,E〉-closed values,
w0 ∈ T (y0).

Suppose that A = {a1, a2, . . . , an} and let t1, t2, . . . , tn ≥ 0 with
∑n
i=1 ti = 1

such that y0 =
∑n
i=1 tiai. For each α′ ∈ Γ, let tα

′

1 , t
α′

2 , . . . , t
α′

n ≥ 0 with∑n
i=1 t

α′

i = 1 such that yα′ =
∑n
i=1 t

α′

i ai. Since E is Hausdorff and yα′ → y0,

we must have tα
′

i → ti for each i = 1, 2, . . . , n. Thus

(2.1)

λ ≥ Re〈wα′ , η(yα′ , x)〉 = Re〈wα′ , η(
n∑
i=1

tα
′

i ai, x)〉

→ Re〈w0, η(

n∑
i=1

tiai, x)〉

= Re〈w0, η(y0, x)〉 ≥ inf
w∈T (y0)

Re〈w, η(y0, x)〉 = f(x, y0),

where (2.1) is true since η(·, x) is continuous on X and 〈 , 〉 is continuous on
the compact subset [∪y∈XT (y)]× η(X ×X) of F × E.

Hence y0 ∈ Aλ. Thus Aλ is closed in X = co(A) for each λ ∈ R. Therefore
y 7→ f(x, y) is lower semi-continuous on X. �

By a slight modification of Lemma 4.2 in [12], we obtain below a further
modification of the result given in [24, Lemma 2.3]:

Lemma 2.7. Let E be a topological vector over φ, X a nonempty convex
subset of E and F a vector space over φ. Let 〈·, ·〉 : F × E → Φ be a bilinear
functional such that 〈·, ·〉 separates points in F . We equip F with the σ〈F,E〉-
topology such that for each w ∈ F , the function x 7→ Re〈w, x〉 is continuous.
Let η : X × X → E be such that for each fixed y ∈ X, η(·, y) is continuous
and for each fixed x ∈ X, η(x, ·) is affine. Let h : X ×X → R be a mapping
such that for each fixed y ∈ X, h(·, y) is lower semi-continuous and convex on
co(A) for each A ∈ F(X), and for each fixed x ∈ X, h(x, ·) is concave, and
h(x, x) = 0, η(x, x) = 0, and T and η have the 0-DCVR.

Suppose that S : X → 2X is a mapping, M : X → 2F is a lower semi-
continuous mapping along line segments in X to the σ〈F,E〉-topology on F
and T : X → 2F is an upper hemi-continuous mapping along line segments in
X.
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Suppose further that there exists ŷ ∈ X such that ŷ ∈ S(ŷ), S(ŷ) is convex
and

inf
f∈M(x)

inf
w∈T (ŷ)

Re〈f − w, η(ŷ, x)〉 ≤ h(x, ŷ)

for all x ∈ S(ŷ). Then

inf
f∈M(ŷ)

inf
w∈T (ŷ)

Re〈f − w, η(ŷ, x)〉 ≤ h(x, ŷ)

for all x ∈ S(ŷ).

For completeness we give the detailed proof below:

Proof. Suppose that

inf
f∈M(x)

inf
w∈T (ŷ)

Re〈f − w, η(ŷ, x)〉 ≤ h(x, ŷ) for all x ∈ S(ŷ).

Let x ∈ S(ŷ) be arbitrarily fixed. Let zt = tx+ (1− t)ŷ = ŷ − t(ŷ − x) for all
t ∈ [0, 1]. Then zt ∈ S(ŷ) as S(ŷ) is convex.

Let L = {zt : t ∈ [0, 1]}. Thus for every t ∈ [0, 1]

inf
f∈M(zt)

inf
w∈T (ŷ)

Re〈f − w, η(ŷ, zt)〉 ≤ h(zt, ŷ).

Since for each y ∈ S(ŷ), h(·, y) is convex and for each x ∈ S(ŷ), h(x, ·) is affine,
we have

inf
f∈M(zt)

inf
w∈T (ŷ)

Re〈f − w, η(ŷ, tx+ (1− t)ŷ)〉

≤ h(tx+ (1− t)ŷ, ŷ) ≤ t(h(x, ŷ)) + (1− t)h(ŷ, ŷ)

for all t ∈ (0, 1]; thus we have,

inf
f∈M(zt)

inf
w∈T (ŷ)

[Re〈f − w, tη(ŷ, x) + (1− t)η(ŷ, ŷ)〉] ≤ t(h(x, ŷ));

therefore we have,

inf
f∈M(zt)

inf
w∈T (ŷ)

t[Re〈f − w, η(ŷ, x)〉] ≤ t(h(x, ŷ)).

This implies that inff∈M(zt) infw∈T (ŷ)Re〈f − w, η(ŷ, x)〉 ≤ h(x, ŷ) for all t ∈
(0, 1]. Since T is upper hemi-continuous on L, and M is lower semi-continuous
on L, the function fη(ŷ,x) : L→ R ∪ {+∞}, defined by

fη(ŷ,x)(zt) = inf
f∈M(zt)

inf
w∈T (ŷ)

Re〈f − w, η(ŷ, x)〉 for each zt ∈ L,

is lower semi-continuous on L. Thus the set

A = {zt ∈ L : fη(ŷ,x)(zt) ≤ h(x, ŷ)}

is closed in L. Now zt → ŷ in L as t → 0+. Since zt ∈ A for all t ∈ (0, 1] we
have ŷ ∈ A. Hence fη(ŷ,x)(ŷ) = inff∈M(ŷ) infw∈T (ŷ)Re〈f−w, η(ŷ, x)〉 ≤ h(x, ŷ).
Since x ∈ S(ŷ) is arbitrary, we have

inf
f∈M(ŷ)

inf
w∈T (ŷ)

Re〈w, η(ŷ, x)〉 ≤ h(x, ŷ) for all x ∈ S(ŷ).
�
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We need the following Kneser’s minimax theorem in [28, pp. 2418–2420] (see
also Aubin [1, pp. 40–41]):

Theorem 2.8. Let X be a nonempty convex subset of a vector space and Y
be a nonempty compact convex subset of a Hausdorff topological vector space.
Suppose that f is a real-valued function on X × Y such that, for each fixed
x ∈ X, the mapping y 7→ f(x, y), i.e., f(x, ·) is lower semi-continuous and
convex on Y and, for each fixed y ∈ Y , the map x 7→ f(x, y), i.e., f(·, y) is
concave on X. Then

min
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

min
y∈Y

f(x, y).

3. Generalized bi-quasi-variational-like inequalities

In this section, we obtain and prove some existence theorems for the so-
lutions to the generalized bi-quasi-variational-like inequalities for (η, h)-quasi-
pseudomonotone type I and strongly (η, h)-quasi-pseudomonotone type I op-
erators T with non-compact domain in locally convex Hausdorff topological
vector spaces. Our results extend and generalize the corresponding results in
[31].

We first establish the following result:

Theorem 3.1. Let E be a locally convex Hausdorff topological vector space
over Φ, X be a nonempty para-compact convex and bounded subset of E and F
a Hausdorff topological vector space over Φ. Let 〈·, ·〉 : F ×E → Φ be a bilinear
functional which is continuous on compact subsets of F ×X. Suppose that

(a) S : X → 2X is upper semi-continuous such that each S(x) is compact
and convex;

(b) h : E × E → R is convex and h(X ×X) is bounded;
(c) T : X → 2F is an (η-h)-quasi-pseudo-monotone type I (respectively,

strongly (η-h)-quasi-pseudo-monotone type I) operator and is upper semi-conti-
nuous such that each T (x) is compact (respectively, weakly compact) and convex
and T (X) is strongly bounded;

(d) T : X → 2F , and η : X ×X → E have the 0-DCVR and η : X ×X → E
is convex and continuous;

(e) M : X → 2F is a linear mapping in X (and is therefore single-valued for
each x ∈ X);

(f) for each fixed y ∈ X, x 7→ h(x, y), i.e., h(·, y) is lower semi-continuous
on co(A) for each A ∈ F(X) and, for each fixed x ∈ X, h(x, ·) and η(x, ·) are
concave, and η(x, ·) is affine and h(x, x) = 0, η(x, x) = 0;

(g) the set

Σ = {y ∈ X : sup
x∈S(y)

( inf
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x) > 0}

is open in X.
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Suppose further that there exist a nonempty closed and compact (respectively,
weakly closed and weakly compact) subset K of X and a point x0 ∈ X such
that x0 ∈ K ∩ S(y) and infw∈T (y)Re〈M(x0) − w, η(y, x0)〉 + h(y, x0) > 0 for
all y ∈ X \K.
Then there exists a point ŷ ∈ X such that

(1) ŷ ∈ S(ŷ);
(2) there exists a point ŵ ∈ T (ŷ) with Re〈M(ŷ) − ŵ, η(ŷ, x)〉 + h(ŷ, x) ≤ 0

for all x ∈ S(ŷ).
Moreover, if S(x) = X for all x ∈ X, then E is not required to be locally

convex and, if T ≡ 0, then the continuity assumption on 〈·, ·〉 can be weakened
to the assumption that, for each f ∈ F , the mapping x 7→ 〈f, x〉 is continuous
(resp., weakly continuous) on X.

Proof. We divide the proof into three steps:
Step 1. There exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
x∈S(ŷ)

[ inf
w∈T (ŷ)

Re〈M(x)− w, η(ŷ, x)〉+ h(ŷ, x)] ≤ 0.

Suppose the contrary. Then for each y ∈ X, either y 6∈ S(y) or there exists
x ∈ S(y) such that

inf
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x) > 0,

that is, for each y ∈ X, either y 6∈ S(y) or y ∈ Σ.
If y 6∈ S(y), then, by a separation theorem for convex sets in locally convex

Hausdorff topological vector spaces, there exist p ∈ E∗ and α ∈ R such that
Re〈p, x〉 < α < Re〈p, y〉 for all x ∈ S(y). Therefore,

sup
x∈S(y)

Re〈p, x〉 ≤ α < Re〈p, y〉.

Hence we have, Re〈p, y〉 − supx∈S(y)Re〈p, x〉 > 0. Let

γ(y) = sup
x∈S(y)

inf
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x),

V0 := {y ∈ X|γ(y) > 0} = Σ

and, for each p ∈ E∗, set

Vp := {y ∈ X : Re〈p, y〉 − sup
x∈S(y)

Re〈p, x〉 > 0}.

Then X = V0 ∪
⋃
p∈E∗ Vp. Since each Vp is open in X by Lemma 2.1 and V0 is

open in X by hypothesis, {V0, Vp : p ∈ E∗} is an open covering for X. Since X
is para-compact, there is a continuous partition of unity {β0, βp : p ∈ E∗} for
X subordinated to the open cover {V0, Vp : p ∈ E∗} (see Theorem VIII, 4.2 of
Dugundji in [23]), that is, for each p ∈ E∗, βp : X → [0, 1] and β0 : X → [0, 1]
are continuous functions such that, for each p ∈ E∗, βp(y) = 0 for all y ∈ X\Vp,
β0(y) = 0 for all y ∈ X \ V0, {support β0, support βp : p ∈ E∗} is locally finite
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and β0(y) + Σp∈E∗βp(y) = 1 for each y ∈ X. Note that, for each A ∈ F(X), h
is continuous on co(A) (see [29, Corollary 10.1.1, p. 83]).

Define a function φ : X ×X → R by

φ(x, y)=β0(y)[ inf
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x)]+
∑
p∈E∗

βp(y)Re〈p, y − x〉

for each x, y ∈ X. Then we have the following:
(1) Since E is Hausdorff, for each A ∈ F(X) and fixed x ∈ co(A), the

mapping

y 7→ inf
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x)

is lower semi-continuous (resp., weakly lower semi-continuous) on co(A) by
Lemma 2.6 and the fact that h is continuous on co(A) and therefore the map

y 7→ β0(y)[ inf
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x)]

is lower semi-continuous (resp., weakly lower semi-continuous) on co(A) by
Lemma 2.5. Also, for each fixed x ∈ X,

y 7→
∑
p∈E∗

βp(y)Re〈p, y − x〉

is continuous on X. Hence, for each A ∈ F(X) and fixed x ∈ co(A), the map-
ping y 7→ φ(x, y) is lower semi-continuous (resp., weakly lower semi-continuous)
on co(A).

(2) For each A ∈ F(X) and y ∈ co(A), minx∈A φ(x, y) ≤ 0. Indeed, if
this were false, then, for some A = {x1, x2, . . . , xn} ∈ F(X) and y ∈ co(A)
(say y =

∑n
i=1 λixi, where λ1, λ2, . . . , λn ≥ 0 with

∑n
i=1 λi = 1), we have

min1≤i≤n φ(xi, y) > 0. Then, for each i = 1, 2, . . . , n,

β0(y)[ inf
w∈T (y)

Re〈M(xi)− w, η(y, xi)〉+ h(y, xi)] +
∑
p∈E∗

βp(y)Re〈p, y − xi〉 > 0

and so

0 = φ(y, y)

= β0(y)[ inf
w∈T (y)

Re〈M(

n∑
i=1

λixi)− w, η(y,

n∑
i=1

λixi)〉+ h(y,

n∑
i=1

λixi)]

+
∑
p∈E∗

βp(y)Re〈p, y −
n∑
i=1

λixi〉

= β0(y)[ inf
w∈T (y)

Re〈
n∑
i=1

λiM(xi)− w, η(y,

n∑
i=1

λixi)〉+ h(y,

n∑
i=1

λixi)]

+
∑
p∈E∗

βp(y)Re〈p, y −
n∑
i=1

λixi〉
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≥
n∑
i=1

λi(β0(y)[ inf
w∈T (y)

Re〈M(xi)− w, η(y, xi)〉+ h(y, xi)]

+
∑
p∈E∗

βp(y)Re〈p, y − xi〉) > 0,

which is a contradiction.
(3) Suppose that A ∈ F(X), x, y ∈ co(A) and {yα}α∈Γ is a net in X con-

verging to y (resp., weakly to y) with φ(tx+ (1− t)y, yα) ≤ 0 for all α ∈ Γ and
t ∈ [0, 1].

Case (1): β0(y) = 0.
Note that β0(yα) ≥ 0 for each α ∈ Γ and β0(yα)→ 0. Since T (X) is strongly

bounded and {yα}α∈Γ is a bounded net, it follows that

(3.1) lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)] = 0.

Also, we have

β0(y)[ min
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x)] = 0.

Thus it follows from (3.1) that

(3.2)

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)]

+

n∑
p∈E∗

βp(y)Re〈p, y − x〉

=
∑
p∈E∗

βp(y)Re〈p, y − x〉

= β0(y)[ min
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x)]

+
∑
p∈E∗

βp(y)Re〈p, y − x〉.

When t = 1, we have φ(x, yα) ≤ 0 for all α ∈ Γ, i.e.,

(3.3)

β0(yα)[ min
w∈T (yα)

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)]

+
∑
p∈E∗

βp(yα)Re〈p, yα − x〉 ≤ 0

for all α ∈ Γ. Therefore, by (3.3), we have

lim sup
α

[β0(yα) min
w∈T (yα)

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)](3.4)

+ lim inf
α

[
∑
p∈E∗

βp(yα)Re〈p, yα − x〉]

≤ lim sup
α

[β0(yα) min
w∈T (yα)

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)
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+
∑
p∈E∗

βp(yα)Re〈p, yα − x〉] ≤ 0

and thus, by (3.4),

lim sup
α

[β0(yα) min
w∈T (yα)

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)]

+
∑
p∈E∗

βp(y)Re〈p, y − x〉 ≤ 0.

Hence, by (3.2) and (3.4), we have φ(x, y) ≤ 0.
Case (2): β0(y) > 0.
Since β0(yα)→ β0(y), there exists λ ∈ Γ such that β0(yα) > 0 for all α ≥ λ.

When t = 0, we have φ(y, yα) ≤ 0 for all α ∈ Γ, i.e.,

β0(yα)[ inf
w∈T (yα)

Re〈M(y)− w, η(yα, y)〉+ h(yα, y)]

+
∑
p∈E∗

βp(yα)Re〈p, yα − y〉 ≤ 0

for all α ∈ Γ and thus

(3.5)

lim sup
α

[β0(yα)( inf
w∈T (yα)

Re〈M(y)− w, η(yα, y)〉+ h(yα, y)

+
∑
p∈E∗

βp(yα)Re〈p, yα − y〉] ≤ 0.

Hence it follows from (3.5) that

lim sup
α

[β0(yα)( inf
w∈T (yα)

Re〈M(y)− w, η(yα, y〉+ h(yα, y)]

+ lim inf
α

[
∑
p∈E∗

βp(yα)Re〈p, yα − y〉]

≤ lim sup
α

[β0(yα)( inf
w∈T (yα)

Re〈M(y)− w, η(yα, y〉+ h(yα, y)

+
∑
p∈E∗

βp(yα)Re〈p, yα − y〉] ≤ 0.

Since lim infα[
∑
p∈E∗ βp(yα)Re〈p, yα − y〉] = 0, we have

(3.6) lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈M(y)− w, η(yα, y)〉+ h(yα, y)] ≤ 0.

Since β0(yα) > 0 for all α ≥ λ, it follows that

(3.7)

β0(y) lim sup
α

[ min
w∈T (yα)

Re〈M(y)− w, η(yα, y)〉+ h(yα, y)]

= lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈M(y)− w, η(yα, y)〉+ h(yα, y)].

Since β0(y) > 0, by (3.6) and (3.7), we have

lim sup
α

[ min
w∈T (yα)

Re〈M(y)− w, η(yα, y)〉+ h(yα, y)] ≤ 0.
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Since T is an (η-h)-quasi-pseudo-monotone type I (respectively, strongly (η-h)-
quasi-pseudo-monotone type I) operator, we have

lim sup
α

[ min
w∈T (yα)

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)]

≥ min
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x)

for all x ∈ X. Since β0(y) > 0, we have

β0(y)[lim sup
α

( min
w∈T (yα

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)]

≥ β0(y)[ min
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x)]

and thus

(3.8)

β0(y)[lim sup
α

( min
w∈T (yα)

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)]

+
∑
p∈E∗

βp(y)Re〈p, y − x〉

≥ β0(y)[ min
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x)]

+
∑
p∈E∗

βp(y)Re〈p, y − x〉.

When t = 1, we have φ(x, yα) ≤ 0 for all α ∈ Γ, i.e.,

β0(yα)[ min
w∈T (yα)

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)]

+
∑
p∈E∗

βp(yα)Re〈p, yα − x〉 ≤ 0

for all α ∈ Γ and so, by (3.8),

(3.9)

0 ≥ lim sup
α

[β0(yα) min
w∈T (yα

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)

+
∑
p∈E∗

βp(yα)Re〈p, yα − x〉]

≥ lim sup
α

[β0(yα) min
w∈T (yα)

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)]

+ lim inf
α

[
∑
p∈E∗

βp(yα)Re〈p, yα − x〉]

= β0(y)[lim sup
α
{ min
w∈T (yα)

Re〈M(x)− w, η(yα, x)〉+ h(yα, x)}]

+
∑
p∈E∗

βp(y)Re〈p, y − x〉

≥ β0(y)[ min
w∈T (y)

Re〈M(x)− w, η(y.x)〉+ h(y, x)]

+
∑
p∈E∗

βp(y)Re〈p, y − x〉.
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Hence we have φ(x, y) ≤ 0.
(4) By hypothesis, there exist a nonempty compact and therefore closed

(respectively, weakly closed and weakly compact) subset K of X and a point
x0 ∈ X such that

x0 ∈ K ∩ S(y), inf
w∈T (y)

[Re〈M(x0)− w, η(y, x0)〉+ h(y, x0)] > 0

for all y ∈ X \K. Thus it follows that, for all y ∈ X \K,

β0(y)[ inf
w∈T (y)

Re〈M(x0)− w, η(y, x0)〉+ h(y, x0)] > 0

whenever β0(y) > 0, and Re〈p, y − x0〉 > 0 whenever βp(y) > 0 for p ∈ E∗.
Consequently, we have

φ(x0, y) = β0(y)[ inf
w∈T (y)

Re〈M(x0)− w, η(y, x0)〉+ h(y, x0)]

+
∑
p∈E∗

βp(y)Re〈p, y − x0〉 > 0

for all y ∈ X \K. (If T is a strongly (η-h)-quasi-pseudo-monotone type I oper-
ator, we equip E with the weak topology.) Thus φ satisfies all the hypotheses
of Theorem 1.1. Hence, by Theorem 1.1, there exists a point ŷ ∈ K such that
φ(x, ŷ) ≤ 0 for all x ∈ X, i.e.,

(3.10)

β0(ŷ)[ inf
w∈T (ŷ)

Re〈M(x)− w, η(ŷ, x)〉+ h(ŷ, x)]

+
∑
p∈E∗

βp(ŷ)Re〈p, ŷ − x〉 ≤ 0

for all x ∈ X.
On the other hand suppose for the above ŷ ∈ X, there exists x̂ ∈ S(ŷ) such

that

inf
w∈T (ŷ)

Re〈M(x̂)− w, η(ŷ, x̂)〉+ h(ŷ, x̂) > 0.

Then

β0(ŷ)[ inf
w∈T (ŷ)

Re〈M(x̂)− w, η(ŷ, x̂)〉+ h(ŷ, x̂) > 0

whenever β0(ŷ) > 0.
Also if βp(ŷ) > 0 for all p ∈ E∗, then ŷ ∈ Vp and hence

Re〈p, ŷ〉 − sup
x∈S(ŷ)

Re〈p, x〉 > 0.

Therefore, Re〈p, ŷ〉 > supx∈S(ŷ)Re〈p, x〉 ≥ Re〈p, x̂〉. Hence, Re〈p, ŷ − x̂〉 > 0.
Then

βp(ŷ)Re〈p, ŷ − x̂〉 > 0

whenever βp(ŷ) > 0 for all p ∈ E∗.
Since βp(ŷ) > 0 for all p ∈ E∗, we have

β0(ŷ)[ inf
w∈T (ŷ)

Re〈M(x̂)− w, η(ŷ, x̂)〉+ h(ŷ, x̂)]
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+
∑
p∈E∗

βp(ŷ)Re〈p, ŷ − x̂〉 > 0

which contradicts (3.10). Therefore Step 1 is proved. Hence we have shown
that there exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
x∈S(ŷ)

[ inf
w∈T (ŷ)

Re〈M(x)− w, η(ŷ, x)〉+ h(ŷ, x)] ≤ 0.

Step 2. infw∈T (ŷ)Re〈M(ŷ)− w, η(ŷ, x)〉+ h(ŷ, x) ≤ 0 for all x ∈ S(ŷ).
From Step 1, we have

ŷ ∈ S(ŷ), inf
w∈T (ŷ)

Re〈M(x)− w, η(ŷ, x)〉+ h(ŷ, x) ≤ 0

for all x ∈ S(ŷ). Since S(ŷ) is a convex subset of X and M is linear and so
continuous along line segments in X, by Lemma 2.7, we have

inf
w∈T (ŷ)

Re〈M(ŷ)− w, η(ŷ, x)〉+ h(ŷ, x) ≤ 0

for all x ∈ S(ŷ).
Step 3. There exists a point ŵ ∈ T (ŷ) such that

Re〈M(ŷ)− ŵ, η(ŷ, x)〉+ h(ŷ, x) ≤ 0

for all x ∈ S(ŷ).
From Step 2 we have,

(3.11) sup
x∈S(ŷ)

[ inf
w∈T (ŷ)

Re〈M(ŷ)− w, η(ŷ, x)〉+ h(ŷ, x)] ≤ 0,

i.e.,

sup
x∈S(ŷ)

[ inf
(M(ŷ),w)∈M(ŷ)×T (ŷ)

Re〈M(ŷ)− w, η(ŷ, x)〉+ h(ŷ, x)] ≤ 0

where M(ŷ)× T (ŷ) is a σ〈F,E〉-compact convex subset of the Hausdorff topo-
logical vector space F × F and S(ŷ) is a convex subset of X.

Let us set Q = M(ŷ) × T (ŷ) and define the mapping g : S(ŷ) × Q → R by
g(x, q) = g(x, (M(ŷ), w)) = Re〈M(ŷ) − w, η(ŷ, x)〉 + h(ŷ, x) for each x ∈ S(ŷ)
and each q = (M(ŷ), w) ∈ Q = M(ŷ) × T (ŷ). Then, for each fixed x ∈ S(ŷ),
the mapping (M(ŷ), w) 7→ g(x, (M(ŷ), w)) is lower semi-continuous from the
relative product topology on Q to R and also convex on Q. Clearly, for each
fixed q = (M(ŷ), w) ∈ Q, the mapping x 7→ g(x, q) = g(x, (M(ŷ), w)) is concave
on S(ŷ).

So, we can apply Keneser’s Minimax Theorem (Theorem 2.8) and obtain
the following:

min
(M(ŷ),w)∈Q

sup
x∈S(ŷ)

g(x, (M(ŷ), w)) = sup
x∈S(ŷ)

min
(M(ŷ),w)∈Q

g(x, (M(ŷ), w)).

Hence, by (3.11), we obtain

min
(M(ŷ),w)∈Q

sup
x∈S(ŷ)

Re〈M(ŷ)− w, η(ŷ, x)〉+ h(ŷ, x) ≤ 0.



952 Y. J. CHO, M. S. R. CHOWDHURY, AND J. A. HA

Since Q = M(ŷ)×T (ŷ) is compact, there exists (M(ŷ), ŵ) ∈M(ŷ)×T (ŷ) such
that

sup
x∈S(ŷ)

[Re〈M(ŷ)− ŵ, η(ŷ, x)〉+ h(ŷ, x)] ≤ 0.

Therefore we have shown that

Re〈M(ŷ)− ŵ, η(ŷ, x)〉+ h(ŷ, x) ≤ 0

for all x ∈ S(ŷ). In other words, there exists a point ŵ ∈ T (ŷ) with

Re〈M(ŷ)− ŵ, η(ŷ, x)〉+ h(ŷ, x) ≤ 0

for all x ∈ S(ŷ).
We observe from the above proof that the requirement that E need to be

locally convex is needed when and only when the separation theorem is applied
to the case y 6∈ S(y). Thus, if S : X → 2X is the constant mapping S(x) = X
for all x ∈ X, then E is not required to be locally convex.

Finally, if T ≡ 0, in order to show that for each x ∈ X, y 7→ φ(x, y) is lower
semi-continuous (resp., weakly lower semi-continuous), Lemma 2.6 is no longer
needed and the weaker continuity assumption on 〈·, ·〉 that, for each f ∈ F , the
mapping x 7→ 〈f, x〉 is continuous (resp., weakly continuous) on X is sufficient.
This completes the proof. �

Now, we establish our last result of this section:

Theorem 3.2. Let E be a locally convex Hausdorff topological vector space
over Φ, X be a nonempty para-compact convex and bounded subset of E and F
a Hausdorff topological vector space over Φ. Let 〈·, ·〉 : F ×E → Φ be a bilinear
functional which is continuous on compact subsets of F ×X. Suppose that

(a) S : X → 2X is a continuous mapping such that each S(x) is compact
and convex;

(b) h : E × E → R is convex and h(X ×X) is bounded;
(c) T : X → 2F is an (η-h)-quasi-pseudo-monotone type I (respectively,

strongly (η-h)-quasi-pseudo-monotone type I) operator and is upper semi-conti-
nuous such that each T (x) is compact and convex (respectively, weakly compact
and convex, i.e., σ〈F,E〉-compact and convex) and T (X) is strongly bounded;

(d) T : X → 2F and η : X ×X → E have the 0-DCVR and η : X ×X → E
is convex and continuous;

(e) M : X → 2F is a continuous linear mapping in X and for each y ∈ Σ =
{y ∈ X : supx∈S(y)[infw∈T (y)Re〈M(x)− w, η(y, x)〉+ h(y, x)] > 0},

inf
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x) > 0

for some point x ∈ S(y).
(f) for each fixed y ∈ X, x 7→ h(x, y), i.e., h(·, y) is lower semi-continuous

on co(A) for each A ∈ F(X) and, for each fixed x ∈ X, h(x, ·) and η(x, ·) are
concave, and η(x, ·) is affine and h(x, x) = 0, η(x, x) = 0;
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(g) for each open subset U of X and x, y ∈ U , η(x, y) = x − y and there
exists h′ : X → R such that h(x, y) = h′(x)− h′(y);

Suppose further that there exist a nonempty closed and compact (respectively,
weakly closed and weakly compact) subset K of X and a point x0 ∈ X such that

x0 ∈ K ∩ S(y), inf
w∈T (y)

Re〈M(x0)− w, η(y, x0)〉+ h(y, x0) > 0

for all y ∈ X \K.
Then there exists a point ŷ ∈ X such that
(1) ŷ ∈ S(ŷ);
(2) there exists a point ŵ ∈ T (ŷ) with Re〈M(ŷ) − ŵ, η(ŷ, x)〉 + h(ŷ, x) ≤ 0

for all x ∈ S(ŷ).
Moreover, if S(x) = X for all x ∈ X, then E is not required to be locally

convex.

The proof is similar to the proof of Theorem 2 in [14]. For the completeness,
we include the proof here.

Proof. The proof will follow from Theorem 3.1 if we can show that the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
w∈T (y)

Re〈M(x)− w, η(y, x)〉+ h(y, x)] > 0}

is open in X. To show that Σ is open in X, we start as follows:
Let y0 ∈ Σ be an arbitrary point. We show that there exists an open

neighbourhood N0 of y0 in X such that N0 ⊂ Σ. Now, by the hypothesis (e),
M is a continuous linear mapping on X and at some point x0 in S(y0) we have

inf
w∈T (y0)

Re〈M(x0)− w, η(y0, x0)〉+ h(y0, x0) > 0.

Let

α := inf
w∈T (y0)

Re〈M(x0)− w, η(y0, x0)〉+ h(y0, x0).

Thus α > 0. Again, let

W := {w ∈ F : sup
z1,z2∈X

|〈w, z1 − z2〉| < α/6}.

Then W is an open neighbourhood of 0 in F and so U1 := T (y0) + W is an
open neighbourhood of T (y0) in F . Since T is upper semi-continuous at y0,
there exists an open neighbourhood N1 of y0 in X such that T (y) ⊂ U1 for all
y ∈ N1.

Let U2 := M(x0) + W , then U2 is an open neighbourhood of M(x0) in F .
Since M is continuous at x0, and therefore upper semi-continuous at x0, there
exists an open neighbourhood V1 of x0 in X such that M(x) ∈ U2 for all x ∈ V1.

Since the mapping x 7−→ infw∈T (y0)Re〈M(x0) − w, η(x0, x)〉 + h(x0, x) is
continuous at x0, there exists an open neighbourhood V2 of x0 in X such that

| inf
w∈T (y0)

Re〈M(x0)− w, η(x0, x)〉+ h(x0, x)| < α

6
for all x ∈ V2.
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Let V0 := V1 ∩ V2. Then V0 is an open neighborhood of x0 in X. Since
x0 ∈ V0 ∩ S(y0) 6= ∅ and S is lower semi-continuous at y0, there exists an open
neighborhood N2 of y0 in X such that S(y) ∩ V0 6= ∅ for all y ∈ N2.

Since the mapping y 7−→ infw∈T (y0)Re〈M(x0) − w, η(y, y0)〉 + h(y, y0) is
continuous at y0, there exists an open neighborhood N3 of y0 in X such that

| inf
w∈T (y0)

Re〈M(x0)− w, η(y, y0)〉+ h(y, y0)| < α

6
for all y ∈ N3.

Let N0 := N1 ∩N2 ∩N3. Then N0 is an open neighborhood of y0 in X such
that for each y1 ∈ N0, we have the following:

(1) T (y1) ⊂ U1 = T (y0) +W as y1 ∈ N1;
(2) S(y1) ∩ V0 6= ∅ as y1 ∈ N2; so we can choose any x1 ∈ S(y1) ∩ V0;
(3) | infw∈T (y0)Re〈M(x0)− w, η(y1, y0)〉+ h(y1, y0)| < α

6 as y1 ∈ N3;
(4) M(x1) ∈ U2 = M(x0) +W as x1 ∈ V1;
(5) | infw∈T (y0)Re〈M(x0)− w, η(x0, x1)〉+ h(x0, x1)| < α

6 as x1 ∈ V2.
Hence, using the assumption (g) of the theorem and by (1)-(5) above, we

can obtain the following by omitting the details:

inf
w∈T (y1)

Re〈M(x0)− w, η(y1, x1)〉+ h(y1, x1)

≥ inf
[w∈T (y0)+W ]

Re〈M(x0)− w, η(y1, x1)〉+ h(y1, x1)

≥ inf
w∈T (y0)

Re〈M(x0)− w, η(y1, x1)〉+ h(y1, x1)

+ inf
w∈W

Re〈M(x0)− w, η(y1, x1)〉

≥ inf
w∈T (y0)

Re〈M(x0)− w, y1 − y0〉+ h′(y1)− h′(y0)

+ inf
w∈T (y0)

Re〈M(x0)− w, y0 − x0〉+ h′(y0)− h′(x0)

+ inf
w∈T (y0)

Re〈M(x0)− w, x0 − x1〉+ h′(x0)− h′(x1)

+Re〈M(x0), y1 − x1〉+ inf
w∈W

Re〈−w, y1 − x1〉

≥ − α

6
+ α− α

6
− α

6
− α

6

=
α

3
> 0.

Consequently, we have

sup
x∈S(y1)

[ inf
w∈T (y1)

Re〈M(x0)− w, η(y1, x)〉+ h(y1, x)] > 0

since x1 ∈ S(y1). Hence y1 ∈ Σ for all y1 ∈ N0. Therefore, y0 ∈ N0 ⊂ Σ. But
y0 was arbitrary. Consequently, Σ is open in X.

Thus all the hypotheses of Theorem 3.1 are satisfied. Hence, the conclusion
follows from Theorem 3.1. This completes the proof. �
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Remark 3.1. (1) Theorems 3.1 and 3.2 in this paper are the extensions of
Theorems 3.2 and 3.3 in [17], respectively, for generalized bi-quasi-variational-
like inequalities (GBQVLI).

(2) The first paper on generalized bi-quasi-variational inequalities was writ-
ten by Shih and Tan in 1989 in [31] and the results were obtained on com-
pact sets where the set-valued mappings were either lower semi-continuous or
upper semi-continuous. Our present paper is another extension of the origi-
nal work in [31] using (η, h)-quasi-pseudomonotone type I and strongly (η, h)-
quasi-pseudomonotone type I operators on non-compact spaces. The (η, h)-
quasi-pseudomonotone type I and strongly (η, h)-quasi-pseudomonotone type
I operators are generalizations of pseudomonotone type I operators introduced
first in [10].

(3) In all our results on generalized bi-quasi-variational inequalities, if the
operators M ≡ 0 and the operator T is replaced by −T , then we obtain results
on generalized quasi-variational inequalities which generalize the corresponding
results in the literature (see [30]).

(4) The results on generalized bi-quasi-variational inequalities given in [21]
were obtained for set-valued quasi-semi-monotone and bi-quasi-semi-monotone
operators and the corresponding results in [19] were obtained for set-valued
upper-hemi-continuous operators introduced in [24]. Our results in this pa-
per are also further extensions of the corresponding results in [21] and [9]
using set-valued (η, h)-quasi-pseudomonotone type I and strongly (η, h)-quasi-
pseudomonotone type I operators on non-compact spaces.
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