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GENERALIZED BI-QUASI-VARIATIONAL-LIKE
INEQUALITIES ON NON-COMPACT SETS

YEoL JE CHO, MOHAMMAD S. R. CHOWDHURY, AND JE A1 HA

ABSTRACT. In this paper, we prove some existence results of solutions for
a new class of generalized bi-quasi-variational-like inequalities (GBQVLI)
for (n-h)-quasi-pseudo-monotone type I and strongly (n-h)-quasi-pseudo-
monotone type I operators defined on non-compact sets in locally convex
Hausdorff topological vector spaces. To obtain our results on GBQVLI
for (n-h)-quasi-pseudo-monotone type I and strongly (n-h)-quasi-pseudo-
monotone type I operators, we use Chowdhury and Tan’s generalized
version of Ky Fan’s minimax inequality as the main tool.

1. Introduction

Let E, F be topological spaces and let ¢ : E — 2F be a multi-valued
mapping.

The mapping g is said to be upper semi-continuous on F if, for all xy € F
and for each open set G in F with g(z¢) C G, there exists an open neighborhood
N(zg) of xg such that g(z) C G for all x € N(z¢). The mapping ¢ is said to
be lower semi-continuous on E if, for all ¢y € E and for each open set G in F’
with g(zo) N G # 0, there exists an open neighborhood N(zg) of zg such that
g(x) NG # P for all x € N(zg). The mapping g is said to be continuous on F
if g is both upper semi-continuous and lower semi-continuous on F.

Note that a multi-valued mapping ¢ is upper semi-continuous (resp., lower
semi-continuous) if the inverse image of a closed set (resp., an open set) is
closed (resp., open), where, if A C E, then the set

9(A) = Useag(z) ={y € F: g ' (y) N A # 0}
is called the image of A under g. If B C F', the set

971 (B) =Uyepg '(y) ={x € E:g(z) N B # 0}
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is called the inverse image of B under g.

Let E be a topological vector space over the field ®, F' be a vector space
over ® and (-,-) : F' x E — ® be a bilinear functional. For each z¢ € E, for
each nonempty subset A of E and ¢ > 0, let

Wi(zo;e) ={y € F: [{y,w0)| < &}

and
U(A;e)={yeF: sug [{y,z)| < e}.
xE€

Let o(F, E) be the topology on F' generated by the family
{W(zp;e):z € E, e >0}

as a subbase for the neighborhood system at 0 and let §(F, E') be the topology
on F generated by the family

{U(A;¢) : Ais a nonempty compact subset of E, ¢ > 0}

as a base for the neighborhood system at

We note then that F', when equipped with the topology o(F,E) or the
topology §(F, E), becomes a locally convex topological vector space, but not
necessarily a Hausdorff topological vector space. Furthermore, for a net {y,}
in F and y € F, we have the following:

(1) yo — y in o(F, E) if and only if (y,,x) — (y,z) for each z € E;

(2) Yo — y in §(F,E) if and only if (yn,z) — (y,z) uniformly for each
x € A, where A is a nonempty compact subset of F.

Definition 1.1. Let X be a nonempty subset of E. A mapping 7 : X — 2F
is said to be monotone with respect to the bilinear functional (-,-) if, for any
z,y € X, Vu € T(x) and Yw € T(y),

Re{w —u,y —x) > 0.
Remark 1.1. (1) When F = E*, the vector space of all continuous linear

functionals on E, and (-,-) is the usual pairing between E* and E, then the
monotonicity notion coincides with the usual definition, i.e.,

Re(Ty —Txz,y—z) >0
for any z,y € X, when T': X — E* is single-valued, and
Re(w —u,y —x) >0

for any z,y € X, Vu € T(z) and Yw € T(y), when T : X — 2F" is set-valued.

(2) A mapping T': X — 2 is monotone if and only if its graph G(T) =
{(z,y) : y € T(x)} is a monotone subset of X x F, i.e., for all (z1,y1), (z2,y2) €
G(T),

Re(ys — y1, 29 — 1) > 0.
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In 1989, Shih and Tan [30] introduced the following problem:

Let E and F be vector spaces over @, (-,-) : F X E — ® be a bilinear functional
and X be a nonempty subset of F.

If S: X — 2% and M, T : X — 2%, then the generalized bi-quasi-variational
inequality problem (GBQVI) for the triple (S, M, T) is as follows:

Find § € X such that

(1) 9 € S®);

(2) inf,epg) Re(f —w, gy —x) <0 for all z € S(y) and f € M(3).

If T is a single-valued mapping, then a generalized bi-quasi-variational inequal-
ity problem will be called a bi-quasi-variational inequality problem.

We have the following special cases of the problem (GBQVI):

Suppose the E is a topological vector space, F' = E*, the vector space of all
continuous linear functionals on E and (-, -) is the usual duality pairing between
E* and E.

(I) If T = 0, then a generalized bi-quasi-variational inequality problem for
(S, M,0) becomes a generalized quasi-variational inequality problem:

Find § € X such that

(1) g € S(®);

(2) Re(f, 5 —x) <0 forall x € S(g) and f € M(9).

This problem was studied by Chan and Pang [7] in the finite-dimensional
case and, by Shih and Tan [31], in the infinite-dimensional case.

(II) If T =0 and M is single-valued, then a generalized bi-quasi-variational
inequality problem for (S, M, 0) becomes a quasi-variational inequality problem:

Find ¢ € S(¢) such that

for all z € S(gy).

This problem was introduced by Bensoussan and Lions in 1973 in connection
with impulse control (see Aubin [1], Baiocchi and Capelo [3], Bensoussan and
Lions [4]).

(IIT) If S(x) = X, M = 0 and T is single-valued, then a generalized bi-quasi-
variational inequality problem becomes a variational inequality problem:

Find § € X such that

Re(T(§), 5 — ) 2 0
for all x € X.

This problem was introduced by Stampacchia [32].

(IV) If S(z) = X and M = 0, then a generalized bi-quasi-variational in-
equality problem becomes a generalized variational inequality problem:

Find g € S(9) and w € T(§) such that

Re(w,§—x) <0

for all x € S(z).
This problem was studied by Browder [6] and Yen [34].
Also, Shih and Tan proved the following theorems:
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Theorem 1.1. Let E be a locally convex Hausdorff topological vector space
over ®, X be a nonempty compact conver subset of E and F be a topological
vector space over ®. Let {-,-) : F X E — ® be a bilinear functional which is
continuous on compact subsets of F' x X. Suppose that

(a) S: X — 2% is an upper semi-continuous mapping such that each S(x)
is closed convexr;

(b) M : X — 2F is a monotone mapping with respect to (-,-);

(c) T : X — 2F is an upper semi-continuous mapping such that each T(x)
18 compact;

(d) the set

Y={yeX: sup sup inf Re(f—w,y—x)>0}
z€S(y) feEM(z) wET ()

is open in X.
Then there exists a point § € X such that

(1) § € S(H);

(2) infyepy) Re(f —w,§ —x) <0 for all x € S(j) and f € M(x).

In addition, if M is lower semi-continuous along the line segments in X to
the topology o (F, E) on F, then

(3) infyer(g) Re(f —w, 5 —x) <0 for all x € S(y) and f € M(y).

Moreover, if S(z) = X for all x € X, then E is not required to be locally
convezx and, if T =0, then the continuity assumption on (-,-) can be weakened
to the assumption that, for each f € F, the mapping © — (f,x) is continuous
on X.

Theorem 1.2. Let E be a locally convex Hausdorff topological vector space
over ®, X be a nonempty compact conver subset of E and F be a topological
vector space over ®. Let {-,-) : F X E — ® be a bilinear functional which is
continuous on X and let F equip with the topology §(F, E). Suppose that

(a) S: X — 2% is an upper semi-continuous mapping such that each S(x)
is closed convexr;

(b) M : X — 2F is a monotone mapping with respect to (-,-) and lower
semi-continuous;

(c) T : X — 2 is an upper semi-continuous mapping such that each T(x)
s compact.
Then there exists a point § € X such that

(1) g € S(®);

(2) infyepy) Re(f —w,§ —x) <0 for all x € S(j) and f € M(7).

Remark 1.2. Since the results of Shih and Tan, some authors have obtained
many results on generalized (quasi-)variational inequalities, generalized (quasi-
)variational-like inequalities and generalized bi-quasi-variational inequalities in
topological vector spaces (see [9-24]).
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In this paper, we obtain some existence results for solutions for a new class
of generalized bi-quasi-variational-like inequalities (GBQVLI) for (n, h)-quasi-
pseudo-monotone type I and strongly (7, h)-quasi-pseudomonotone type I oper-
ators defined on non-compact sets in locally convex Hausdorff topological vector
spaces. In fact, the generalized bi-quasi-variational-like inequalities (GBQVLI)
are the extensions of the generalized bi-quasi-variational inequalities (GBQVTI)
which was first introduced by Shih and Tan [31] in 1989.

2. Preliminaries

In 2010, Chowdhury and Tan [17] obtained the generalized bi-quasi-varia-
tional inequalities for quasi-pseudomonotone type I and strongly quasi-pseudo-
monotone type I operators on non-compact sets. As we have mentioned above,
we are going to obtain some results for solutions for a new class of gener-
alized bi-quasi-variational-like inequalities (GBQVLI) for (7, h)-quasi-pseudo-
monotone type I and strongly (7, h)-quasi-pseudomonotone type I operators
on non-compact sets. For this, we now introduce the following definition of
generalized bi-quasi-variational-like inequality (GBQVLI):

Let S : X — 2% be a set-valued mapping, M, T : X — 2¥ be two set-valued
mappings and n : X x X — FE be a single-valued mapping. The generalized
bi-quasi-variational-like inequality problem (GBQVLI) is as follows:

Find a point § € X and a point w € T'(g) such that

(1) g € S(®);

(2) Re(f —w,n(g,x)) <0 for all z € S(9) and f € M(9);
or

Find a point § € X, a point @ € T(§) and a point fe M (g) such that

(1) § € 5(3):

(3) Re(f —w,n(g,z)) <0 for all z € S(7).

If n(g,x) = § — x, then the generalized bi-quasi-variational-like inequal-
ity (GBQVLI) is equivalent to the generalized bi-quasi-variational inequality
(GBQVI) introduced by Chowdhury and Tan in [14] and Shih and Tan in [31].

Now, we first introduce the following definition of (7, h)-quasi-pseudomo-
notone (resp., strongly (7, h)-quasi-pseudomonotone) type I operators which
is a slight modification of the quasi-pseudomonotone (resp., strongly quasi-
pseudomonotone) type I operators (see Definition 1.1 in [15] given by Chowd-
hury and Tan in 2010):

Definition 2.1. Let E be a topological vector space over @, X be a non-empty
subset of F and F be a topological vector space over ® which is equipped with
the o(F, E) topology. Let (-,-) : F' x E — ® be a bilinear functional. Consider
the following four mappings:

1) M : X — 2F is a multi-valued mapping;

2) T: X — 2F is a multi-valued mapping;

3) h: E x E — R is a single-valued mapping;

4) n: X x X — E is a single-valued mapping,.

(
(
(
(



938 Y. J. CHO, M. S. R. CHOWDHURY, AND J. A. HA

Then the mapping T is said to be an (1, h)-quasi-pseudomonotone type I (resp.,
strongly (1, h)-quasi-pseudomonotone type I) operator if, for each y € X and
net {ya taer in X converging to y (resp., weakly to y) with

lim su inf inf Re(f —u,n(ya, + h(Ya, <0,
a p[fEM(y)ueT(ya) <f 1Y y)) + h(Ya: y)]

we have
limsup| inf inf Re(f —u,n(Ya,z)) + h(Ya, x
a p[fGM(m) weT (Ya) <f n(y )> (y )]
> inf inf Re(f —w, .2)) + h(y,x
> dnf | onf Re(f —w,n(y,x)) +hly, )
for all x € X.

Remark 2.1. The above operator T reduces to an h-quasi-pseudomonotone type
I (resp., strongly h-quasi-pseudomonotone type I) operator due to Chowdhury
and Tan in [17] if T is an (7, h)-quasi-pseudomonotone type I (resp., strongly
(1, h)-quasi-pseudomonotone type I) operator with n(x,y) = x—y for all z,y €
X and, for some h' : E — R, h(z,y) = h'(z) — W/ (y) for all z,y € E.

Also, T reduces to a quasi-pseudomonotone type I (resp., strongly quasi-
pseudomonotone type I) operator due to Chowdhury and Tan in 15] if 7" is an
h-quasi-pseudomonotone type I (resp., strongly h-quasi-pseudomonotone type
I) operator with h = 0.

Remark 2.2. (1) When M = 0 and T is replaced by —T', an h-quasi-pseudo-
monotone type I operator is reduced to an h-pseudomonotone (or an h-demi-
monotone) operator defined in [10].

(2) The h-pseudomonotone (or h-demi-monotone) operators defined in [10]
are slightly more general than the definition of h-pseudomonotone operators
given in [13].

(3) Later, in the year 2000, Chowdhury renamed the above h-pseudomono-
tone (or h-demi-monotone) operators as pseudomonotone type I operators [8].
The pseudomonotone type I operators are set-valued generalization of the clas-
sical (single-valued) pseudomonotone operators with slight variations. The
classical definition of a single-valued pseudomonotone operator was introduced
by Brézis et al. in [5].

(4) The authors first introduced quasi-pseudomonotone type I operators in
[15, Definition 1.1] as a generalization of pseudomonotone type I operators.

We state the following result given in [17]:

Proposition 2.1. Let X be a non-empty subset of a topological vector space
E. LetT: X — E* and M : X — E* be two single-valued maps. Suppose that
the operator T is monotone, and both M and T are continuous maps from the
relative weak topology on X to the weak* topology on E*. Then T is both quasi-
pseudomonotone type I and strongly quasi-pseudomonotone type I operator.

For the proof, see in [17, pp. 424-425].
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The following result justifies the validity of an (n-h)-quasi-pseudo-monotone
type I and strongly (n-h)-quasi-pseudo-monotone type I operators:

Proposition 2.2. Let X be a non-empty subset of a topological vector space
E. LetT : X — E* and M : X — E* be two single-valued maps. Suppose
that h : X x X — R is a real valued function such that for each y € X, h(-,y)
is continuous and h(X x X) is bounded. Letn: X x X — E be a continuous
mapping.

Further suppose that the operators T and M are n-monotone (i.e., for each
z,y € X, we have Re(T(y) — T'(z),n(y,z)) > 0 (respectively, Re(M (y) —

M(x),n(y,z)) > 0)), and also both M and T are continuous mappings from
the relative weak topology on X to the weak® topology on E*. Then T is both
(n-h)-quasi-pseudo-monotone type I and strongly (n-h)-quasi-pseudo-monotone
type I operator.

Proof. Suppose that {ys}aer is a net in X and y € X with y, — y (respec-
tively, yo — y weakly) and that

limasup Re(M(y) — T(Ya), N(Yar ¥)) + M(Ya,y) < 0.

Let x € X be arbitrarily fixed. Then
lim sup[Re(M () — T (ya ), 1(Ya, ) + h(ya, )]

B 2 i suplRe(M () — 7). (v, )] + liint h(ya, 2).

Since M and T are p-monotone, we have

Re((M(z) = () ~ (M(&) ~ T(), 10, ) 2 0.
Thus we have
Re(M(2) ~ T(y), (e, 2)) 2 ReM(z) ~ () (v, ).

Hence, we have,

limsup[Re(M (z) = T(Ya) 1Yo, 2)]
22 > i suplRe(M(z) ~ T(). (s )

Therefore, from equations (2.1) and (2.2) we have,
i SUplRe(M (2) — T(3) 1)) + Ay, )
> timsup{Re(M () — T(3),1(y )] + i inf h(y )

= Re(M(x) — T(y),n(y,x)) + h(y, x)

for all x € X.
Consequently, T' is both (7-h)-quasi-pseudo-monotone type I and strongly
(n-h)-quasi-pseudo-monotone type I operator. O
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In this paper, we obtain some general theorems on solutions for a new class
of generalized bi-quasi-variational-like inequalities for (7, h)-quasi-pseudomono-
tone type I and strongly (), h)-quasi-pseudomonotone type I operators defined
on non-compact spaces in topological vector spaces. To obtain these results,
we mainly use the following generalized version of Ky Fan’s minimax inequality
[27] due to Chowdhury and Tan [10] which was stated and proved as Theorem
2.1 in [16] and is a slight modification of Theorem 1 in [10]:

Theorem 2.3. Let E be a topological vector space, X be a nonempty convex
subset of E, F(X) denote the family of all non-empty finite subsets of X and
f: X xX = RU{—00,+00} be such that

(a) for each A € F(X) and fized © € co(A), y — f(x,y) is lower semi-
continuous on co(A);

(b) for each A € F(X) and y € co(A), mingea f(x,y) <0;

(c) for each A € F(X) and z,y € co(A), every net {yq tacr in X converging
toy with f(tx+(1—t)y,ys) <0 foralla € T andt € [0, 1], we have f(x,y) < 0;

(d) there exist a nonempty closed and compact subset K of X and ¢ € K
such that f(zg,y) >0 for ally e X \ K.
Then there exists § € K such that f(x,3) <0 for allz € X.

Definition 2.2. A function ¢ : X x X — RU{zoo} is said to be 0-diagonally
concave (in short, 0-DCV) in the second argument [26] if, for any finite set
{@1,...,2,} C X and \; > 0 with >°1" | \; = 1, we have > |, N\j¢(y, z;) <0,
where y = >0 A\

Let E be a topological vector space over ®, F' be a vector space over ® and
X be a non-empty subset of E. Let (-,-) : F' X E — ® be a bilinear functional.
Throughout this paper, ® denotes either the real field R or the complex field
C.

Now, we state the following definition given in [25]:

Definition 2.3. Let X, E, F be the sets defined above and T : X — 2F,
n: X xX — FE, g: X — E be mappings.

(1) The mappings T and 7 are said to have 0-diagonally concave relation (in
short, 0-DCVR) if the function ¢ : X x X — R U {200} defined by

oz, y) = weir%f(w) Re{w, n(x, y))

is 0-DCV in y;
(2) The mappings T" and g are said to have 0-diagonally concave relation if
T and n(z, y) = g(x) — g(y) have the 0-DCVR.

We first state the following result which is Lemma 1 of Shih and Tan in
[25, pp. 334-335]:

Lemma 2.4. Let X be a nonempty subset of a Hausdorff topological vector
space E and S : X — 2¥ be an upper semi-continuous mapping such that S(z)
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is a bounded subset of E for each x € X. Then, for each continuous linear
functional p on E, the functional f, : X — R defined by

fo(y) = sup Re(p,z)
z€S(y)

is upper semi-continuous, i.e., for each A € R, the set

{lye X : fply)= sup Re(p,x) <A}
z€S(y)

is open in X.

The following result is Lemma 3 of Takahashi in [33, pp. 177] (see also
Lemma 3 in [31, pp. 71-72]):

Lemma 2.5. Let X and Y be topological spaces, f : X — R be non-negative
and continuous and g : Y — R be lower semi-continuous. Then the functional
F: X xY — R defined by

F(z,y) = f(x)g(y)

for all (z,y) € X xY is lower semi-continuous.

The following result, which was stated and proved as Lemma 2.2 in [16],
follows from slight modification of Lemma 3 of Chowdhury and Tan given in
[10]:

Lemma 2.6. Let E be a Hausdorff topological vector space over ®, A € F(E)
and X = co(A) where co(A) denotes the conver hull of A. Let F be a vector
space over ® and (,) : F X E — ¢ be a bilinear functional such that {,)
separates points in F. We equip F with the o (F, E)-topology. Suppose that, for
each w € F, x — Re(w,x) is continuous. Let n: X x X — E be continuous.
Let T : X — 2 be upper semi-continuous from X into 2 such that each T(x)
is o(F, EY-compact. Let f: X x X — R be defined by

flz,y) = weig{y) Re(w,n(y, x))

forallxz,y € X.

Suppose that (,) is continuous on the (compact) subset [Uye xT (y)] x n(X X
X) of FX E. Then, for each fizedx € X, y — f(x,y) is lower semi-continuous
on X.

For completeness we include the proof here given in [16]:

Proof. Let A € R be given and let z € X = co(A) be arbitrarily fixed. Let
Ax = {y € X : f(z,y) < A}. Suppose that {ys}aer is a net in Ay and
yo € co(A) = X such that y, — yo. Then for each a € T,
A> f(z,ya) = inf Re{w,n(ya,x)).
weT (ya)

a
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Since F is equipped with the o(F, E)-topology, for each x € E, the function
w +— Re(w, ) is continuous. Also, 7(ya, ) — 1(yo,x) because n(-,z) is con-
tinuous. By the o(F, E)-compactness of T'(y,), there exists w, € T(y,) such
that

A> inf  Re(w,n(Ya,z)) = Re(Wa, N(Ya, T)).
WET (Ya)

Since T is upper semi-continuous from X = co(A) to the o(F, E)-topology on
F, X is compact, and each T'(z) is o (F, E)-compact, U.exT(z) is also o(F, E)-
compact by Proposition 3.1.11 of Aubin and Ekeland [2]. Thus there is a subnet
{wa' }orer’ of {wa }aer and wo € U,exT'(2) such that w, — wy in the o (F, E)-
topology. Again, as T is upper semi-continuous with the o (F, F)-closed values,
wo € T(yo)

Suppose that A = {a1,a2,...,a,} and let t1,t,...,t, > 0with > t; =1

such that yo = Y1, t;a;. For each o/ € T, let t¢,t§,...,t% > 0 with
S0P t¢ =1 such that yo = Y., t¢ a;. Since E is Hausdorff and yor — yo,
we must have tf‘/ — t; for each i = 1,2,...,n. Thus

A > Re(war,n(yar, 2) = Relwar, (3 6 a;, )

i=1

CH L Refuo,u(3 tiaw, )
— Re{wo,n(yo,z)) > inf Re{w,n(yo,z)) = F(z,90),

weT (yo)

where (2.1) is true since (-, z) is continuous on X and (, ) is continuous on
the compact subset [UyexT (y)] x n(X x X) of F x E.

Hence yo € Ax. Thus Ay is closed in X = co(A) for each A € R. Therefore
y — f(x,y) is lower semi-continuous on X. O

By a slight modification of Lemma 4.2 in [12], we obtain below a further
modification of the result given in [24, Lemma 2.3]:

Lemma 2.7. Let E be a topological vector over ¢, X a monempty convex
subset of E and F a wvector space over ¢. Let (-,-) : F x E — ® be a bilinear
functional such that {-,-) separates points in F. We equip F' with the o(F, E)-
topology such that for each w € F, the function x — Re(w,x) is continuous.
Letn : X x X — E be such that for each fivred y € X, n(-,y) is continuous
and for each fixzed x € X, n(x,-) is affine. Let h: X x X — R be a mapping
such that for each fized y € X, h(-,y) is lower semi-continuous and convexr on
co(A) for each A € F(X), and for each fixzed x € X, h(z,-) is concave, and
h(z,z) =0, n(z,z) =0, and T and n have the 0-DCVR.

Suppose that S : X — 2% is a mapping, M : X — 2F is a lower semi-
continuous mapping along line segments in X to the o(F, E)-topology on F

and T : X — 2F is an upper hemi-continuous mapping along line segments in
X.
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Suppose further that there exists § € X such that § € S(g), S(§) is convex
and

inf inf Re(f—w,n(y,z)) < h(zx,y
LT (f n(g,z)) < h(x,7)

for all x € S(§). Then

inf inf Re(f—w,n(yg,z)) < h(z,y
P (f —w,n(g,2)) < h(z,9)

for all x € S(3).
For completeness we give the detailed proof below:

Proof. Suppose that

inf inf Re(f —w,n(g,x)) <h(x,g) for all = € S(g).
sanf | dnf Relf —w,n(§,2)) < bz, ) (#)

Let « € S(§) be arbitrarily fixed. Let z; = tx + (1 — t)§ = § — t(§ — z) for all
t €10,1]. Then 2z € S(§) as S(§) is convex.
Let L = {z :t € [0,1]}. Thus for every ¢ € [0, 1]

inf inf Re(f —w,n(jz)) < h(z, §)-
FEM (2¢) weT(9) (f (s 2t)) (2, 9)

Since for each y € S(§), h(-,y) is convex and for each z € S(3), h(z,-) is affine,
we have
inf inf Re(f —w,n(y,tr+ (1 —1)y
PRI (f —w,n(y (1—1)7))

for all ¢t € (0,1]; thus we have,

nt it [Re(f —w.tn(,2) + (L= (5. 9)] < Hh(z5)):

therefore we have,

inf  inf t[Re(f —w,n(y, < t(h(z,7)).
1y g AT = 000 )) < (009

This implies that infrcpr(.,) infyer) Re(f —w,n(g,2)) < h(x,g) for all t €
(0,1]. Since T is upper hemi-continuous on L, and M is lower semi-continuous
on L, the function f,g.2) : L — RU {400}, defined by

g = inf inf R - % Aa f h GL,
Fog,2)(2e) felz\g(zt)wér%(g) e(f —w,n(y,z)) for each z

is lower semi-continuous on L. Thus the set

A={z€L: fygu(z) <h(z,9)}
is closed in L. Now z; — g in L as t — 0". Since z; € A for all t € (0,1] we
have §j € A. Hence fy(5.2)(9) = inf perr(y) infwery) Re(f—w,n(y, ) < h(z, 7).
Since x € S(§) is arbitrary, we have

inf  inf Re({w,n(y,x)) < h(z,y) for all x € S(g).
sanf ) pint Re(w,n(g,z)) < bz, §) (#) O
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We need the following Kneser’s minimax theorem in [28, pp. 2418-2420] (see
also Aubin [1, pp. 40-41]):

Theorem 2.8. Let X be a nonempty convex subset of a vector space and Y
be a nonempty compact convexr subset of a Hausdorff topological vector space.
Suppose that [ is a real-valued function on X XY such that, for each fized
x € X, the mapping y — f(x,y), i.e., f(x, ) is lower semi-continuous and
convex on'Y and, for each fixed y € Y, the map x — f(x,y), i.e., f(-, y) is
concave on X. Then

min su x = sup min f(x .
erwe?(f( ) zegyeyf( )

3. Generalized bi-quasi-variational-like inequalities

In this section, we obtain and prove some existence theorems for the so-
lutions to the generalized bi-quasi-variational-like inequalities for (7, h)-quasi-
pseudomonotone type I and strongly (7, h)-quasi-pseudomonotone type I op-
erators T with non-compact domain in locally convex Hausdorff topological
vector spaces. Our results extend and generalize the corresponding results in
[31].

We first establish the following result:

Theorem 3.1. Let E be a locally convex Hausdorff topological vector space
over ®, X be a nonempty para-compact convex and bounded subset of E and F
a Hausdorff topological vector space over ®. Let (-,-) : F x E — ® be a bilinear
functional which is continuous on compact subsets of F' x X. Suppose that

(a) S : X — 2% is upper semi-continuous such that each S(z) is compact
and convex,

(b) h: E x E — R is convex and h(X x X) is bounded,

() T : X — 2F is an (n-h)-quasi-pseudo-monotone type I (respectively,
strongly (n-h)-quasi-pseudo-monotone type I) operator and is upper semi-conti-
nuous such that each T'(x) is compact (respectively, weakly compact) and convex
and T(X) is strongly bounded;

() T:X =2 andn: X x X — E have the 0-DCVR andn: X x X = E
is conver and continuous;

(e) M : X — 2F is a linear mapping in X (and is therefore single-valued for
each x € X);

(f) for each fized y € X, x — h(x,y), i.e., h(-,y) is lower semi-continuous
on co(A) for each A € F(X) and, for each fized x € X, h(x,-) and n(x,-) are
concave, and n(x,-) is affine and h(z,z) =0, n(z,z) = 0;

(g) the set

Y={yeX: sup ( inf Re(M(z)—w,ny,z))+ h(y,z) >0}
z€S(y) weT (y)

is open in X.
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Suppose further that there exist a nonempty closed and compact (respectively,
weakly closed and weakly compact) subset K of X and a point xg € X such
that xo € K N S(y) and inf,,cpy) Re(M(xo) — w,n(y, zo0)) + h(y,z0) > 0 for
alye X\ K.

Then there exists a point § € X such that

(1) 9 € 5();

(2) there exists a point W € T(§) with Re(M(§) — w,n(g,x)) + h(g,2) <0
for all x € S(j).

Moreover, if S(x) = X for all x € X, then E is not required to be locally
convex and, if T =0, then the continuity assumption on (-,-) can be weakened
to the assumption that, for each f € F, the mapping x — (f,x) is continuous
(resp., weakly continuous) on X.

Proof. We divide the proof into three steps:

Step 1. There exists a point § € X such that § € S(§) and

sup [ inf Re{M(z) —w,n(g,z)) + h(g,z)] <O0.
zes(g) weT(9)

Suppose the contrary. Then for each y € X, either y ¢ S(y) or there exists

x € S(y) such that
inf Re(M(z) —w,n(y,z)) + h(y,x) >0,
weT(y)

that is, for each y € X, either y & S(y) or y € X.

If y & S(y), then, by a separation theorem for convex sets in locally convex
Hausdorff topological vector spaces, there exist p € E* and a € R such that
Re(p,z) < a < Re(p,y) for all x € S(y). Therefore,

sup Re(p,r) < a < Re(p,y).
z€S(y)

Hence we have, Re(p,y) — sup,cg(y) Re(p, z) > 0. Let

Y(y) = sup inf Re(M(z)—w,n(y,z))+ h(y,),
z€S(y) weT (y)

Vo:={y e X|y(y) >0} =%
and, for each p € E*, set

V,:={y € X : Re(p,y) — sup Re(p,z) > 0}.
z€S(y)

Then X = VU UpeE* Vp. Since each V), is open in X by Lemma 2.1 and Vj is
open in X by hypothesis, {Vy,V,, : p € E*} is an open covering for X. Since X
is para-compact, there is a continuous partition of unity {3, 3, : p € E*} for
X subordinated to the open cover {Vy,V, : p € E*} (see Theorem VIII, 4.2 of
Dugundji in [23]), that is, for each p € E*, 3, : X — [0,1] and 5y : X — [0,1]
are continuous functions such that, for each p € E*, 5,(y) = 0forally € X\V,,
Bo(y) =0 for all y € X \ V, {support Bo,support 3, : p € E*} is locally finite
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and Bo(y) + Xper-Bp(y) =1 for each y € X. Note that, for each A € F(X), h
is continuous on co(A) (see [29, Corollary 10.1.1, p. 83]).
Define a function ¢ : X x X — R by

o(z,y)=Po(y)] inf Re(M(x) —w,n(y,x)) +h(y,z)]+ D Bp(y)Re(p,y — )
weT (y) peB
for each z,y € X. Then we have the following:
(1) Since E is Hausdorff, for each A € F(X) and fixed z € co(A4), the
mapping

y+— inf Re(M(z)—w,n(y,z)) + h(y,z)
weT (y)

is lower semi-continuous (resp., weakly lower semi-continuous) on co(A) by
Lemma 2.6 and the fact that h is continuous on co(A) and therefore the map

y Bo(y)[weir;,f(y) Re(M(x) —w,n(y,x)) + h(y, )]

is lower semi-continuous (resp., weakly lower semi-continuous) on co(A) by
Lemma 2.5. Also, for each fixed z € X,

v Y Bp(y)Relp,y — )

pEE*

is continuous on X. Hence, for each A € F(X) and fixed = € co(A), the map-
ping y — ¢(x,y) is lower semi-continuous (resp., weakly lower semi-continuous)
on co(A).

(2) For each A € F(X) and y € co(A4), mingea ¢(x,y) < 0. Indeed, if
this were false, then, for some A = {z1,22,...,2,} € F(X) and y € co(A)
(say y = >0, Nizy, where A, Ao, ..., A, > 0 with >.7 | A; = 1), we have
min; <;<n ¢(z;,y) > 0. Then, for each i =1,2,...,n,

ﬁo(y)[ inf R€<M($Z) - wﬂ?(ﬁ%xz» + h’ y) Z ﬁp R@ p7 > >0
weT (y) peB
and so
0=¢(y,y)
= Boly )[weu%fy) Re(M ZA ;) — w,n(y, Z)\zl’z» + h(y, Z)\ixz’)]
i=1 i=1
+ Z Bp(y)Re(p,y Z/\ x;)
pEE*
= inf Re(» \M(z;)—w, , Aixi)) + h(y, s
Bow)l, inf Z n(y; ) (ygT )]

—l—ZBp YRe(p,y Z/\xL

pEE*
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Z inf Re(M(x;) —w,n(y,x;)) + h(y,x;))
P wET(y)

Z ﬁp R@ pa - 1'1>) > 07

pEL™

which is a contradiction.

(3) Suppose that A € F(X), z,y € co(A) and {ya }aer is a net in X con-
verging to y (resp., weakly to y) with ¢(tz + (1 —t)y,y,) <0 for all @ € T" and
t e 0,1].

Case (1): So(y) =0

Note that 8(y«) > 0 for each o € T and By (yo) — 0. Since T'(X) is strongly
bounded and {y4 }aer is a bounded net, it follows that

(3.1) lim Sup[ﬁo(ya)(weﬂTﬁ(I; )RG<M($) = W, (Yo, ©)) + 7Y, )] = 0.
Also, we have

»30(y)[wfen7£1(1y) Re(M () —w,n(y,x)) + h(y,z)] = 0.

Thus it follows from (3.1) that

limasup[ﬁo(ya)(wérj{i(r;a) Re(M(z) —w,n(Ya, x)) + h(Ya, T)]

+ > By(y)Relp,y — )

pEE™
(3.2) = > Bp(y)Re(p,y — )
peE*

= 50(y)[wferlTif(1y) Re(M (x) —w,n(y,v)) + h(y, z)]

+ > Byp(y)Relp,y — ).
peE*

When ¢ = 1, we have ¢(z,y,) <0 for all « €T, i.e,,

ﬁo(ya)[wergi(l;a) Re(M () — w,n(Ya, ) + h(ya, )]

(33) + Z Bp(ya)Re<p= Ya — £L'> S 0

peE*

for all a € T. Therefore, by (3.3), we have
(3.4) lim sup[fo (Ya) o in Re(M(z) = w,n(Ya; ©)) + h(Ya, ©)]

Yo
+ hrrzlnf[ Z ﬁp Yo R€<p, Ya — Z‘>]
. peE*

< limsup[Bo(ye) min Re(M(z) —w,n(Ya,z)) + (Yo, x)
@ wGT(y(,)
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+ > Bp(ya)Re(p,yo — )] <0

peE*
and thus, by (3.4),

limsup[Bo(yo) min Re{M(z) — w,n(Ya,2)) + h(Ya, )]
@ weT(ya)

+ ) Bp(y)Re(p,y — x) < 0.
peE*

Hence, by (3.2) and (3.4), we have ¢(z,y) < 0.

Case (2): Bo(y) > 0.
Since So(Ya) — Po(y), there exists A € I' such that Sy(ys) > 0 for all @ > A
When ¢ = 0, we have ¢(y,y,) <0 for all « € T, i.e.,

60(9“)[wei%l(fya> Re(M(y) — w,n(Ya,y)) + h(ya,y)]

+ ) Bo(Ya)Re(p,ya —y) <0
peE*

for all « € T" and thus

limsup[Bo(Ya)( inf Re(M(y) —w,n(Yary)) + h(Ya,y)
@ 'LUGT(?JO)

+ ) Bo(Ya)Re(p,ya — )] < 0.
peE*

Hence it follows from (3.5) that
limsup(fo(ya)( inf  Re(M(y) = w,n(ya,y) + (Yo, y)]

« wET (Yo )
+ lim inf[ > Bo(ya)Re(p, yo — y)]
peE*

< limsup[ﬁo(ya)(wei;l(fy )R€<M () — w,n(Ya, ) + " (Yary)

+ Y Bo(wa)Re(p,ya — )] < 0.
peE*

Since iminfo [}~ ¢ g Bp(Ya) Re(p; yo — y)| = 0, we have
(3:6)  limsup[fo(ya)( min Re(M(y) —w,n(yo:y)) + hlya, y)] <0

(3.5)

w

Since By(yq) > 0 for all a > A, it follows that

Bo(y) limasup[w Err%i(ryl )R6<M W) = w,nWa,y)) + 2 (Ya, )]

@ tim sup{Bo (i) ( 1min Re(M(y) = w,1(ys)) + bl )]

Ya

Since By(y) > 0, by (3.6) and (3.7), we have
lim sup| mi(n )Re(M(y) —w, N(Ya,Y)) + 2 (Ya,y)] < 0.
«

wWET (Yo
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Since T is an (n-h)-quasi-pseudo-monotone type I (respectively, strongly (n-h)-
quasi-pseudo-monotone type I) operator, we have

lim Sup[werr%i(n : Re(M(z) — w,n(Ya, 2)) + h(Ya, )]

Yo

> min Re(M(x) —w,n(y,z)) + h(y, )
weT(y)

for all x € X. Since By(y) > 0, we have
Bo(y)llimsup( min Re(M(x) = w, 0o, x)) + h(ya, ¥)]

Ya

> fo(w)] min Re(M(z) — w.n(y,2)) + h(y.)

and thus
Bo(y)[limsup( min  Re(M(z) — w,n(ya, ) + h(ya, )]
a  weT(ya)
+ > By(y)Relp,y — )
(3.8) pesr

> fo(w)] min Re(M (@) ~w.n(y.2)) +h(y. )

+ > Bp(y)Re(p,y — ).

pEE*
When ¢ = 1, we have ¢(x,y,) <0 for all « €T, i.e.,

ﬂO(ya)[wEHZl"i(I';a) R6<M($) - w, W(ya» !E)> + h(yDu $)}

+ Z ﬂp(ya)R6<p7 Yo — IE> <0

peEE*
for all & € T and so, by (3.8),

0> lim sup[ﬁo(ya)wg? Re(M(z) — w,n(Ya, ) + h(Ya, )

y@
+ > Bo(Ya)Re(p, Yo — )]
pEE*
> limsup[Bo(ya) min Re(M(z) —w,n(Yas2)) + h(Ya, )]
@ wET(ya)

peE*

= Bo(y)[limsup{ min Re(M(z) = w,n(Ya;)) + "(ya; z)}]

a weT (ya)

+Zﬁp YRe(p,y — )

pEE*

> ﬁo(y)[wren;?y) Re(M(x) —w,n(y.x)) + h(y,z)]

+Zﬁp JRe(p,y — x).

pEE*



950 Y. J. CHO, M. S. R. CHOWDHURY, AND J. A. HA

Hence we have ¢(z,y) < 0.

(4) By hypothesis, there exist a nonempty compact and therefore closed
(respectively, weakly closed and weakly compact) subset K of X and a point
xg € X such that

v € KNS(y).  inf [Re(M(wo) = wn(y.20) + h(y.0)] >0

for all y € X \ K. Thus it follows that, for all y € X \ K,
ﬂo(y)[weil%f(y) Re(M (o) — w,n(y, z0)) + h(y, zo)] > 0

whenever Sy(y) > 0, and Re(p,y — xo) > 0 whenever §,(y) > 0 for p € E*.
Consequently, we have

P(wo,y) = ﬂo(@/)[wéf%f(y) Re(M (xo) — w,n(y, v0)) + h(y, x0)]

+ > By(y)Re(p,y — x0) >0

pEE*

forally € X\ K. (If T is a strongly (n-h)-quasi-pseudo-monotone type I oper-
ator, we equip E with the weak topology.) Thus ¢ satisfies all the hypotheses
of Theorem 1.1. Hence, by Theorem 1.1, there exists a point § € K such that
d(z,g) <Oforall z € X, ie.,

Bo(d)[ nf | Re(M(@) = w.n(5. ) + h(s. )]

+ > Bp(§)Relp,j—x) <0

peE*

(3.10)

for all x € X.
On the other hand suppose for the above § € X, there exists & € S(§) such
that

inf R6<M(‘%) —-—w, 77(1?7 "f")> + h(gv "i) > 0.
weT'(§)

Then

ﬁo(@?)[wgf@ Re(M (&) —w,n(g,2)) + h(g,2) >0

whenever (y(g) > 0.
Also if 8,(g) > 0 for all p € E*, then § € V,, and hence

Re(p,§) — sup Re(p,z) > 0.
z€S(9)

Therefore, Re(p,§) > sup,ecg(y) Re(p, ) > Re(p, ). Hence, Re(p,§ — 1) > 0.
Then
Bp()Relp,§ — &) > 0
whenever §,() > 0 for all p € E*.
Since B,(g) > 0 for all p € E*, we have

Bo(@)L int | Re(M(@) = w.n(3.)) + h(3.)
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+ > Bp(§)Relp, i — &) >0
peE*
which contradicts (3.10). Therefore Step 1 is proved. Hence we have shown
that there exists a point § € X such that § € S(§) and
sup [ inf Re(M(x)—w,n(j,z)) + (g, z)] < 0.
zeS(g) weT(@)
Step 2. inf,crg) Re(M(9) —w,n(g,z)) + h(g,z) <0 for all z € S(7).
From Step 1, we have
weT(§
for all z € S(g). Since S(§) is a convex subset of X and M is linear and so
continuous along line segments in X, by Lemma 2.7, we have
inf Re(M(9) —w,n(g,z)) + h(g,z) <0
weT(§)
for all x € S(9).
Step 3. There exists a point @ € T'(§) such that

R6<M(g) - 113777@737» + h@aﬂ?) <0

for all x € S(9).
From Step 2 we have,
(3.11) sup [ inf Re(M(§)—w,n(g,2))+ h(j,2)] <0,
zeS(g) weT(@)
ie.,
sup inf Re(M(9) —w,n(g,2)) + h(g,2)] <0
mes@)[(M(@),w)EM(@)XT(Q) M) (g, o)) (@)
where M (g) x T'(g) is a o(F, E)-compact convex subset of the Hausdorff topo-
logical vector space F' x F and S(§) is a convex subset of X.

Let us set @ = M(g) x T(§) and define the mapping ¢ : S(§) x Q@ — R by
9(x,q) = g(x, (M(9), w)) = Re(M(§)) — w,n(j,x)) + h(j, z) for each = € 5(j)
and each ¢ = (M (9),w) € Q = M(g) x T(3). Then, for each fixed z € S(7),
the mapping (M(9),w) — g(z, (M(g),w)) is lower semi-continuous from the
relative product topology on @ to R and also convex on Q. Clearly, for each
fixed ¢ = (M(§),w) € Q, the mapping = — g(z,q) = g(x, (M(§),w)) is concave
on S(g).

So, we can apply Keneser’s Minimax Theorem (Theorem 2.8) and obtain
the following:

min su x,(M(y),w)) = su min z,(M(9),w)).
(M(Q)ﬂv)e%es%)g( (M(7),w)) xeS]é)@)(M(Q)77U)€Qg( (M(g), w))

Hence, by (3.11), we obtain

min sup Re(M(y) —w,n(y,x)) + h(g,z) <O0.
BB o, S0P (M(7) (g, x)) + h(g, )
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Since @ = M (§) x T(§) is compact, there exists (M (§),w) € M(§) x T(§) such
that

z€S(9)
Therefore we have shown that

Re(M(§) — @,n(9,x)) + h(g,x) <0
for all = € S(3). In other words, there exists a point w € T'(3) with
Re(M(§) — @,n(9,x)) + h(g,x) <0

for all x € S(9).

We observe from the above proof that the requirement that E need to be
locally convex is needed when and only when the separation theorem is applied
to the case y € S(y). Thus, if S : X — 2% is the constant mapping S(z) = X
for all x € X, then F is not required to be locally convex.

Finally, if T' = 0, in order to show that for each z € X, y — ¢(x,y) is lower
semi-continuous (resp., weakly lower semi-continuous), Lemma 2.6 is no longer
needed and the weaker continuity assumption on (-, -) that, for each f € F, the
mapping « — (f,x) is continuous (resp., weakly continuous) on X is sufficient.
This completes the proof. O

Now, we establish our last result of this section:

Theorem 3.2. Let E be a locally convex Hausdorff topological vector space
over ®, X be a nonempty para-compact convex and bounded subset of E and F
a Hausdorff topological vector space over ®. Let (-,-) : F x E — ® be a bilinear
functional which is continuous on compact subsets of F' x X. Suppose that

(a) S : X — 2% is a continuous mapping such that each S(z) is compact
and convex,

(b) h: Ex E — R is convex and h(X x X) is bounded,

() T : X — 2F is an (n-h)-quasi-pseudo-monotone type I (respectively,
strongly (n-h)-quasi-pseudo-monotone type I) operator and is upper semi-conti-
nuous such that each T(x) is compact and convex (respectively, weakly compact
and convez, i.e., o(F, E)-compact and convez) and T'(X) is strongly bounded;

(d) T:X —2F andn: X x X — E have the 0-DCVR andn: X x X — E
18 convex and continuous,

(e) M : X — 2F is a continuous linear mapping in X and for eachy € ¥ =
{y €eX: SUPzeS(y) [infweT(y) R€<M(‘T) - w, 77(9793» + h(yvx)} > O}:

inf R€<M(’JJ) —w, 77(.% ‘T)> + h(y7 :L‘) > 0
weT (y)
for some point x € S(y).

(f) for each fixred y € X, x — h(x,y), i.e., h(-,y) is lower semi-continuous
on co(A) for each A € F(X) and, for each fized x € X, h(x,-) and n(x,-) are
concave, and n(x,-) is affine and h(z,z) =0, n(x,z) = 0;



GBQVL INEQUALITIES ON NON-COMPACT SETS 953

(g) for each open subset U of X and x,y € U, n(z,y) = x —y and there
exists h' : X — R such that h(x,y) = h'(x) — h'(y);

Suppose further that there exist a nonempty closed and compact (respectively,
weakly closed and weakly compact) subset K of X and a point o € X such that

xo € KN S(y)7w€ir%f(y) Re(M (zo) —w,n(y,z0)) + h(y,z¢) >0

forallye X\ K.

Then there exists a point § € X such that

(1) g € S®);

(2) there exists a point W € T(§) with Re(M () — w,n(g,x)) + h(g,2) <0
for all x € S(3).

Moreover, if S(z) = X for all x € X, then E is not required to be locally
convet.

The proof is similar to the proof of Theorem 2 in [14]. For the completeness,
we include the proof here.

Proof. The proof will follow from Theorem 3.1 if we can show that the set

Y={yeX: sup [ inf Re(M(z)—w,n(y,x))+ h(y,x)] >0}
z€S(y) weT (y)
is open in X. To show that ¥ is open in X, we start as follows:
Let yo € ¥ be an arbitrary point. We show that there exists an open
neighbourhood Ny of yo in X such that Ny C X. Now, by the hypothesis (e),
M is a continuous linear mapping on X and at some point xg in S(yg) we have

inf Re(M(xo) —w,n(yo, o)) + h(yo, o) > 0.
weT (yo)

Let

a:= inf Re(M(xzq)— w,n(yo,x0)) + h(yo,zo)-
weT (yo)

Thus « > 0. Again, let
Wi={weF: sup [(w,z1—22)| < a6}
z1,22€X
Then W is an open neighbourhood of 0 in F' and so Uy := T(yp) + W is an
open neighbourhood of T(yg) in F. Since T is upper semi-continuous at yo,
there exists an open neighbourhood Ny of yo in X such that T'(y) C U; for all
Y € Nl-

Let Us := M(xo) + W, then Us is an open neighbourhood of M(xg) in F.
Since M is continuous at zg, and therefore upper semi-continuous at xg, there
exists an open neighbourhood V; of g in X such that M (z) € Us for all z € V.

Since the mapping o —— inf,,cp(y,) Re(M(z0) — w,n(xo,)) + h(xo,x) is
continuous at xg, there exists an open neighbourhood V5 of zp in X such that

| inf Re(M(xo) —w,n(zo,z)) + h(zo,z)| < L forall ze Va.
weT (yo) 6
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Let Vo := Vi NV, Then Vj is an open neighborhood of zy in X. Since
zo € VoNS(yo) # 0 and S is lower semi-continuous at yg, there exists an open
neighborhood N of yg in X such that S(y) N Vy # 0 for all y € N,.

Since the mapping y +—— inf,cp(y) Re(M (z0) — w,n(y,v0)) + My, yo) is
continuous at yo, there exists an open neighborhood N3 of yy in X such that

inf Re(M(z0) — w,n(y,50)) + hly,y0)| < = for all y € Na.
weT (yo) 6

Let No := N1 N NoN N3. Then Ny is an open neighborhood of gy in X such
that for each y; € Ny, we have the following:

(1) T(yl) C U1 = T(yo) + W as Y1 € Nl;

(2) S(y1) N Vo #£ 0 as y1 € Na; so we can choose any x1 € S(y1) N Vp;

(3) [infy,er(yy) Re(M(zo) — w,n(y1,90)) + h(y1,90)| < § as y1 € N3;

(4) M(,’El) e Uy = M(.’L'()) + W as xz1 € Vq;

(5) |inf,er(yy) Re(M (x0) — w,n(x0, 1)) + h(wo,21)| < § as x1 € V5.

Hence, using the assumption (g) of the theorem and by (1)-(5) above, we
can obtain the following by omitting the details:

inf Re(M(xo) —w,n(y1,x1)) + h(y1, z1)

weT(y1)
> inf Re(M —w, , + h(y1,
a [wET}Iylo)JrW] e< (930) v n(yl xl» (yl xl)
> inf Re(M(zo) —w,n(y1,x1)) + h(y1, z1)
weT (yo)
+wlg11iv Re(M(zo) —w,n(y1,21))
> inf Re(M(zo) —w,y1 —yo) + 1/ (y1) — 1 (yo)
weT (yo)
+ inf Re(M(zo) — w,yo — o) + ' (yo) — I’ (x0)
weT (yo)
+ inf Re(M(zo) —w,xo — 1) + h'(z0) — I (21)
weT (yo)
+ Re{M(z0),y1 —z1) + inf Re(—w,y; —z1)
weW
> - S4a-2-2_2
- 6 6 6 6
@
=250
3 >

Consequently, we have

sup [ inf Re(M(zo) — w,n(y1,x)) + h(y1,z)] >0
z€S(yr) wET (y1)

since x1 € S(y1). Hence y; € ¥ for all y; € Ny. Therefore, yo € Ny C 3. But
yo was arbitrary. Consequently, X is open in X.

Thus all the hypotheses of Theorem 3.1 are satisfied. Hence, the conclusion
follows from Theorem 3.1. This completes the proof. (]
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Remark 3.1. (1) Theorems 3.1 and 3.2 in this paper are the extensions of
Theorems 3.2 and 3.3 in [17], respectively, for generalized bi-quasi-variational-
like inequalities (GBQVLI).

(2) The first paper on generalized bi-quasi-variational inequalities was writ-
ten by Shih and Tan in 1989 in [31] and the results were obtained on com-
pact sets where the set-valued mappings were either lower semi-continuous or
upper semi-continuous. Our present paper is another extension of the origi-
nal work in [31] using (7, h)-quasi-pseudomonotone type I and strongly (n, h)-
quasi-pseudomonotone type I operators on non-compact spaces. The (n, h)-
quasi-pseudomonotone type I and strongly (7, h)-quasi-pseudomonotone type
I operators are generalizations of pseudomonotone type I operators introduced
first in [10].

(3) In all our results on generalized bi-quasi-variational inequalities, if the
operators M = 0 and the operator T is replaced by —7, then we obtain results
on generalized quasi-variational inequalities which generalize the corresponding
results in the literature (see [30]).

(4) The results on generalized bi-quasi-variational inequalities given in [21]
were obtained for set-valued quasi-semi-monotone and bi-quasi-semi-monotone
operators and the corresponding results in [19] were obtained for set-valued
upper-hemi-continuous operators introduced in [24]. Our results in this pa-
per are also further extensions of the corresponding results in [21] and [9]
using set-valued (7, h)-quasi-pseudomonotone type I and strongly (7, h)-quasi-
pseudomonotone type I operators on non-compact spaces.
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