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SOME RESULTS ON UNIQUENESS OF MEROMORPHIC

SOLUTIONS OF DIFFERENCE EQUATIONS

Zong Sheng Gao and Xiao Ming Wang

Abstract. In this paper, we investigate the transcendental meromorphic

solutions with finite order of two different types of difference equations
n∑

j=1

ajf(z + cj) =
P (z, f)

Q(z, f)
=

∑p
k=0 bkf

k∑q
l=0 dlf

l

and
n∏

j=1

f(z + cj) =
P (z, f)

Q(z, f)
=

∑p
k=0 bkf

k∑q
l=0 dlf

l

that share three distinct values with another meromorphic function. Here
aj , bk, dl are small functions of f and aj 6≡ 0(j = 1, 2, . . . , n), bp 6≡ 0,

dq 6≡ 0. cj 6= 0 are pairwise distinct constants. p, q, n are non-negative
integers. P (z, f) and Q(z, f) are two mutually prime polynomials in f .

1. Introduction and results

In this paper, we assume that the reader is familiar with the standard sym-
bols and fundamental results of Nevanlinna theory, see [4, 6, 9, 10]. We use
notation ρ(f) to denote the order of growth of f . In addition, we denote by
S(r, f) any quantity satisfying S(r, f) = o(T (r, f)), (r →∞, r 6∈ E), where E is
an exceptional set with finite logarithmic measure. If a meromorphic function
a(z) satisfies T (r, a) = S(r, f), we say a(z) is a small function with respect to
f(z).

Let f(z) and g(z) be the non-constant meromorphic functions and let a be a
complex number in the complex plane. We say f(z) and g(z) share a CM(IM)
provided that f(z) and g(z) have the same a-points counting multiplicities
(ignoring multiplicities). If f(z) and g(z) have the same poles, we say f(z) and
g(z) share ∞ CM (counting multiplicities) or IM (ignoring multiplicities).
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In 1989, Brosch [1] studied the uniqueness problem that a meromorphic so-

lution of the Malmquist-type ordinary differential equation (w′)
n

=
∑2n
j=0 ajw

j

shares three values with another meromorphic function. Recently, Lü, Han and
Lü [8] proved a similar uniqueness theorem which is related to Malmquist-type
difference equation. The difference equation is

n∑
j=1

ajf(z + cj) =
P (z, f)

Q(z, f)
=

∑p
k=0 bkf

k∑q
l=0 dlf

l
.(1.1)

Here aj , bk, dl are small functions of f and aj 6≡ 0(j = 1, 2, . . . , n), bp 6≡ 0,
dq 6≡ 0. cj 6= 0(j = 1, 2, . . . , n) are pairwise distinct constants. p, q, n are
non-negative integers. P (z, f) and Q(z, f) are co-prime polynomials in f .

Denote I1(z, f) =
∑n
j=1 ajf(z + cj), H1(z, f) = I1(z, f)Q(z, f) − P (z, f).

Now, we recall the following theorem.

Theorem A ([8]). Let f(z) be a finite-order transcendental meromorphic solu-
tion of (1.1) and let e1, e2 be two distinct finite numbers such that H1(z, e1) 6≡
0, H1(z, e2) 6≡ 0, p ≤ q = n. If f(z) and another meromorphic function g(z)
share e1, e2 and ∞ CM, then f ≡ g.

In this paper, we make some further investigation on this problem and obtain
some results as follows.

Theorem 1.1. Let f(z) be a finite-order transcendental meromorphic solution
of (1.1) and let a, b be two distinct finite numbers such that H1(z, a) 6≡ 0,
H1(z, b) 6≡ 0. p, q, n satisfy max{p, q} = n ≥ 2 or p ≤ q = n = 1. If f(z) and
another meromorphic function g(z) share a, b and ∞ CM, then f ≡ g.

Remark 1.1. In Theorem 1.1, if q = 0, p = n = 1, the result may not be true.
For example, f(z) = ez + 1 is a finite-order meromorphic solution of equation
f(z + 1) = ef(z) + 1− e. f(z) and g(z) = e−z + 1 share 0, 2 and ∞ CM with
H1(z, 0) 6= 0, H1(z, 2) 6= 0, but f(z) 6≡ g(z).

Remark 1.2. In Theorem 1.1, the conditions H1(z, a), H1(z, b) 6≡ 0 are neces-
sary. For example, f(z) = tan z is a solution of the difference equation

f
(
z +

π

4

)
+ f

(
z − π

4

)
=

4f(z)

1− f2(z)
.

f(z) and g(z) = − tan z share the values 0, ±i, ∞ CM with H1(z, 0) =
H1(z,±i) = 0, but f(z) 6≡ g(z).

We also get some similar results for another type of difference equation
n∏
j=1

f(z + cj) =
P (z, f)

Q(z, f)
=

∑p
k=0 bkf

k∑q
l=0 dlf

l
.(1.2)

Denote I2(z, f) =
∏n
j=1 f(z + cj), H2(z, f) = I2(z, f)Q(z, f) − P (z, f) with

restrictions on cj , bk, dl unchanged.
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Theorem 1.2. Let f(z) be a finite-order transcendental meromorphic solution
of (1.2) and let a, b be two distinct finite complex numbers such that H2(z, a) 6≡
0, H2(z, b) 6≡ 0. We have the following results:

(i) When p, q, n satisfy max{p, q} ≤ n and q ≥ 1, if f(z) and another
meromorphic function g(z) share a, b and ∞ CM, then f ≡ g.

(ii) When p, q, n satisfy q = 0 and p < n, if f(z) and another meromorphic
function g(z) share a, b and ∞ CM, then f ≡ g.

Theorem 1.3. Let f(z) be a finite-order transcendental meromorphic solution
of (1.2) and let a, b be two distinct finite non-zero complex numbers such that
H2(z, a) 6≡ 0, H2(z, b) 6≡ 0. p, q satisfy max{p, q} ≤ n. We have the following
results:

(i) When p < n, if f(z) and another meromorphic function g(z) share a, b
and 0 CM, then f ≡ g.

(ii) When p = n and bk 6≡ 0 for at least one k(0 ≤ k ≤ p − 1), if f(z) and
another meromorphic function g(z) share a, b and 0 CM, then f ≡ g.

Theorem 1.4. Let f(z) be a finite-order transcendental meromorphic solution
of (1.1) or (1.2). Let a, b, c be three distinct finite complex numbers such that
Hi(z, a) 6≡ 0, Hi(z, b) 6≡ 0, Hi(z, c) 6≡ 0(i = 1, 2). When max{p, q} ≤ n, if f(z)
and another meromorphic function g(z) share a, b, c CM, then f ≡ g.

Remark 1.3. In Theorem 1.2, the result is not true for q = 0, p = n. For
example, f(z) = ez + 1 is a finite-order meromorphic solution of

f(z + 1)f(z − 1) = f2(z) + (e+ e−1 − 2)f(z)− (e+ e−1 − 2).

f(z) and g(z) = e−z + 1 share 0, 2 and ∞ CM with H2(z, 0) 6= 0, H2(z, 2) 6= 0,
but f(z) 6≡ g(z).

Remark 1.4. In Theorem 1.3, the result is not true for p = n, bk ≡ 0 for all

k(0 ≤ k ≤ p− 1). For example, f(z) = ez
2

is a solution of the equation

f(z + 1)f(z − 1) = e2f2(z).

Here b0, b1 ≡ 0. f(z) and g(z) = e−z
2

share the values 0, 1, −1 CM with
H2(z, 1) 6≡ 0 and H2(z,−1) 6≡ 0, but f(z) 6≡ g(z).

Remark 1.5. In Theorems 1.2 and 1.3, the conditions H2(z, a) 6≡ 0 and H2(z, b)
6≡ 0 are necessary. For example, f(z) = tan π

4 z is a finite-order meromorphic
solution of the equation f(z + 1)f(z − 1) = −1. f(z) and g(z) = −f(z) share
0, ±i, ∞ CM with H2(z, 0) = 1 6= 0, H2(z,±i) ≡ 0, but f(z) 6≡ g(z).

Remark 1.6. It is natural to suppose that max{p, q} ≤ n according to the
results such as Propositions 8, 9, Theorem 12 in [5].

2. Some lemmas

In this section, we will give some important lemmas for the proof of theorems.
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Lemma 2.1 ([2, Corollary 2.6]). Let η1, η2 be two complex numbers such that
η1 6= η2 and let f(z) be a finite-order meromorphic function. Let σ be the order
of f(z), then for each ε > 0, we have

m

(
r,
f(z + η1)

f(z + η2)

)
= O(rσ−1+ε).

Lemma 2.2 ([3, Theorem 3.2], [7, Theorem 2.4]). Let f(z) be a transcendental
meromorphic solution of finite order ρ of the difference equation P (z, f) = 0,
where P (z, f) is a difference polynomial in f(z) and its shifts. If P (z, a) 6≡ 0
for a small function a, then

m

(
r,

1

f − a

)
= S(r, f)

outside of a possible exceptional set of finite logarithmic measure.

Lemma 2.3 ([7, Theorem 2.3]). Let f be a transcendental meromorphic solution
of finite order of a difference equation of the form

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, f) and Q(z, f) are difference polynomials such that the total
degree degU(z, f) = n in f and its shifts, and degQ(z, f) ≤ n. Moreover, we
assume that U(z, f) contains just one term of maximal total degree in f and
its shifts. Then for each ε > 0,

m(r, P (z, f)) = O(rρ−1+ε) + S(r, f),

possibly outside of an exceptional set of finite logarithmic measure.

Lemma 2.4 ([6, Theorem 2.2.5]). Let f(z) be a meromorphic function. Then
for irreducible rational functions in f ,

R(z, f(z)) =

∑m
i=0 ai(z)f(z)i∑n
j=0 bj(z)f(z)j

with meromorphic coefficients ai(z), bj(z), the characteristic function of R(z, f)
satisfies

T (r,R(z, f(z))) = max{m,n}T (r, f) +O(max{T (r, ai), T (r, bj)}).

Lemma 2.5 ([2, Theorem 2.2]). Let f be a meromorphic function with expo-
nent of convergence of poles λ( 1

f ) = λ < +∞, η 6= 0 be fixed. Then for each
ε > 0,

N(r, f(z + η)) = N(r, f) +O(rλ−1+ε) +O(log r).

Lemma 2.6. Let f(z) be a non-constant meromorphic function, p(f) = a0f
n+

a1f
n−1+· · ·+an, a0(6≡ 0), a1, . . . , an are small functions with respect to f . Then

n ·m(r, f) ≤ m(r, p(f)) + S(r, f).
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Proof. Without loss of generality, suppose a0 ≡ 1.
On circle |z| = r, let A(z) = max1≤i≤n |ai(z)|

1
i (i = 1, 2, . . . , n). For fixed

r, let E1 =
{
θ ∈ [0, 2π) : |f(reiθ)| ≥ 2A(reiθ)

}
and E2 = {θ ∈ [0, 2π)}−E1. In

set E1,

|p(f)| = |f |n ·
∣∣∣∣1 +

a1
f

+ · · ·+ an
fn

∣∣∣∣
≥ |f |n

{
1−

∣∣∣∣a1f
∣∣∣∣− · · · − ∣∣∣∣anfn

∣∣∣∣} ≥ |f |n{1− 1

2
− · · · − 1

2n

}
=

1

2n
|f |n.

So

n ·m(r, f) = m(r, fn)

=
1

2π

∫
E1

log+ |fn|dθ +
1

2π

∫
E2

log+ |fn|dθ

≤ 1

2π

∫ 2π

0

log+ |2np(f)|dθ +
1

2π

∫ 2π

0

log+ |2A|n dθ

≤ m(r, p(f)) + S(r, f). �

Lemma 2.7 ([9, Theorem 1.51]). Let fj(z)(j = 1, . . . , n)(n ≥ 2) be meromor-
phic functions, gj(z), j = 1, . . . , n, be entire functions satisfying

(i)
∑n
j=1 fj(z)e

gj(z) ≡ 0;

(ii) when 1 ≤ j < k ≤ n, gj(z)− gk(z) is not a constant;
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o{T (r, egh−gk)}, (r →∞, r 6∈ E),

where E ⊂ (1,∞) is of finite linear measure or finite logarithmic measure.
Then fj(z) ≡ 0(j = 1, . . . , n).

Lemma 2.8. Let f(z) be a finite-order transcendental meromorphic solution
of (1.2). If p, q, n satisfy max{p, q} ≤ n and q ≥ 1 or p, q, n satisfy q = 0
and p < n, then

m(r, f) = S(r, f).

Proof. (i) If p, q, n satisfy max{p, q} ≤ n and q ≥ 1, by Lemma 2.3 and
I2(z, f)Q2(z, f) = P2(z, f), we have m(r,Q(z, f)) = S(r, f). By Lemma 2.6,
we have m(r, f) = S(r, f).

(ii) If p, q, n satisfy q = 0 and p < n, by Lemma 2.3 and

(
n−1∏
j=1

f(z + cj)

)
f(z + cn) = P (z, f), we have m(r, f(z + cn)) = S(r, f), then by Lemma 2.1

m(r, f) = m

(
r, f(z + cn) · f(z)

f(z + cn)

)
≤ m(r, f(z + cn)) +m

(
r,

f(z)

f(z + cn)

)
= S(r, f).

�
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3. Proof of theorems

3.1. Proof of Theorem 1.2

Suppose f is a finite-order transcendental meromorphic solution to equation
(1.2) and p, q, n satisfy max{p, q} ≤ n and q ≥ 1 or p, q, n satisfy q = 0 and
p < n, f and g share a, b, ∞ CM. By Nevanlinna’s second main theorem, we
have

T (r, f) ≤ N(r, f) +N

(
r,

1

f − a

)
+N

(
r,

1

f − b

)
+ S(r, f)

= N(r, g) +N

(
r,

1

g − a

)
+N

(
r,

1

g − b

)
+ S(r, f)

≤ 3T (r, g) + S(r, f).

Similarly, T (r, g) ≤ 3T (r, f) + S(r, g). So ρ(g) = ρ(f) ≤ ∞ which means g is a
finite-order meromorphic function.

According to H2(z, a) 6≡ 0 and Lemma 2.2, we have m
(
r, 1
f−a

)
= S(r, f).

Similarly, m
(
r, 1
f−b

)
= S(r, f). By Lemma 2.8, m(r, f) = S(r, f).

f and g share a, b,∞ CM, so there exist two polynomials α and β such that

f − a
g − a

= eα,
f − b
g − b

= eβ .(3.1)

Let γ = β − α, if eα ≡ 1 or eβ ≡ 1 or eγ ≡ 1, Obviously we have f ≡ g.
Suppose eα 6≡ 1 and eβ 6≡ 1 and eγ 6≡ 1.

By equation (3.1), we have

f = a+ (b− a)
eβ − 1

eγ − 1
(3.2)

and

f = b+ (b− a)

(
eβ − 1

eγ − 1
− 1

)
= b+ (b− a)

eα − 1

eγ − 1
eγ .(3.3)

First, we claim that the degrees of α, β, γ are at least 1. In the following,
we discuss four cases.

Case 1. If α, β are both constants (eα 6= 1,eβ 6= 1), then γ is also a constant.
We deduce that f is a constant by (3.2), which contradicts with the condition
that f is a transcendental meromorphic function.

Case 2. If β is a constant (eβ 6= 1) and the degree of α is at least 1, the
degree of γ is also at least 1. Let τ1 = (b − a)(eβ − 1), we deduce that τ1 is a
non-zero constant. From (3.2), we have f = a+ τ1

eγ−1 . So

T (r, f) = m

(
r,

1

f − a

)
+N

(
r,

1

f − a

)
+O(1)

= S(r, f) +N

(
r,
eγ − 1

τ1

)
= S(r, f).
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This is a contradiction.
Case 3. If α is a constant (eα 6= 1) and the degree of β is at least 1, the

degree of γ is also at least 1. Let τ2 = (b− a)(eα − 1), we deduce that τ2 is a

non-zero constant. By (3.3), we have f = b+ τ2e
γ

eγ−1 . So

T (r, f) = m

(
r,

1

f − b

)
+N

(
r,

1

f − b

)
+O(1)

= S(r, f) +N

(
r,
eγ − 1

τ2eγ

)
= S(r, f).

This is a contradiction.
Case 4. If α and β are not constants but γ is a constant (eγ 6= 1). Let

τ3 = b−a
eγ−1 , then τ3 is a non-zero constant. By (3.2), we get f = a+ τ3(eβ − 1).

So

T (r, f) = m(r, f) +N(r, f) = S(r, f) +N(r, a+ τ3(eβ − 1)) = S(r, f).

This is a contradiction.
From the four cases above we conclude that α, β and γ are all non-constant

polynomials.
Substituting (3.2) into (1.2) yields{

q∑
l=0

dl

(
a+ (b− a)

eβ(z) − 1

eγ(z) − 1

)l}
n∏
j=1

(
a+ (b− a)

eβ(z+cj) − 1

eγ(z+cj) − 1

)(3.4)

=

p∑
k=0

bk

(
a+ (b− a)

eβ(z) − 1

eγ(z) − 1

)k
.

α, β, γ are non-constant polynomials, denote eβ(z+cj) = eβ(z)+sj(z) and eγ(z+cj)

= eγ(z)+tj(z). Clearly, sj(z) and tj(z) are polynomials of degrees at most
deg β(z)− 1 and deg γ(z)− 1, respectively.

Multiply both sides of equation (3.4) by (eγ−1)n
∏n
j=1(eγ(z+cj)−1), we get

{
q∑
l=0

dl

(
a(eγ(z) − 1) + (b− a)(eβ(z) − 1)

)l (
eγ(z) − 1

)n−l}
·

(3.5)


n∏
j=1

(
a(eγ(z+cj) − 1) + (b− a)(eβ(z+cj) − 1)

)
=

p∑
k=0

bk

(
a(eγ(z)−1)+(b− a)(eβ(z)−1)

)k (
eγ(z)−1

)n−k
·
n∏
j=1

(
eγ(z+cj) − 1

)
.
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We can write (3.5) as

2n∑
λ=0

2n∑
µ=0

Aλ,µe
λβ+µγ = 0.(3.6)

Here, Aλ,µ are either 0 or polynomials in bk,dl and esj ,etj . By computation,

A0,0 =

(
q∑
l=0

dlb
l

)
bn −

(
p∑
k=0

bkb
k

)
= H2(z, b) 6≡ 0,

A0,2n =

(
q∑
l=0

dla
l

)(
n∏
j=1

aetj

)
−
(

p∑
k=0

bka
k

)(
n∏
j=1

etj

)
=

n∏
j=1

etjH2(z, a) 6≡ 0.

(3.7)

Next, we will prove deg β = deg γ = degα = ρ(f) = d. Here d is a positive
integer.

As we known, T (r, eα) ≤ T (r, f) + T (r, g) + O(1) ≤ 4T (r, f) + S(r, f).
Similarly, T (r, eβ) ≤ 4T (r, f) + S(r, f). So ρ(f) ≥ max{ρ(eα), ρ(eβ)}. It
follows from (3.2) that

ρ(f) ≤ max{ρ(eβ), ρ(eγ)} ≤ max{ρ(eβ), ρ(eα)} ≤ ρ(f).

That is to say ρ(f) = max{deg(α),deg(β)}.
Let N0(r) be the integrated counting function of common zeros of eβ−1 and

eγ − 1(counting multiplicities). If z0 is a ω1-order zero of eβ − 1 and a ω2-order
zero of eγ − 1(ω1, ω2 ≥ 1), then z0 will counts min{ω1, ω2} times in N0(r). By
(3.2), we have

T (r, f) = m

(
r,

1

f − a

)
+N

(
r,

1

f − a

)
+O(1)

= N

(
r,
eγ − 1

eβ − 1

)
+ S(r, f)

= N

(
r,

1

eβ − 1

)
−N0(r) + S(r, f).(3.8)

By the Nevanlinna’s first and second main theorems, we have

T (r, eβ) ≤ N(r, eβ) +N(r, e−β) +N

(
r,

1

eβ − 1

)
+ S(r, eβ)

= N

(
r,

1

eβ − 1

)
+ S(r, f),

T (r, eβ) ≥ N
(
r,

1

eβ − 1

)
+ S(r, f),

that is, T (r, eβ) = N
(
r, 1
eβ−1

)
+ S(r, f). Combining (3.8) yields

T (r, eβ) = T (r, f) +N0(r) + S(r, f).
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Similarly, we have

T (r, f) = m(r, f) +N(r, f)

= N

(
r,
eβ − 1

eγ − 1

)
+ S(r, f)

= N

(
r,

1

eγ − 1

)
−N0(r) + S(r, f),

and

T (r, eγ) = N

(
r,

1

eγ − 1

)
+ S(r, f),

that is T (r, eγ) = T (r, f) +N0(r) + S(r, f). Then

T (r, eβ) = T (r, eγ) + S(r, f).

Similarly by (3.3), we have T (r, eα) = T (r, eγ) + S(r, f).
Then we conclude that degα = deg β = deg γ = ρ(f) = d.
In what follows, we will prove deg(λβ+µγ) = deg(λβ−µγ) = d, 1 ≤ λ ≤ 2n,

1 ≤ µ ≤ 2n.
Suppose that deg(λβ + µγ) < d, obviously eλβ+µγ is a small function of f

and e−α. So

T (r, eλβ+µγ · e−λα) = T (r, e−λα) + S(r, f) = λT (r, eα) + S(r, f).

On the other hand,

T (r, eλβ+µγ · e−λα) = T (r, e(λ+µ)γ)

= (λ+ µ)T (r, eγ) + S(r, f)

= (λ+ µ)T (r, eα) + S(r, f).

Since µ 6= 0, we obtain a contradiction.
Suppose that deg(λβ − µγ) < d, eλβ−µγ is a small function of f and e−α.
If λ ≥ µ,

T (r, eλβ−µγ · e−λα) = λT (r, eα) + S(r, f).

On the other hand,

T (r, eλβ−µγ · e−λα) = T (r, e(λ−µ)γ)

= (λ− µ)T (r, eγ) + S(r, f)

= (λ− µ)T (r, eα) + S(r, f).

We obtain a contradiction.
If λ < µ,

T (r, e−(λβ−µγ) · eµα) = µT (r, eα) + S(r, f).

On the other hand,

T (r, e−(λβ−µγ) · eµα) = T (r, e(µ−λ)β) = (µ− λ)T (r, eα) + S(r, f).

It is a contradiction.
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It is easy to find {Aλ,µ | 0 ≤ λ ≤ 2n, 0 ≤ µ ≤ 2n} are small functions of
eλβ+µγ and eλβ−µγ for each λ, µ satisfied 0 ≤ λ ≤ 2n, 0 ≤ µ ≤ 2n, λ+ µ 6= 0.

By Lemma 2.7, we deduce that Aλ,µ ≡ 0, which contradicts with (3.7). So
f ≡ g.

3.2. Proof of Theorem 1.1

The result of case p ≤ q = n = 1 of equation (1.1) follows immediately from
Theorem A.

If max{p, q} = n ≥ 2, using Lemmas 2.1, 2.4 and 2.5, we have

T

r, n∑
j=1

ajf(z + cj)

 = m

r, n∑
j=1

ajf(z + cj)

+N

r, n∑
j=1

ajf(z + cj)


≤ m

r, f(z)

n∑
j=1

f(z + cj)

f(z)

+ nN(r, f) + S(r, f)

= m(r, f) + nN(r, f) + S(r, f)

and

T

r, n∑
j=1

ajf(z + cj)

 = T

(
r,
P (z, f)

Q(z, f)

)
= n · T (r, f) + S(r, f)

= n ·m(r, f) + n ·N(r, f) + S(r, f).

So (n− 1)m(r, f) = S(r, f). When n ≥ 2, we have m(r, f) = S(r, f). Then use
the same method as the proof of Theorem 1.2, we obtain f ≡ g.

3.3. Proof of Theorem 1.3

Let F (z) = 1
f , G(z) = 1

g , then F (z) and G(z) share 1
a , 1

b and ∞ CM since

f and g share a, b, ∞ CM.
If p < q, according to equation (1.2), we have

n∏
j=1

F (z + cj) =
dqf

q + · · ·+ d0
bpfp + · · ·+ b0

=
dq + · · ·+ d0F

q

bpF q−p + · · ·+ b0F q
.(3.9)

H2(z, a) = an(dqa
q + · · ·+ d0)− (bpa

p + · · ·+ b0) 6≡ 0, we multiply both sides
by − 1

an+q , then(
1

an

)(
bp
aq−p

+ · · ·+ b0
aq

)
−
(
dq + · · ·+ d0

aq

)
6≡ 0.

Similarly,
(

1
bn

) ( bp
bq−p + · · ·+ b0

bq

)
−
(
dq + · · ·+ d0

bq

)
6≡ 0. By Theorem 1.2(i),

F ≡ G, so f ≡ g.
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If p ≥ q, we have

n∏
j=1

F (z + cj) =
dqf

q + · · ·+ d0
bpfp + · · ·+ b0

=
dqF

p−q + · · ·+ d0F
p

bp + · · ·+ b0F p
.(3.10)

When q ≤ p < n, (3.10) satisfies the case (i) or (ii) of Theorem 1.2, then f ≡ g.
When p = n and bk 6≡ 0 for at least one k(0 ≤ k ≤ p − 1), (3.10) satisfies the
case (i) of Theorem 1.2, then f ≡ g.

3.4. Proof of Theorem 1.4

Suppose that f is a finite-order transcendental meromorphic solution of
(1.2). Let F (z) = 1

f−c , G(z) = 1
g−c , A = 1

a−c , B = 1
b−c , then F (z) and

G(z) share A, B, ∞ CM, since f(z) and g(z) share a, b, c CM.
H2(z, c) 6≡ 0, applying Lemmas 2.2, 2.4, m(r, F ) = m(r, 1

f−c ) = S(r, f) =

S(r, F ).
Substituting f = 1

F + c into equation (1.2), we have

n∏
j=1

(
1

F (z + cj)
+ c

)
=

p∑
k=0

bk( 1
F + c)k

q∑
l=0

dl(
1
F + c)l

.

It can be transformed into
n∏
j=1

[1 + cF (z + cj)]

 ·
{

q∑
l=0

dl(1 + cF )lFn−l

}

−

{
p∑
k=0

bk(1 + cF )kFn−k

}
·
n∏
j=1

F (z + cj) = 0.

(3.11)

Use H3(z, F ) to denote the left of (3.11). By calculation,

H3 (z,A) =
H2(z, a)

(a− c)2n
6≡ 0, H3 (z,B) =

H2(z, b)

(b− c)2n
6≡ 0.

According to Lemma 2.2, m(r, 1
F−A ) = S(r, F ), m(r, 1

F−B ) = S(r, F ).
F and G share A, B, ∞ CM, so

F −A
G−A

= eα,
F −B
G−B

= eβ .(3.12)

Denote γ = β − α

F = A+ (B −A)
eβ − 1

eγ − 1
,

1

F
=

eγ − 1

Aeγ + (B −A)eβ −B
.(3.13)
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Substituting (3.13) into equation (3.11), and eliminate the denominator, we
obtain

2n∑
λ=0

2n∑
µ=0

Aλ,µe
λβ+µγ = 0.

By calculation, we have

A00 =
H2(z, b)

(b− c)2n
6≡ 0.

Using the method in proof of Theorem 1.2, we can prove F ≡ G easily, then
f ≡ g.

Similarly, we can obtain the corresponding result for equation (1.1).
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