INCLUSION PROPERTIES REGARDING CLASSES OF MEROMORPHIC P-VALENT FUNCTIONS, INVOLVING THE OPERATOR $J_{p, \lambda}^{n}$

Petrică Dicu and Alina Totoi

Abstract

For $p \in \mathbb{N}^{*}$ let $\Sigma_{p, 0}$ denote the class of meromorphic functions of the form $g(z)=\frac{1}{z^{p}}+a_{0}+a_{1} z+\cdots, z \in U$. In the present paper we introduce a new subclass of the class $\Sigma_{p, 0}$, using the subordination and the operator $J_{p, \lambda}^{n}$. This class will be denoted by $B_{p, \lambda}^{n}(\alpha, h)$ and we study some inclusion properties of this subclass.

1. Introduction and preliminaries

Let $U=\{z \in \mathbb{C} /|z|<1\}$ be the unit disc in the complex plane and $\dot{U}=U \backslash\{0\}$ the punctured disc.

We consider the sets of functions $H(U)=\{f: U \rightarrow \mathbb{C} / f$ is holomorphic in $U\}$ and $H_{u}(U)=\{f \in H(U) / f$ is univalent in $U\}$.

For $p \in \mathbb{N}, p \neq 0$, let Σ_{p} denote the class of meromorphic p-valent functions of the form

$$
g(z)=\frac{a_{-p}}{z^{p}}+a_{0}+a_{1} z+\cdots, z \in U, a_{-p} \neq 0
$$

and $\Sigma_{p, 0}=\left\{g \in \Sigma_{p}: a_{-p}=1\right\}$.
For $n \in \mathbb{Z}, p \in \mathbb{N}^{*}, \lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda>p$, let us consider, on the class Σ_{p}, the operator $J_{p, \lambda}^{n}: \Sigma_{p} \rightarrow \Sigma_{p}$, defined as

$$
J_{p, \lambda}^{n} g(z)=\frac{a_{-p}}{z^{p}}+\sum_{k=0}^{\infty}\left(\frac{\lambda-p}{k+\lambda}\right)^{n} a_{k} z^{k}, \text { where } g(z)=\frac{a_{-p}}{z^{p}}+\sum_{k=0}^{\infty} a_{k} z^{k} .
$$

This operator was introduced for the first time by Alina Totoi in [7].
Obviously, we also have $J_{p, \lambda}^{n}: \Sigma_{p, 0} \rightarrow \Sigma_{p, 0}$.
We have the next properties for $J_{p, \lambda}^{n}$, when $\operatorname{Re} \lambda>p$:
(1) $J_{p, \lambda}^{0} g(z)=g(z), g \in \Sigma_{p}$;
(2) $J_{p, \lambda}^{1} g(z)=\frac{\lambda-p}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1} g(t) d t=J_{p, \lambda} g(z), g \in \Sigma_{p}$;

[^0](3) $J_{p, \lambda}^{n}\left(J_{p, \lambda}^{m} g(z)\right)=J_{p, \lambda}^{n+m} g(z), n, m \in \mathbb{Z}, g \in \Sigma_{p}$;
(4) $J_{p, \gamma}^{n}\left(J_{p, \lambda}^{m} g(z)\right)=J_{p, \lambda}^{m}\left(J_{p, \gamma}^{n} g(z)\right), n, m \in \mathbb{Z}, g \in \Sigma_{p}, \gamma>p$;
(5) $J_{p, \lambda}^{n}\left(g_{1}+g_{2}\right)(z)=J_{p, \lambda}^{n} g_{1}(z)+J_{p, \lambda}^{n} g_{2}(z)$ for $g_{1}, g_{2} \in \Sigma_{p}, n \in \mathbb{Z}$;
(6) $J_{p, \lambda}^{n}(c g)(z)=c J_{p, \lambda}^{n} g(z), c \in \mathbb{C}^{*}, n \in \mathbb{Z}$;
(7) $J_{p, \lambda}^{n}\left(z g^{\prime}(z)\right)=z\left(J_{p, \lambda}^{n} g(z)\right)^{\prime}=(\lambda-p) J_{p, \lambda}^{n-1} g(z)-\lambda J_{p, \lambda}^{n} g(z), n \in \mathbb{Z}, g \in$

Remark 1.1. (1) When $\lambda=2$ and $p=1$, we have

$$
J_{1,2}^{n} g(z)=\frac{a_{-1}}{z}+\sum_{k=0}^{\infty}(k+2)^{-n} a_{k} z^{k},
$$

and this operator was studied by Cho and $\operatorname{Kim}[1]$ for $n \in \mathbb{Z}$ and by Uralegaddi and Somanatha [8] for $n<0$.
(2) We also have the relation

$$
z^{2} J_{1,2}^{n} g(z)=D^{n}\left(z^{2} g(z)\right), g \in \Sigma_{1,0},
$$

where D^{n} is the well-known Sǎlǎgean differential operator of order n [5], defined by $D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}, f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$.
(3) $J_{p, \lambda}^{n}$ is an extension to the meromorphic functions of the operator K_{p}^{n}, defined on $A(p)=\left\{f \in H(U): f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n}\right\}$, introduced in [6]. Also, for $n \geq 0$ we find that K_{p}^{n} is the Komatu linear operator, defined in [3].
(4) It's easy to see that $J_{p, \lambda}^{n}$ with $n>0$ is an integral operator while $J_{p, \lambda}^{-n}$, $n>0$ is a differential operator with the property $J_{p, \lambda}^{-n}\left(J_{p, \lambda}^{n} g(z)\right)=g(z)$.

Similar operators are also used in [2].
Definition 1.1 ([4]). Let f and F be members of $H(U)$. The function f is said to be subordinate to F, written $f \prec F$ or $f(z) \prec F(z)$, if there exists a function w analytic in U, with $w(0)=0$ and $|w(z)|<1$, and such that $f(z)=F(w(z))$.

Lemma 1.1 ([4]). Let $f \in H(U)$ and $h \in H_{u}(U)$ convex in U, with $h(0)=$ $f(0)$. If

$$
f(z)+\frac{1}{\mu} z f^{\prime}(z) \prec h(z),
$$

where $\operatorname{Re} \mu \geq 0$ and $\mu \neq 0$, then $f(z) \prec h(z)$.

2. Main results

Definition 2.1. For $p \in \mathbb{N}^{*}, n \in \mathbb{Z}, \lambda, \alpha \in \mathbb{C}$, with $\operatorname{Re} \lambda>p$, and $h \in H_{u}(U)$ convex in U with $h(0)=1$, we define

$$
B_{p, \lambda}^{n}(\alpha, h)=\left\{g \in \Sigma_{p, 0}: z^{p} J_{p, \lambda}^{n}\left((1-\alpha) g(z)-\frac{\alpha}{p} z g^{\prime}(z)\right) \prec h(z), z \in U\right\} .
$$

Remark 2.1. Let $p \in \mathbb{N}^{*}, n \in \mathbb{Z}, \lambda, \alpha \in \mathbb{C}$, with $\operatorname{Re} \lambda>p$ and $h \in H_{u}(U)$ convex in U with $h(0)=1$.

1. We have $B_{p, \lambda}^{n}(\alpha, h) \neq \emptyset$, since $g(z)=\frac{1}{z^{p}} \in B_{p, \lambda}^{n}(\alpha, h)$.
2. For every $g \in B_{p, \lambda}^{n}(\alpha, h)$, we have

$$
\left.z^{p} J_{p, \lambda}^{n}\left((1-\alpha) g(z)-\frac{\alpha}{p} z g^{\prime}(z)\right)\right|_{z=0}=1
$$

3. From the properties of the operator $J_{p, \lambda}^{n}$ we get

$$
J_{p, \lambda}^{n}\left((1-\alpha) g(z)-\frac{\alpha}{p} z g^{\prime}(z)\right)=(1-\alpha) J_{p, \lambda}^{n} g(z)-\frac{\alpha}{p} J_{p, \lambda}^{n}\left(z g^{\prime}(z)\right)
$$

4. Let $h_{1}, h_{2} \in H_{u}(U)$ convex in U with $h_{1}(0)=h_{2}(0)=1, h_{1} \prec h_{2}$. It is obvious that we have

$$
B_{p, \lambda}^{n}\left(\alpha, h_{1}\right) \subset B_{p, \lambda}^{n}\left(\alpha, h_{2}\right) .
$$

Theorem 2.1. Let $\alpha_{2}<\alpha_{1} \leq 0$. Then

$$
B_{p, \lambda}^{n}\left(\alpha_{2}, h\right) \subset B_{p, \lambda}^{n}\left(\alpha_{1}, h\right)
$$

Proof. Let $g \in B_{p, \lambda}^{n}\left(\alpha_{2}, h\right)$. We have

$$
z^{p} J_{p, \lambda}^{n}\left(\left(1-\alpha_{2}\right) g(z)-\frac{\alpha_{2}}{p} z g^{\prime}(z)\right) \prec h(z), z \in U,
$$

which is equivalent to

$$
z^{p}\left(1-\alpha_{2}\right) J_{p, \lambda}^{n} g(z)-z^{p} \frac{\alpha_{2}}{p} J_{p, \lambda}^{n}\left(z g^{\prime}(z)\right) \prec h(z)
$$

Because $J_{p, \lambda}^{n}\left(z g^{\prime}(z)\right)=z\left(J_{p, \lambda}^{n} g(z)\right)^{\prime}$, we obtain

$$
\begin{equation*}
z^{p}\left(1-\alpha_{2}\right) J_{p, \lambda}^{n} g(z)-z^{p+1} \frac{\alpha_{2}}{p}\left(J_{p, \lambda}^{n} g(z)\right)^{\prime} \prec h(z) \tag{1}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
f(z)=z^{p} J_{p, \lambda}^{n} g(z) \tag{2}
\end{equation*}
$$

It is easy to see that the function $f(z)$ is analytic in U with $f(0)=1$. Differentiating both sides of (2) with respect to z, we get

$$
f^{\prime}(z)=p z^{p-1} J_{p, \lambda}^{n} g(z)+z^{p}\left(J_{p, \lambda}^{n} g(z)\right)^{\prime} .
$$

We have now

$$
\begin{equation*}
f(z)-\frac{\alpha_{2}}{p} z f^{\prime}(z)=z^{p}\left(1-\alpha_{2}\right) J_{p, \lambda}^{n} g(z)-z^{p+1} \frac{\alpha_{2}}{p}\left(J_{p, \lambda}^{n} g(z)\right)^{\prime} \tag{3}
\end{equation*}
$$

From (1) and (3) we obtain

$$
f(z)-\frac{\alpha_{2}}{p} z f^{\prime}(z) \prec h(z) .
$$

Since $\frac{\alpha_{2}}{p}<0$, using Lemma 1.1 for the equality written above we get $f(z) \prec$ $h(z)$, which means that

$$
\begin{equation*}
z^{p} J_{p, \lambda}^{n} g(z) \prec h(z) . \tag{4}
\end{equation*}
$$

We want to verify the fact that $g \in B_{p, \lambda}^{n}\left(\alpha_{1}, h\right)$, this meaning that

$$
z^{p} J_{p, \lambda}^{n}\left(\left(1-\alpha_{1}\right) g(z)-\frac{\alpha_{1}}{p} z g^{\prime}(z)\right) \prec h(z), z \in U
$$

which is equivalent to

$$
\begin{equation*}
z^{p}\left(1-\alpha_{1}\right) J_{p, \lambda}^{n} g(z)-z^{p+1} \frac{\alpha_{1}}{p}\left(J_{p, \lambda}^{n} g(z)\right)^{\prime} \prec h(z) . \tag{5}
\end{equation*}
$$

It is not difficult to see that we have
(6) $z^{p}\left(1-\alpha_{1}\right) J_{p, \lambda}^{n} g(z)-z^{p+1} \frac{\alpha_{1}}{p}\left(J_{p, \lambda}^{n} g(z)\right)^{\prime}$
$=\frac{\alpha_{1}}{\alpha_{2}}\left(z^{p}\left(1-\alpha_{2}\right) J_{p, \lambda}^{n} g(z)-z^{p+1} \frac{\alpha_{2}}{p}\left(J_{p, \lambda}^{n} g(z)\right)^{\prime}\right)+\left(1-\frac{\alpha_{1}}{\alpha_{2}}\right) z^{p} J_{p, \lambda}^{n} g(z)$.
Since $0 \leq \frac{\alpha_{1}}{\alpha_{2}}<1$ and $h \in H_{u}(U)$ convex, it follows from (1) and (4) that

$$
\frac{\alpha_{1}}{\alpha_{2}}\left(z^{p}\left(1-\alpha_{2}\right) J_{p, \lambda}^{n} g(z)-z^{p+1} \frac{\alpha_{2}}{p}\left(J_{p, \lambda}^{n} g(z)\right)^{\prime}\right)+\left(1-\frac{\alpha_{1}}{\alpha_{2}}\right) z^{p} J_{p, \lambda}^{n} g(z) \prec h(z),
$$

so

$$
z^{p}\left(1-\alpha_{2}\right) J_{p, \lambda}^{n} g(z)-z^{p+1} \frac{\alpha_{2}}{p}\left(J_{p, \lambda}^{n} g(z)\right)^{\prime} \prec h(z) .
$$

Thus $g \in B_{p, \lambda}^{n}\left(\alpha_{1}, h\right)$ and the proof of Theorem 2.1 is completed.
The following result gives a connection between the sets $B_{p, \lambda}^{n}(\alpha, h)$ and $B_{p, \lambda}^{n-1}(\alpha, h)$.

Theorem 2.2. Let $p \in \mathbb{N}^{*}, n \in \mathbb{Z}, \lambda, \alpha \in \mathbb{C}$, with $\operatorname{Re} \lambda>p$ and $h \in H_{u}(U)$ convex in U with $h(0)=1$. Then

$$
g \in B_{p, \lambda}^{n}(\alpha, h) \Leftrightarrow J_{p, \lambda}(g) \in B_{p, \lambda}^{n-1}(\alpha, h),
$$

where $J_{p, \lambda}(g)(z)=\frac{\lambda-p}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1} g(t) d t$.
Proof. Let be $g \in B_{p, \lambda}^{n}(\alpha, h)$ and consider $G=J_{p, \lambda}(g)$.
We have $G \in B_{p, \lambda}^{n-1}(\alpha, h)$ if and only if

$$
z^{p} J_{p, \lambda}^{n-1}\left((1-\alpha) G(z)-\frac{\alpha}{p} z G^{\prime}(z)\right) \prec h(z), z \in U,
$$

which is equivalent to

$$
z^{p}(1-\alpha) J_{p, \lambda}^{n-1} G(z)-z^{p} \frac{\alpha}{p} J_{p, \lambda}^{n-1}\left(z G^{\prime}(z)\right) \prec h(z) .
$$

Because $J_{p, \lambda}^{n-1}\left(z G^{\prime}(z)\right)=z\left(J_{p, \lambda}^{n-1} G(z)\right)^{\prime}$, we obtain

$$
\begin{equation*}
z^{p}(1-\alpha) J_{p, \lambda}^{n-1} G(z)-z^{p+1} \frac{\alpha}{p}\left(J_{p, \lambda}^{n-1} G(z)\right)^{\prime} \prec h(z) . \tag{7}
\end{equation*}
$$

Using the fact that $J_{p, \lambda}^{n-1}\left(J_{p, \lambda}^{1}(g)\right)=J_{p, \lambda}^{n}(g)$ and knowing that $J_{p, \lambda}^{1}(g)=$ $J_{p, \lambda}(g)$, we obtain

$$
J_{p, \lambda}^{n-1}(G)=J_{p, \lambda}^{n-1}\left(J_{p, \lambda}(g)\right)=J_{p, \lambda}^{n-1}\left(J_{p, \lambda}^{1}(g)\right)=J_{p, \lambda}^{n}(g) .
$$

From $J_{p, \lambda}^{n-1}(G)=J_{p, \lambda}^{n}(g)$ and (7) we deduce that $G \in B_{p, \lambda}^{n-1}(\alpha, h)$ if and only if

$$
\begin{equation*}
z^{p}(1-\alpha) J_{p, \lambda}^{n} g(z)-z^{p+1} \frac{\alpha}{p}\left(J_{p, \lambda}^{n} g(z)\right)^{\prime} \prec h(z) . \tag{8}
\end{equation*}
$$

It is easy to see that equality (8) is equivalent with

$$
z^{p} J_{p, \lambda}^{n}\left((1-\alpha) g(z)-\frac{\alpha}{p} z g^{\prime}(z)\right) \prec h(z), z \in U
$$

this meaning that

$$
g \in B_{p, \lambda}^{n}(\alpha, h) \Leftrightarrow G=J_{p, \lambda}(g) \in B_{p, \lambda}^{n-1}(\alpha, h) .
$$

Theorem 2.3. Let $p \in \mathbb{N}^{*}, n \in \mathbb{Z}, \lambda, \alpha, \gamma \in \mathbb{C}$, with $\operatorname{Re} \lambda>p$ and $\operatorname{Re} \gamma>p$. Let us consider $h \in H_{u}(U)$, convex in U, with $h(0)=1$. Then

$$
g \in B_{p, \lambda}^{n}(\alpha, h) \Rightarrow G=J_{p, \gamma}(g) \in B_{p, \lambda}^{n}(\alpha, h)
$$

Proof. Let be $g \in B_{p, \lambda}^{n}(\alpha, h)$ and $G=J_{p, \gamma}(g)$ with

$$
J_{p, \gamma}(g)(z)=\frac{\gamma-p}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} g(t) d t .
$$

We have $g \in B_{p, \lambda}^{n}(\alpha, h)$ if and only if

$$
z^{p} J_{p, \lambda}^{n}\left((1-\alpha) g(z)-\frac{\alpha}{p} z g^{\prime}(z)\right) \prec h(z), z \in U .
$$

We denote by

$$
\begin{equation*}
u(z)=J_{p, \lambda}^{n}\left((1-\alpha) g(z)-\frac{\alpha}{p} z g^{\prime}(z)\right), z \in \dot{U} \tag{9}
\end{equation*}
$$

and we get

$$
\begin{equation*}
g \in B_{p, \lambda}^{n}(\alpha, h) \Leftrightarrow z^{p} u(z) \prec h(z), z \in U . \tag{10}
\end{equation*}
$$

We must prove that $G=J_{p, \gamma}(g) \in B_{p, \lambda}^{n}(\alpha, h)$.
We have $G=J_{p, \gamma}(g) \in B_{p, \lambda}^{n}(\alpha, h)$ if and only if

$$
z^{p} J_{p, \lambda}^{n}\left((1-\alpha) J_{p, \gamma} g(z)-\frac{\alpha}{p} z\left(J_{p, \gamma} g\right)^{\prime}(z)\right) \prec h(z), z \in U .
$$

From the above subordination, using now the properties of the operator $J_{p, \gamma}$, we get

$$
z^{p} J_{p, \lambda}^{n}\left(J_{p, \gamma}\left((1-\alpha) g(z)-\frac{\alpha}{p} z g^{\prime}(z)\right)\right) \prec h(z), z \in U,
$$

which is equivalent to

$$
\begin{equation*}
z^{p} J_{p, \gamma}\left(J_{p, \gamma}^{n}\left((1-\alpha) g(z)-\frac{\alpha}{p} z g^{\prime}(z)\right)\right) \prec h(z), z \in U . \tag{11}
\end{equation*}
$$

Using (9), the last subordination is equivalent to $z^{p} J_{p, \gamma}(u)(z) \prec h(z)$, this meaning that $G=J_{p, \gamma}(g) \in B_{p, \lambda}^{n}(\alpha, h)$ if and only if $z^{p} J_{p, \gamma}(u)(z) \prec h(z)$.

Let us denote $J_{p, \gamma} u$ by \mathbf{U}. It is easy to see that

$$
\begin{equation*}
\gamma \mathbf{U}(z)+z \mathbf{U}^{\prime}(z)=(\gamma-p) u(z), z \in \dot{U} . \tag{12}
\end{equation*}
$$

From (12) we obtain

$$
z^{p} \gamma \mathbf{U}(z)+z^{p+1} \mathbf{U}^{\prime}(z)=z^{p}(\gamma-p) u(z), z \in U,
$$

which is equivalent to

$$
\begin{equation*}
z^{p} \mathbf{U}(z)+\frac{p}{\gamma-p} z^{p} \mathbf{U}(z)+\frac{1}{\gamma-p} z^{p+1} \mathbf{U}^{\prime}(z)=z^{p} u(z), z \in U . \tag{13}
\end{equation*}
$$

If we denote $\mathbf{V}(z)=z^{p} \mathbf{U}(z)$, we have

$$
\mathbf{V}^{\prime}(z)=\frac{p}{\gamma-p} z^{p} \mathbf{U}(z)+\frac{1}{\gamma-p} z^{p+1} \mathbf{U}^{\prime}(z)
$$

therefore, from (13), we obtain the equality

$$
\mathbf{V}(z)+z \frac{1}{\gamma-p} \mathbf{V}^{\prime}(z)=z^{p} u(z), z \in U
$$

From (10) we know that we have $z^{p} u(z) \prec h(z), z \in U$, this meaning that we get the subordination

$$
\mathbf{V}(z)+z \frac{1}{\gamma-p} \mathbf{V}^{\prime}(z) \prec h(z), z \in U
$$

Since $\operatorname{Re}(\gamma-p)>0$, from the above subordination, using Lemma1.1, we get

$$
\mathbf{V}(z)=z^{p} \mathbf{U}(z) \prec h(z), z \in U .
$$

Therefore, we get $z^{p} J_{p, \gamma}(u)(z) \prec h(z), z \in U$, this meaning that

$$
G=J_{p, \gamma}(g) \in B_{p, \lambda}^{n}(\alpha, h) .
$$

References

[1] N. E. Cho and J. A. Kim, On certain classes of meromorphically starlike functions, Internat. J. Math. \& Math. Sci. 18 (1995), no. 3, 463-468.
[2] L. Cotârlă, Properties of analytic functions defined by an integral operator, Demonstratio Math., Polonia 2010 (2010), no. 4, 799-803.
[3] Y. Komatu, Distorsion Theorems in Relation to Linear Integral Transforms, Kluwer Academic Publishers, Dordrecht, Boston and London, 1996.
[4] S. S. Miller and P. T. Mocanu, Differential Subordinations, Marcel Dekker Inc. New York, Basel, 2000.
[5] G. Şt. Sălăgean, Subclasses of univalent functions, Lectures Notes in Math., 1013, 362372, Springer-Verlag, Heideberg, 1983.
[6] S. Shams, S. R. Kulkarni, and J. M. Jahangiri, Subordination properties of p-valent functions defined by integral operators, Int. J. Math. Math. Sci. 2006 (2006), Article ID 94572, 1-3.
[7] A. Totoi, Meromorphic functions defined by a multiplier transformation, Acta Univ. Apulensis Math. Inform. 25 (2011), 41-52.
[8] B. A. Uralegaddi and C. Somanatha, Certain differential operators for meromorphic functions, Houston J. Math. 17 (1991), no. 2, 279-284.

Petrică Dicu
Department of Mathematics
Faculty of Science
University "Lucian Blaga" of Sibiu
Str. Dr. Ion Raţiu, nr. 5-7, 550012-Sibiu, Romania
E-mail address: petrica.dicu@yahoo.com, petrica.dicu@ulbs.ro
Alina Totoi
Department of Mathematics
Faculty of Science
University "Lucian Blaga" of Sibiu
Str. Dr. Ion Raţiu, nr. 5-7, 550012-Sibiu, Romania
E-mail address: totoialina@yahoo.com

[^0]: Received January 5, 2017; Accepted April 26, 2017.
 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. meromorphic functions, multiplier transformations, subordination.

