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EVALUATION OF A NEW CLASS OF

DOUBLE DEFINITE INTEGRALS

Sébastien Gaboury and Arjun Kumar Rathie

Abstract. Inspired by the results obtained by Brychkov ([2]), the au-
thors evaluate a large number of new and interesting double definite in-

tegrals. The results are obtained with the use of classical hypergeomet-

ric summation theorems and a well-known double finite integral due to
Edwards ([3]). The results are given in terms of Psi and Hurwitz zeta

functions suitable for numerical computations.

1. Introduction

The generalized hypergeometric function pFq with p numerator parameters
a1, . . . , ap such that aj ∈ C (j = 1, . . . , p) and q denominator parameters
b1, . . . , bq such that bj ∈ C\Z−0 (j = 1, . . . , q; Z−0 := Z∪{0} = {0,−1,−2, . . . })
is defined by (see, for example [5, Chapter 4]; see also [7, pp. 71–72])

pFq

[
α1, . . . , αp;
β1, . . . , βq;

z

]
= pFq[α1, . . . , αp;β1, . . . , βq; z]

=

∞∑
n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!
,(1.1)

(p ≤ q and |z| <∞; p = q + 1 and |z| < 1; p = q + 1, |z| = 1 and <(ω) > 0)

where

ω :=

q∑
j=1

bi −
p∑
j=1

ai

and (α)n denotes the Pochhammer symbol defined, in terms of the Gamma
function, by

(α)n :=
Γ(α+ n)

Γ(α)
=

{
α(α+ 1) · · · (α+ n− 1) (n ∈ N;α ∈ C)

1 (n = 0;α ∈ C \ {0}).
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It is well-known that, whenever a generalized hypergeometric function re-
duces to Gamma function, the results are very important from the application
point of view. Therefore, the classical summation theorems such as those of
Watson, Dixon and Whipple for the series 3F2 play an important role. These
are given respectively by [1, 5, 6]:

3F2

[
a, b , c;

1
2 (a+ b+ 1) , 2c;

1

]
=

Γ
(
1
2

)
Γ
(
c+ 1

2

)
Γ
(
1
2a+ 1

2b+ 1
2

)
Γ
(
c− 1

2a−
1
2b+ 1

2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+ 1

2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+ 1
2

)(1.2)

provided that <(2c− a− b) > −1,

3F2

[
a, b , c;

1 + a− b , 1 + a− c; 1

]
=

Γ
(
1 + 1

2a
)

Γ (1 + a− b) Γ (1 + a− c) Γ
(
1 + 1

2a− b− c
)

Γ (1 + a) Γ
(
1 + 1

2a− b
)

Γ
(
1 + 1

2a− c
)

Γ (1 + a− b− c)
(1.3)

provided that <(a− 2b− 2c) > −2, and finally

3F2

[
a, 1− a , c;

e , 1 + 2c− e; 1

]
(1.4)

=
21−2c π Γ(e)Γ(1 + 2c− e)

Γ
(
1
2a+ 1

2e
)

Γ
(
1
2e−

1
2a+ 1

2

)
Γ
(
c− 1

2e+ 1
2a+ 1

2

)
Γ
(
c− 1

2e−
1
2a+ 1

)
provided that <(c) > 0 and <(e) > 0.

In the theory of generalized hypergeometric functions, there exist a large
number of hypergeometric identities or summation formulas that can be ex-
pressed in terms of Gamma functions for generalized hypergeometric functions

pFq with specified values of the arguments, usually taken to be 1, −1 and 1
2 .

Also, it is evident that, for every such hypergeometric identity, we can easily
evaluate a number of finite integrals involving hypergeometric functions and
the logarithmic functions. Since the Gauss’s hypergeometric function 2F1 and
the confluent hypergeometric function 1F1 are the core of the special functions
and almost all the commonly elementary functions can be obtained either as a
special case or a limiting case, thus the integrals involving these functions play
an important role.

In a very interesting and useful paper, Brychkov [2] evaluated some integrals
of this type by employing some of the above mentioned classical summation
theorems and discussed several interesting special cases.

Inspired by this work, the authors, in this paper, aim at evaluating a large
number of double finite integrals involving hypergeometric functions and loga-
rithmic functions. Several interesting special cases are also given. The results
are obtained in terms of the Psi function and the Hurwitz zeta function which
are more suitable for numerical computations.
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The following definitions of the Psi function and the Hurwitz zeta function
are also given in this section so that the paper may be self contained.

The Psi function Ψ(z) which consists in the logarithmic derivative of the
Gamma function is given by [4, 7]

Ψ(z) :=
Γ′(z)

Γ(z)
(1.5)

and the celebrated Hurwitz zeta function ζ(s, a) is defined as [4, 7]

ζ(s, a) :=

∞∑
n=0

1

(n+ a)s
, a 6= 0,−1,−2, . . . ; <(s) > 1.(1.6)

Also, we record here the following well-known result:

∂k

∂zk
ln


m∏
j=1

Γ(aj + z)

 =

{∑m
j=1 Ψ(aj + z) k = 1,

(−1)k(k − 1)!
∑m
j=1 ζ(k, aj + z) k ≥ 2.

(1.7)

Finally, we recall an important result for the sequel due to Edwards [3]:∫ 1

0

∫ 1

0

yα(1− x)α−1(1− y)β−1(1− xy)1−α−β dx dy =
Γ(α)Γ(β)

Γ(α+ β)
(1.8)

provided that <(α) > 0 and <(β) > 0.
It is worthy to note that making the change of variable x 7→ z−y

y(z−1) in

equation (1.8), we obtain its simpler form as∫ 1

0

∫ y

0

zα−1(1− z)β−2 dz dy =
Γ(α)Γ(β)

Γ(α+ β)
(1.9)

provided that <(α) > 0 and <(β) > 1.

2. Main results

In this section, we present eight definite integrals formulas involving the
Gauss’s hypergeometric function and the logarithmic function. The derivation
of these results will be treated in Sections 3 and 4.

First integral formula∫ 1

0

∫ y

0

zc−1(1− z)c−2 lnn
(
z − z2

)
2F1

[
a, b;

1
2 (a+ b+ 1);

z

]
dz dy

=
2 π Γ

(
1
2a+ 1

2b+ 1
2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+ 1

2

) · n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂

n−r−1

∂cn−r−1
B,(2.1)

where

A =
2−2c Γ(c)Γ

(
c− 1

2a−
1
2b+ 1

2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+ 1
2

) ,(2.2)
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∂

∂c
A = A ·B,(2.3)

B = − 2 ln 2 + Ψ(c) + Ψ

(
c− 1

2
a− 1

2
b+

1

2

)
−Ψ

(
c− 1

2
a+

1

2

)
(2.4)

−Ψ

(
c− 1

2
b+

1

2

)
,

∂n

∂cn
A =

n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂

n−r−1

∂cn−r−1
B(2.5)

and

∂n−r−1

∂cn−r−1
B = (−1)n−r(n− r − 1)!

{
ζ(n− r, c) + ζ

(
n− r, c− 1

2
a− 1

2
b+

1

2

)
− ζ

(
n− r, c− 1

2
a+

1

2

)
− ζ

(
n− r, c− 1

2
b+

1

2

)}
.(2.6)

Second integral formula∫ 1

0

∫ y

0

zb−1(1− z) 1
2 (a−b−1)−1 lnn

(
z√

1− z

)
2F1

[
a, c;
2c;

z

]
dz dy

=
Γ
(
1
2

)
Γ
(
c+ 1

2

)
Γ
(
1
2a+ 1

2

)
Γ
(
c− 1

2a+ 1
2

) · n−1∑
r=0

(
n− 1

r

)
∂r

∂br
A · ∂

n−r−1

∂bn−r−1
B,(2.7)

where

A =
Γ(b)Γ

(
1
2a−

1
2b+ 1

2

)
Γ
(
c− 1

2a−
1
2b+ 1

2

)
Γ
(
c− 1

2b+ 1
2

)
Γ
(
1
2b+ 1

2

) ,(2.8)

∂

∂b
A = A ·B,(2.9)

B =Ψ(b)− 1

2
Ψ

(
1

2
a− 1

2
b+

1

2

)
− 1

2
Ψ

(
c− 1

2
a− 1

2
b+

1

2

)
− 1

2
Ψ

(
1

2
b+

1

2

)
+

1

2
Ψ

(
c− 1

2
b+

1

2

)
,(2.10)

∂n

∂bn
A =

n−1∑
r=0

(
n− 1

r

)
∂r

∂br
A · ∂

n−r−1

∂bn−r−1
B(2.11)

and

∂n−r−1

∂bn−r−1
B = (−1)n−r(n− r − 1)!

{
ζ(n− r, b)

− (−1)n−r−1

2n−r
ζ

(
n− r, 1

2
a− 1

2
b+

1

2

)
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− (−1)n−r−1

2n−r
ζ

(
n− r, c− 1

2
a− 1

2
b+

1

2

)
− 1

2n−r
ζ

(
n− r, 1

2
b+

1

2

)
+

(−1)n−r−1

2n−r
ζ

(
n− r, c− 1

2
b+

1

2

)}
.(2.12)

Third integral formula∫ 1

0

∫ y

0

zc−1(1− z)c−2 lnn
(
z − z2

)
2F1

[
a, b;

1
2 (a+ b+ 1);

1− z
]

dz dy

=
2 π Γ

(
1
2a+ 1

2b+ 1
2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+ 1

2

) · n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂

n−r−1

∂cn−r−1
B,(2.13)

where the values of A, B and their derivatives are the same as given in (2.2)
to (2.6).

Fourth integral formula∫ 1

0

∫ y

0

z
1
2 (1+a−b)−1(1− z)b−2 lnn

(
1− z√
z

)
2F1

[
a, c;
2c;

1− z
]

dz dy

=
Γ
(
1
2

)
Γ
(
c+ 1

2

)
Γ
(
1
2a+ 1

2

)
Γ
(
c− 1

2a+ 1
2

) · n−1∑
r=0

(
n− 1

r

)
∂r

∂br
A · ∂

n−r−1

∂bn−r−1
B,(2.14)

where the values of A, B and their derivatives are the same as given in (2.2)
to (2.6).

Fifth integral formula∫ 1

0

∫ y

0

zb−1(1− z)a−2b−1 lnn
(

z

(1− z)2

)
2F1

[
a, c;

1 + a− c; z
]

dz dy

=
Γ (1 + a− c)

Γ
(
1
2a+ 1

2

)
Γ
(
1 + 1

2a− c
) · n−1∑

r=0

(
n− 1

r

)
∂r

∂br
A · ∂

n−r−1

∂bn−r−1
B,(2.15)

where

A =
2−2b Γ(b)Γ

(
1
2a− b+ 1

2

)
Γ
(
1 + 1

2a− b− c
)

Γ (1 + a− b− c)
,(2.16)

∂

∂b
A = A ·B,(2.17)

B = − 2 ln 2 + Ψ(b)−Ψ

(
1

2
a− b+

1

2

)
−Ψ

(
1 +

1

2
a− b− c

)
(2.18)

−Ψ (1 + a− b− c) ,
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∂n

∂bn
A =

n−1∑
r=0

(
n− 1

r

)
∂r

∂br
A · ∂

n−r−1

∂bn−r−1
B(2.19)

and

∂n−r−1

∂bn−r−1
B = (n− r − 1)!

{
(−1)n−rζ(n− r, b) + ζ

(
n− r, 1

2
a− b+

1

2

)
+ ζ

(
n− r, 1 +

1

2
a− b− c

)
− ζ (n− r, 1 + a− b− c) .(2.20)

Sixth integral formula∫ 1

0

∫ y

0

za−2b(1− z)b−2 lnn
(

1− z
z2

)
2F1

[
a, c;

1 + a− c; 1− z
]

dz dy

=
Γ (1 + a− c)

Γ
(
1
2a+ 1

2

)
Γ
(
1 + 1

2a− c
) · n−1∑

r=0

(
n− 1

r

)
∂r

∂br
A · ∂

n−r−1

∂bn−r−1
B,(2.21)

where the values of A, B and their derivatives are the same as given in (2.16)
to (2.20).

Seventh integral formula∫ 1

0

∫ y

0

zc−1(1− z)c−e−1 lnn
(
z − z2

)
2F1

[
a, 1− a;

e;
z

]
dz dy

=
2 π Γ (e)

Γ
(
1
2a+ 1

2e
)

Γ
(
1
2e−

1
2a+ 1

2

) · n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂

n−r−1

∂cn−r−1
B,(2.22)

where

A =
2−2c Γ(c)Γ (1− e+ c)

Γ
(
c− 1

2e+ 1
2a+ 1

2

)
Γ
(
c− 1

2e−
1
2a+ 1

) ,(2.23)

∂

∂c
A = A ·B,(2.24)

B =− 2 ln 2 + Ψ(c) + Ψ (1− e+ c)−Ψ

(
c− 1

2
e+

1

2
a+

1

2

)
−Ψ

(
c− 1

2
e− 1

2
a+ 1

)
,(2.25)

∂n

∂cn
A =

n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂

n−r−1

∂cn−r−1
B(2.26)

and

∂n−r−1

∂cn−r−1
B = (−1)n−r(n− r − 1)!

{
ζ(n− r, c) + ζ (n− r, 1− e+ c)
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− ζ
(
n− r, c− 1

2
e+

1

2
a+

1

2

)
− ζ

(
n− r, c− 1

2
e− 1

2
a+ 1

)}
.(2.27)

Eighth integral formula∫ 1

0

∫ y

0

zc−e(1− z)c−2 lnn
(
z − z2

)
2F1

[
a, 1− a;

e;
1− z

]
dz dy

=
2 π Γ (e)

Γ
(
1
2a+ 1

2e
)

Γ
(
1
2e−

1
2a+ 1

2

) · n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂

n−r−1

∂cn−r−1
B,(2.28)

where the values of A, B and their derivatives are the same as given in (2.23)
to (2.27).

3. Derivations of the results

In this section, in order to prove our new class of definite double integrals
given in Section 2, we shall establish, first, eight definite double integrals in-
volving hypergeometric functions. Next, we will use these formulas to prove
our main results.

These eight definite double integrals involving hypergeometric functions are:∫ 1

0

∫ y

0

zc−1(1− z)c−2 2F1

[
a, b;

1
2 (a+ b+ 1);

z

]
dz dy

=
π 21−2c Γ (c) Γ

(
1
2a+ 1

2b+ 1
2

)
Γ
(
c− 1

2a−
1
2b+ 1

2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+ 1

2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+ 1
2

) = I1(3.1)

provided that <(c) > 1 and <(2c− a− b) > −1,∫ 1

0

∫ y

0

zb−1(1− z) 1
2 (a−b−1)−1 2F1

[
a, c;
2c;

z

]
dz dy

=
Γ
(
1
2

)
Γ(b)Γ

(
c+ 1

2

)
Γ
(
1
2a−

1
2b+ 1

2

)
Γ
(
c− 1

2a−
1
2b+ 1

2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+ 1

2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+ 1
2

) = I2(3.2)

provided that <(b) > 0 and <(a− b− 1) > 0,∫ 1

0

∫ y

0

zc−1(1− z)c−2 2F1

[
a, b;

1
2 (a+ b+ 1);

1− z
]

dz dy = I1,(3.3)

∫ 1

0

∫ y

0

z
1
2 (1+a−b)−1(1− z)b−2 2F1

[
a, c;
2c;

1− z
]

dz dy = I2(3.4)

provided that <(b) > 1 and <(1 + a− b) > 0,∫ 1

0

∫ y

0

zb−1(1− z)a−2b−1 2F1

[
a, c;

1 + a− c; z
]

dz dy

=
2−2b Γ (b) Γ (1 + a− c) Γ

(
1
2a− b+ 1

2

)
Γ
(
1 + 1

2a− b− c
)

Γ
(
1
2a+ 1

2

)
Γ
(
1 + 1

2a− c
)

Γ (1 + a− b− c)
= I3(3.5)
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provided that <(b) > 0 and <(a− 2b) > 0,∫ 1

0

∫ y

0

za−2b(1− z)b−2 2F1

[
a, c;

1 + a− c; 1− z
]

dz dy = I3(3.6)

provided that <(b) > 1 and <(a− 2b) > 0,

∫ 1

0

∫ y

0

zc−1(1− z)c−e−1 2F1

[
a, 1− a;

e;
z

]
dz dy

(3.7)

=
π 21−2c Γ (c) Γ (e) Γ (1− e+ c)

Γ
(
1
2a+ 1

2e
)

Γ
(
1
2e−

1
2a+ 1

2

)
Γ
(
c− 1

2e+ 1
2a+ 1

2

)
Γ
(
c− 1

2e−
1
2a+ 1

) = I4

provided that <(c) > 0 and <(e) > 0,∫ 1

0

∫ y

0

zc−e(1− z)c−2 2F1

[
a, 1− a;

e;
1− z

]
dz dy = I4(3.8)

provided that <(c) > 1 and <(c− e+ 1) > 0.
Let us consider the first integral formula (3.1). Denoting the left-hand side of

(3.1) by I, expressing the hypergeometric function 2F1 as a series, changing the
order of integration and summation (which is easily seen to be justified due to
the uniform convergence of the involved series), evaluating the double integral
with the help of (1.9) and after some elementary simplifications, summing up
the series, we get

I =
{Γ(c)}2

Γ(2c)
3F2

[
a, b , c;

1
2 (a+ b+ 1) , 2c;

1

]
.(3.9)

It is easily seen that the 3F2 can be evaluated with the help of the Watson’s
summation formula (1.2) and after some simplifications, we arrive at the right-
hand side of (3.1).

Proceeding exactly in the same manner, the remaining integrals (3.2) to
(3.8) can also be evaluated by using appropriate summation theorems (1.2) to
(1.4).

We can now proceed to the proofs of our main results presented in Section
2. Let us start with the integral formula (3.1). If we differentiate n-times both
sides of (3.1) with respect to c, we get∫ 1

0

∫ y

0

zc−1(1− z)c−2 lnn
(
z − z2

)
2F1

[
a, b;

1
2 (a+ b+ 1);

z

]
dz dy

=
2 π Γ

(
1
2a+ 1

2b+ 1
2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+ 1

2

) · ∂n
∂cn

A,(3.10)

where A is the same as given in (2.2). We easily see that

∂

∂c
A = A

∂

∂c
lnA = A ·B,(3.11)
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where B is the same as given in (2.4). Now, from (3.11), we have

∂n

∂cn
A =

∂n−1

∂cn−1

{
∂

∂c
A

}
=

∂n−1

∂cn−1
{A ·B} .(3.12)

Using the well-known Leibniz theorem, this becomes

∂n

∂cn
A =

n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂

n−r−1

∂cn−r−1
B,(3.13)

where ∂n−r−1

∂cn−r−1B is the same as given in (2.6).

Finally, substituting the values of ∂n

∂cnA from (3.13) into (3.10), we obtain
the result asserted in (2.1).

In exactly the same way, the other seven results presented in Section 2 can
also be proved from the integrals (3.2) to (3.8) respectively.

4. Special cases

This section is devoted to present some interesting special cases of our eight
definite double integrals.

Setting a = b = 1 in (2.1) and appealing to the following well-known result
[4, p. 476, Equ. (147)]

2F1

[
1, 1;
3
2 ;

x

]
=

arcsin
√
x√

x(1− x)
,(4.1)

we find the following result∫ 1

0

∫ y

0

zc−
3
2 (1− z)c− 5

2 lnn
(
z − z2

)
arcsin

(√
z
)

dz dy

= π
3
2 ·

n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂

n−r−1

∂cn−r−1
B(4.2)

for <(c) > 3
2 and

A =
2−2c Γ

(
c− 1

2

)
Γ (c)

,(4.3)

∂

∂c
A = A ·B,(4.4)

B = −2 ln 2−Ψ(c) + Ψ

(
c− 1

2

)
,(4.5)

∂n

∂cn
A =

n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂

n−r−1

∂cn−r−1
B(4.6)
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and

∂n−r−1

∂cn−r−1
B = (−1)n−r(n− r − 1)!

{
ζ

(
n− r, c− 1

2

)
− ζ (n− r, c)

}
.(4.7)

If we let b = −a in (2.1) and using the following result [4, p. 459, Equ. (105)]

2F1

[
a, −a;

1
2 ;

x

]
= cos

(
2a arcsin

√
x
)
,(4.8)

we have ∫ 1

0

∫ y

0

zc−1(1− z)c−2 lnn
(
z − z2

)
cos
(
2a arcsin

(√
z
))

dz dy

=
2 π

3
2

Γ
(
1
2a+ 1

2

)
Γ
(
1
2 −

1
2a
) · n−1∑

r=0

(
n− 1

r

)
∂r

∂cr
A · ∂

n−r−1

∂cn−r−1
B(4.9)

for <(c) > 1 and

A =
2−2c Γ(c)Γ

(
c+ 1

2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c+ 1

2a+ 1
2

) ,(4.10)

∂

∂c
A = A ·B,(4.11)

B = −2 ln 2 + Ψ(c) + Ψ

(
c+

1

2

)
−Ψ

(
c− 1

2
a+

1

2

)
−Ψ

(
c+

1

2
a+

1

2

)
,

(4.12)

∂n

∂cn
A =

n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂

n−r−1

∂cn−r−1
B(4.13)

and

∂n−r−1

∂cn−r−1
B = (−1)n−r(n− r − 1)!

{
ζ(n− r, c) + ζ

(
n− r, c+

1

2

)
− ζ

(
n− r, c− 1

2
a+

1

2

)
− ζ

(
n− r, c+

1

2
a+

1

2

)}
.(4.14)

Letting b = −2m− 1 in (2.1) and replace a by a+ 2m+ 1, where m is zero
or a positive integer, we get the following elegant result

∫ 1

0

∫ y

0

zc−1(1− z)c−2 lnn
(
z − z2

)
2F1

[
−2m− 1, a+ 2m+ 1;

1
2 (a+ 1);

z

]
dz dy = 0

(4.15)

for <(c) > 1.
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Let us see a last special case. Putting a = c = 1
2 in (2.7) and making use of

the following result [4, p. 473, Equ. (75)]

2F1

[
1
2 ,

1
2 ;

1;
x

]
=

2

π
K
(√
x
)
,(4.16)

where K(x) holds for the complete elliptic integral of the first kind, we find∫ 1

0

∫ y

0

zb−1(1− z) 1
2 (a−b−1)−1 lnn

(
z√

1− z

)
K
(√
z
)

dz dy

=
π

3
2

2
{

Γ
(
3
4

)}2 · n−1∑
r=0

(
n− 1

r

)
∂r

∂br
A · ∂

n−r−1

∂bn−r−1
B,(4.17)

where

A =
Γ(b)

{
Γ
(
3
4 −

1
2b
)}2

Γ
(
1− 1

2b
)

Γ
(
1
2b+ 1

2

) ,(4.18)

∂

∂b
A = A ·B,(4.19)

B =Ψ(b)−Ψ

(
3

4
− 1

2
b

)
− 1

2
Ψ

(
1

2
b+

1

2

)
+

1

2
Ψ

(
1− 1

2
b

)
,(4.20)

∂n

∂bn
A =

n−1∑
r=0

(
n− 1

r

)
∂r

∂br
A · ∂

n−r−1

∂bn−r−1
B(4.21)

and

∂n−r−1

∂bn−r−1
B = (−1)n−r(n− r − 1)!

{
ζ(n− r, b)− (−1)n−r−1

2n−r−1
ζ

(
n− r, 3

4
− 1

2
b

)
− 1

2n−r
ζ

(
n− r, 1

2
b+

1

2

)
+

(−1)n−r−1

2n−r
ζ

(
n− r, 1− 1

2
b

)}
.(4.22)

Remark 1. From integrals (2.13) and (2.14), we can obtain special cases similar
to the ones given above. So, we prefer to avoid the details.

Remark 2. Similarly by using the special cases of 2F1 given above and also by
the following known results [4, p. 469, Equ. (17); p. 472, Equ. (65); p. 473,
Equ. (91); p. 473, Equ. (83)]

2F1

[
− 1

2 ,
3
2 ;

1;
x

]
=

2

π

[
K
(√
x
)
− K (

√
x)− E (

√
x)

x

]
,(4.23)

2F1

[
1
4 ,

3
4 ;

3
2 ;

x

]
=
√

2
[
1 +
√

1− x
]− 1

2 ,(4.24)

2F1

[
1
2 ,

3
2 ;

2;
x

]
=

4

π

(
K (
√
x)− E (

√
x)

x

)
(4.25)
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and

2F1

[
1, 1

2 ;
3
2 ;

x

]
=

1

2
√
x

ln

(
1 +
√
x

1−
√
x

)
,(4.26)

where E(x) denotes the complete elliptic integral of the second kind, various
other interesting special cases for the integrals (2.15), (2.21), (2.22) and (2.28)
can be obtained.
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