THE GEOMETRY OF $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$

Sung Guen Kim

Abstract

We classify the extreme, exposed and smooth symmetric 3linear forms of the unit ball of $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$, respectively.

1. Introduction

We write B_{E} for the closed unit ball of a real Banach space E and the dual space of E is denoted by $E^{*} . x \in B_{E}$ is called an extreme point of B_{E} if $y, z \in B_{E}$ with $x=\frac{1}{2}(y+z)$ implies $x=y=z . x \in B_{E}$ is called an exposed point of B_{E} if there is a $f \in E^{*}$ so that $f(x)=1=\|f\|$ and $f(y)<1$ for every $y \in B_{E} \backslash\{x\} . x \in B_{E}$ is called a smooth point of B_{E} if there is a unique $f \in E^{*}$ so that $f(x)=1=\|f\|$. It is easy to see that every exposed point of B_{E} is an extreme point. We denote by $\operatorname{ext} B_{E}, \exp B_{E}$ and $s m B_{E}$ the sets of extreme, exposed and smooth points of B_{E}, respectively. Let $n \in \mathbb{N}, n \geq 2$. A mapping $P: E \rightarrow \mathbb{R}$ is a continuous n-homogeneous polynomial if there exists a unique continuous symmetric n-linear form L on the product $E \times E$ such that $P(x)=L(x, \ldots, x)$ for every $x \in E$. We denote by $\mathcal{L}_{s}\left({ }^{n} E\right)$ the Banach space of all continuous symmetric n-linear forms on E endowed with the norm $\|L\|=\sup _{\left\|x_{j}\right\|=1,1 \leq j \leq n}\left|L\left(x_{1}, \ldots, x_{n}\right)\right| \cdot \mathcal{P}\left({ }^{n} E\right)$ denotes the Banach space of all continuous n-homogeneous polynomials from E into \mathbb{R} endowed with the norm $\|P\|=\sup _{\|x\|=1}|P(x)|$. For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [8].

In 1998, Choi et al. [3, 4] characterized the extreme points of the unit ball of $\mathcal{P}\left({ }^{2} l_{1}^{2}\right)$ and $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$. In 2007, the author [13] classified the exposed 2-homogeneous polynomials on $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(1 \leq p \leq \infty)$. Recently, the author $[15,17,21]$ classify the extreme, exposed, smooth points of the unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, where $d_{*}(1, w)^{2}=\mathbb{R}^{2}$ with the octagonal norm of weight w.

In 2009, the author [14] classified the extreme, exposed, smooth points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$. Recently, the author $[16,18-20]$ classify the extreme, exposed, smooth points of the unit balls of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$ and $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$.

Received January 17, 2017; Accepted March 28, 2017.
2010 Mathematics Subject Classification. Primary 46A22.
Key words and phrases. extreme points, exposed points, smooth points.

We refer to ([1-7], [9-28] and references therein) for some recent work about extremal properties of multilinear mappings and homogeneous polynomials on some classical Banach spaces. In this paper, we classify the extreme, exposed and smooth symmetric 3 -linear forms of the unit ball of $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$, respectively.

2. The extreme points of the unit ball of $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$

Let $T\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right)=a x_{1} y_{1} z_{1}+b x_{2} y_{2} z_{2}+c\left(x_{2} y_{1} z_{1}+y_{2} x_{1} z_{1}+\right.$ $\left.z_{2} x_{1} y_{1}\right)+d\left(x_{1} y_{2} z_{2}+y_{1} x_{2} z_{2}+z_{1} x_{2} y_{2}\right) \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$ for some $a, b, c, d \in \mathbb{R}$. For simplicity, we will denote T by (a, b, c, d).
Theorem 2.1. Let $T=(a, b, c, d) \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$. Then

$$
\|T\|=\max \{|a+3 d|+|b+3 c|,|a-d|+|b-c|\} .
$$

Proof. Since $\{(1,1),(1,-1),(-1,1),(-1,-1)\}$ is the set of all extreme points of the unit ball of l_{∞}^{2} and T is a symmetric 3 -linear form,

$$
\begin{aligned}
\|T\|= & \max \{|T((1,1),(1,1),(1,1))|,|T((1,-1),(1,1),(1,1))|, \\
& |T((1,-1),(1,-1),(1,1))|,|T((1,-1),(1,-1),(1,-1))|\} \\
= & \max \{|a+3 d|+|b+3 c|,|a-d|+|b-c|\} .
\end{aligned}
$$

Note that if $\|T\|=1$, then $|a| \leq 1,|b| \leq 1,|c| \leq \frac{1}{3},|d| \leq \frac{1}{3}$.
Theorem 2.2. Let $T=(a, b, c, d) \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$. Then $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$ if and only if $(b, a, d, c) \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$.
Proof. Let

$$
S\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right):=T\left(\left(x_{2}, x_{1}\right),\left(y_{2}, y_{1}\right),\left(z_{2}, z_{1}\right)\right) \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)
$$

Then $S=(b, a, d, c)$. Note that $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$ if and only if $(b, a, d, c) \in$ $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$.

Theorem 2.3

$$
\begin{aligned}
\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}= & \left\{ \pm(1,0,0,0), \pm(0,1,0,0), \pm\left(\frac{1}{2}, 0,0,-\frac{1}{2}\right), \pm\left(0, \frac{1}{2},-\frac{1}{2}, 0\right)\right. \\
& \left. \pm\left(\frac{1}{4},-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}\right), \pm\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right), \pm\left(\frac{3}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right), \pm\left(\frac{1}{4}, \frac{3}{4},-\frac{1}{4}, \frac{1}{4}\right)\right\}
\end{aligned}
$$

Proof. Let $T=(a, b, c, d) \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$.
Claim: $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(l^{3}{ }_{\infty}^{2}\right)}$ if and only if

$$
\begin{align*}
1 & =|T((1,1),(1,1),(1,1))|=|T((1,-1),(1,1),(1,1))| \\
& =|T((1,-1),(1,-1),(1,1))|=|T((1,-1),(1,-1),(1,-1))| . \tag{*}
\end{align*}
$$

$(\Leftarrow):$ Let $T_{1}=(a+\epsilon, b+\delta, c+\gamma, d+\rho), T_{2}=(a-\epsilon, b-\delta, c-\gamma, d-\rho) \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$ be such that $\left\|T_{1}\right\|=\left\|T_{2}\right\|=1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since, for $j=1,2$,

$$
\begin{aligned}
& 1 \geq\left|T_{j}((1,1),(1,1),(1,1))\right| \\
& 1 \geq\left|T_{j}((1,-1),(1,1),(1,1))\right| \\
& 1 \geq\left|T_{j}((1,-1),(1,-1),(1,1))\right|
\end{aligned}
$$

$$
1 \geq\left|T_{j}((1,-1),(1,-1),(1,-1))\right|
$$

we have

$$
\begin{aligned}
& 0=\epsilon+\delta+3 \gamma+3 \rho, \\
& 0=\epsilon-\delta-3 \gamma+3 \rho, \\
& 0=\epsilon+\delta-\gamma-\rho, \\
& 0=\epsilon-\delta+\gamma-\rho,
\end{aligned}
$$

which show that $0=\epsilon=\delta=\gamma=\rho$. Hence, T is extreme.
(\Rightarrow) : Otherwise. Then four cases may happen as follows:
(Case 1) $|T((1,1),(1,1),(1,1))|<1$ or
(Case 2) $|T((1,-1),(1,1),(1,1))|<1$ or
(Case 3) $|T((1,-1),(1,-1),(1,1))|<1$ or
(Case 4) $|T((1,-1),(1,-1),(1,-1))|<1$.
Case 1: $|T((1,1),(1,1),(1,1))|<1$
Without loss of generality, we may assume that

$$
\begin{aligned}
1 & =|T((1,-1),(1,1),(1,1))| \\
& =|T((1,-1),(1,-1),(1,1))| \\
& =|T((1,-1),(1,-1),(1,-1))| .
\end{aligned}
$$

Let $n \in \mathbb{N}$ be such that $a+b+3 c+3 d+\frac{8}{n}<1$. Let $T_{1}=\left(a+\frac{1}{n}, b+\right.$ $\left.\frac{1}{n}, c+\frac{1}{n}, d+\frac{1}{n}\right), T_{2}=\left(a-\frac{1}{n}, b-\frac{1}{n}, c-\frac{1}{n}, d-\frac{1}{n}\right) \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$. By Theorem 2.1, $\left\|T_{1}\right\|=\left\|T_{2}\right\|=1$, which shows that T is not extreme. It is a contradiction. Similar to the Case 1, if (Case 2) or (Case 3) or (Case 4) is true, then we may show that T is not extreme. It is a contradiction. Therefore, we have shown the Claim. By $(*)$, we complete the proof.

3. The exposed points of the unit ball of $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$

Theorem 3.1. Let $f \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)^{*}$ and $\alpha=f\left(x_{1} y_{1} z_{1}\right), \beta=f\left(x_{2} y_{2} z_{2}\right), \gamma=$ $f\left(x_{2} y_{1} z_{1}+y_{2} x_{1} z_{1}+z_{2} x_{1} y_{1}\right), \delta=f\left(x_{1} y_{2} z_{2}+y_{1} x_{2} z_{2}+z_{1} x_{2} y_{2}\right)$. Then

$$
\begin{gathered}
\|f\|=\max \left\{|\alpha|,|\beta|, \frac{1}{2}|\alpha-\delta|, \frac{1}{2}|\beta-\gamma|, \frac{1}{4}(|\alpha+\delta|+|3 \beta-\gamma|),\right. \\
\left.\frac{1}{4}(|3 \alpha-\delta|+|\beta+\gamma|)\right\} .
\end{gathered}
$$

Proof. It follows from Theorem 2.3 and the fact that

$$
\|f\|=\max _{T \in \text { ext } B_{\mathcal{L}\left(l^{2} l_{\infty}^{2}\right)}}|f(T)| .
$$

Theorem 3.2 ([19, Theorem 2.3]). Let E be a real Banach space such that ext B_{E} is finite. Suppose that $x \in$ ext B_{E} satisfies that there exists an $f \in E^{*}$ with $f(x)=1=\|f\|$ and $|f(y)|<1$ for every $y \in \operatorname{ext} B_{E} \backslash\{ \pm x\}$. Then $x \in$ $\exp B_{E}$.
Theorem 3.3. Let $T=(a, b, c, d) \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$. Then $T \in \exp B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$ if and only if $(b, a, d, c) \in \exp B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$.

Proof. Let

$$
S\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right):=T\left(\left(x_{2}, x_{1}\right),\left(y_{2}, y_{1}\right),\left(z_{2}, z_{1}\right)\right) \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right) .
$$

Then $S=(b, a, d, c)$. Note that $T \in \exp B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$ if and only if $(b, a, d, c) \in$ $\exp B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$.

Now we are in position to describe all the exposed points of the unit ball of $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$.

Theorem 3.4. $\exp B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}=\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$.
Proof. It is enough to show that $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)} \subset \exp B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$.
Claim: $T=(1,0,0,0)$ is exposed.
Let $f \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)^{*}$ be such that $\alpha=1,0=\beta=\delta=\gamma$. Then $f(T)=$ $1,|f(S)|<1$ for every $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)} \backslash\{ \pm T\}$. By Theorem 3.2, T is exposed. By Theorem 3.3, $(0,1,0,0)$ is exposed.

Claim: $T=\left(0, \frac{1}{2},-\frac{1}{2}, 0\right)$ is exposed.
Let $f \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)^{*}$ be such that $\alpha=0=\beta=\delta, \gamma=-2$. Then $f(T)=$
$1,|f(S)|<1$ for every $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)} \backslash\{ \pm T\}$. By Theorem 3.2, T is exposed.
By Theorem 3.3, ($\left.\frac{1}{2}, 0,0,-\frac{1}{2}\right)$ is exposed.
Claim: $T=\left(\frac{1}{4},-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}\right)$ is exposed.
Let $f \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)^{*}$ be such that $\alpha=\frac{1}{2}=-\beta, \gamma=1=\delta$. Then $f(T)=$ $1,|f(S)|<1$ for every $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)} \backslash\{ \pm T\}$. By Theorem 3.2, T is exposed. By Theorem 3.3, $\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ is exposed.

Claim: $T=\left(\frac{1}{4}, \frac{3}{4},-\frac{1}{4}, \frac{1}{4}\right)$ is exposed.
Let $f \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)^{*}$ be such that $\alpha=\frac{1}{2}=\beta,-\gamma=1=\delta$. Then $f(T)=$ $1,|f(S)|<1$ for every $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)} \backslash\{ \pm T\}$. By Theorem 3.2, T is exposed. By Theorem 3.3, $\left(\frac{3}{4}, \frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right)$ is exposed.

4. The smooth points of the unit ball of $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$

Theorem 4.1. Let $T=(a, b, c, d) \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$. Then $T \in s m B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$ if and only if

$$
\begin{aligned}
& (|T((1,1),(1,1),(1,1))|=1,|T((1,-1),(1,1),(1,1))|<1, \\
& |T((1,-1),(1,-1),(1,1))|<1,|T((1,-1),(1,-1),(1,-1))|<1) \text { or } \\
& (|T((1,1),(1,1),(1,1))|<1,|T((1,-1),(1,1),(1,1))|=1 \text {, } \\
& |T((1,-1),(1,-1),(1,1))|<1,|T((1,-1),(1,-1),(1,-1))|<1) \text { or } \\
& (|T((1,1),(1,1),(1,1))|<1,|T((1,-1),(1,1),(1,1))|<1 \text {, } \\
& |T((1,-1),(1,-1),(1,1))|=1,|T((1,-1),(1,-1),(1,-1))|<1) \text { or } \\
& (|T((1,1),(1,1),(1,1))|<1,|T((1,-1),(1,1),(1,1))|<1, \mid T((1,-1) \text {, } \\
& (1,-1),(1,1))|<1,|T((1,-1),(1,-1),(1,-1))|=1) \text {. }
\end{aligned}
$$

Proof.
Case $1:|T((1,1),(1,1),(1,1))|=1,|T((1,-1),(1,1),(1,1))|<1$,

$$
|T((1,-1),(1,-1),(1,1))|<1,|T((1,-1),(1,-1),(1,-1))|<1
$$

Let $l:=T((1,1),(1,1),(1,1))=a+b+3 c+3 d$ for some $l \in\{1,-1\}$. Let $f \in$ $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)^{*}$ be such that $f(T)=1=\|f\|$ with $\alpha=f\left(x_{1} y_{1} z_{1}\right), \beta=f\left(x_{2} y_{2} z_{2}\right), \gamma=$ $f\left(x_{2} y_{1} z_{1}+y_{2} x_{1} z_{1}+z_{2} x_{1} y_{1}\right), \delta=f\left(x_{1} y_{2} z_{2}+y_{1} x_{2} z_{2}+z_{1} x_{2} y_{2}\right)$. We will show that $\alpha=l=\beta, \gamma=3 l=\delta$. Let $n \in \mathbb{N}$ be such that

$$
|a+3 d-b-3 c|+\frac{6}{n}<1,|a-d+b-c|+\frac{4}{3 n}<1,|a-d-b+c|+\frac{2}{n}<1
$$

By Theorem 2.1,

$$
1=\left\|\left(a \pm \frac{1}{n}, b \mp \frac{1}{n}, c, d\right)\right\|=\left\|\left(a, b, c \pm \frac{1}{n}, d \mp \frac{1}{n}\right)\right\|=\left\|\left(a \pm \frac{1}{n}, b, c \mp \frac{1}{3 n}, d\right)\right\| .
$$

Since

$$
1 \geq\left|f\left(\left(a \pm \frac{1}{n}, b \mp \frac{1}{n}, c, d\right)\right)\right|=1 \pm \frac{1}{n}(\alpha-\beta)
$$

so, $\alpha=\beta$. Since

$$
1 \geq\left|f\left(\left(a, b, c \pm \frac{1}{n}, d \mp \frac{1}{n}\right)\right)\right|=1 \pm \frac{1}{n}(\gamma-\delta)
$$

so, $\gamma=\delta$. Since

$$
1 \geq\left|f\left(\left(a \pm \frac{1}{n}, b, c \mp \frac{1}{3 n}, d\right)\right)\right|=1 \pm \frac{1}{n}\left(\alpha-\frac{1}{3} \gamma\right)
$$

so, $\alpha=\frac{1}{3} \gamma$. Therefore,

$$
1=f(T)=a \alpha+b \beta+c \gamma+d \delta=(a+b+3 c+3 d) \alpha=l \alpha
$$

hence, $\alpha=l=\beta$, $\gamma=3 l=\delta$. Therefore, $T \in s m B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$.
Case $2:|T((1,1),(1,1),(1,1))|<1,|T((1,-1),(1,1),(1,1))|=1$,

$$
|T((1,-1),(1,-1),(1,1))|<1,|T((1,-1),(1,-1),(1,-1))|<1 .
$$

Let $f \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)^{*}$ be such that $f(T)=1=\|f\|$ with $\alpha=f\left(x_{1} y_{1} z_{1}\right), \beta=$ $f\left(x_{2} y_{2} z_{2}\right), \gamma=f\left(x_{2} y_{1} z_{1}+y_{2} x_{1} z_{1}+z_{2} x_{1} y_{1}\right), \delta=f\left(x_{1} y_{2} z_{2}+y_{1} x_{2} z_{2}+z_{1} x_{2} y_{2}\right)$.

By the similar argument in the Case 1, we show that $\alpha=l=-\beta=\gamma=-\delta$.
Therefore, $T \in s m B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$.
Case $3:|T((1,1),(1,1),(1,1))|<1,|T((1,-1),(1,1),(1,1))|<1$,

$$
|T((1,-1),(1,-1),(1,1))|=1,|T((1,-1),(1,-1),(1,-1))|<1
$$

Let $f \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)^{*}$ be such that $f(T)=1=\|f\|$ with $\alpha=f\left(x_{1} y_{1} z_{1}\right), \beta=$ $f\left(x_{2} y_{2} z_{2}\right), \gamma=f\left(x_{2} y_{1} z_{1}+y_{2} x_{1} z_{1}+z_{2} x_{1} y_{1}\right), \delta=f\left(x_{1} y_{2} z_{2}+y_{1} x_{2} z_{2}+z_{1} x_{2} y_{2}\right)$. By the similar argument in the Case 1, we show that $\alpha=l=\beta=-\gamma=-\delta$. Therefore, $T \in s m B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$.

$$
\text { Case } 4:|T((1,1),(1,1),(1,1))|<1,|T((1,-1),(1,1),(1,1))|<1
$$

$$
|T((1,-1),(1,-1),(1,1))|<1,|T((1,-1),(1,-1),(1,-1))|=1
$$

Let $f \in \mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)^{*}$ be such that $f(T)=1=\|f\|$ with $\alpha=f\left(x_{1} y_{1} z_{1}\right), \beta=$ $f\left(x_{2} y_{2} z_{2}\right), \gamma=f\left(x_{2} y_{1} z_{1}+y_{2} x_{1} z_{1}+z_{2} x_{1} y_{1}\right), \delta=f\left(x_{1} y_{2} z_{2}+y_{1} x_{2} z_{2}+z_{1} x_{2} y_{2}\right)$.

By the similar argument in the Case 1, we show that $\alpha=l=-\beta, \gamma=-3 l=$ $-\delta$. Therefore, $T \in s m B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$.

References

[1] R. M. Aron, Y. S. Choi, S. G. Kim, and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math. 45 (2001), no. 1, 25-39.
[2] W. Cavalcante and D. Pellegrino, Geometry of the closed unit ball of the space of bilinear forms on l_{∞}^{2}, arXiv:1603.01535v2.
[3] Y. S. Choi, H. Ki, and S. G. Kim, Extreme polynomials and multilinear forms on l_{1}, J. Math. Anal. Appl. 228 (1998), no. 2, 467-482.
[4] Y. S. Choi and S. G. Kim, The unit ball of $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$, Arch. Math. (Basel) 71 (1998), no. 6, 472-480.
[5] , Extreme polynomials on c_{0}, Indian J. Pure Appl. Math. 29 (1998), no. 10, 983-989.
[6] , Smooth points of the unit ball of the space $\mathcal{P}\left({ }^{2} l_{1}\right)$, Results Math. 36 (1999), no. 1-2, 26-33.
[7] , Exposed points of the unit balls of the spaces $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(p=1,2, \infty)$, Indian J. Pure Appl. Math. 35 (2004), no. 1, 37-41.
[8] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.
[9] , Extreme integral polynomials on a complex Banach space, Math. Scand. 92 (2003), no. 1, 129-140.
[10] D. Diniz, G. A. Munoz-Fernandez, D. Pellegrino, and J. B. Seoane-Sepulveda, Lower bounds for the constants in the Bohnenblust-Hill inequality: the case of real scalars, Proc. Amer. Math. Soc. 142 (2014), no. 2, 575-580.
[11] B. C. Grecu, Geometry of 2-homogeneous polynomials on l_{p} spaces, $1<p<\infty$, J. Math. Anal. Appl. 273 (2002), no. 2, 262-282.
[12] B. C. Grecu, G. A. Munoz-Fernandez, and J. B. Seoane-Sepulveda, Unconditional constants and polynomial inequalities, J. Approx. Theory 161 (2009), no. 2, 706-722.
[13] S. G. Kim, Exposed 2-homogeneous polynomials on $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(1 \leq p \leq \infty)$, Math. Proc. R. Ir. Acad. 107A (2007), no. 2, 123-129.
[14] , The unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, Extracta Math. 24 (2009), no. 1, 17-29.
[15] , The unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Math. Proc. Royal Irish Acad. 111A (2011), no. 2, 79-94.
[16] \qquad , The unit ball of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 53 (2013), no. 2, 295-306.
[17] \qquad , Smooth polynomials of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Math. Proc. Royal Irish Acad. 113A (2013), no. 1, 45-58.
[18] , Extreme bilinear forms of $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 53 (2013), no. 4, 625-638.
[19] , Exposed symmetric bilinear forms of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 54 (2014), no. 3, 341-347.
[20] , Exposed bilinear forms of $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 55 (2015), no. 1, 119-126.
[21] , Exposed 2-homogeneous polynomials on the 2-dimensional real predual of Lorentz sequence space, Mediterr. J. Math. 13 (2016), no. 5, 2827-2839.
[22] , The geometry of $\mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$, to appear in Kyungpook Math. J.
[23] , The unit ball of $\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)$, to appear in Comment. Math. Prace Mat. 57 (2017).
[24] S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003), no. 2, 449-453.
[25] J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl. 305 (2005), 219-226.
[26] G. A. Muñoz-Fernandez, S. Revesz, and J. B. Seoane-Sepulveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (2009), no. 1, 147-160.
[27] G. A. Muñoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2008), no. 2, 1069-1087.
[28] R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (1998), no. 2, 698-711.

Sung Guen Kim
Department of Mathematics
Kyungpook National University
Daegu 702-701, Korea
E-mail address: sgk317@knu.ac.kr

