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SOME RESULTS OF THE NEW ITERATIVE SCHEME IN

HYPERBOLIC SPACE

Metin Başarir and Aynur Şahin

Abstract. In this paper, we consider the new faster iterative scheme due

to Sintunavarat and Pitea ([32]) for further investigation and we prove
its strong and 4-convergence theorems, data dependence and stability

results in hyperbolic space. Our results extend, improve and general-
ize several recent results in CAT(0) space and uniformly convex Banach

space.

1. Introduction

Let (X, d) be a metric space, and let T : X → X be a mapping. A point
x ∈ X is called a fixed point of T if Tx = x. Denote the set of fixed points of
T by F (T ). The mapping T is

(i) an a-contraction if

(1) d(Tx, Ty) ≤ ad(x, y) for all x, y ∈ X,
where 0 ≤ a < 1,

(ii) Kannan mapping [17] if there exists b ∈ (0, 1
2 ) such that

(2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)] for all x, y ∈ X,
(iii) Chatterjea mapping [9] if there exists c ∈ (0, 1

2 ) such that

(3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)] for all x, y ∈ X.
If the constant a in (1) is equal to 1, then T is called a nonexpansive mapping.

Combining the definitions (1)-(3), Zamfirescu [36] proved the following im-
portant result.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X be
a Zamfirescu mapping, i.e., there exist the real numbers a, b and c satisfying
0 ≤ a < 1 and b, c ∈ (0, 1

2 ) such that for each x, y ∈ X, at least one of the
following conditions holds:

(Z1) d(Tx, Ty) ≤ ad(x, y);
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(Z2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)];
(Z3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

Then T has unique fixed point p and the Picard iterative sequence {xn} defined
by x0 ∈ X,xn+1 = Txn, n ≥ 0, converges to p.

Berinde [4] introduced a new class of mappings on a metric space (X, d)
satisfying

(4) d(Tx, Ty) ≤ ad(x, y) + Ld(x, Tx) for all x, y ∈ X,
where 0 ≤ a < 1 and L ≥ 0. He also showed that the class of nonlinear
mappings satisfying (4) is wider than the class of Zamfirescu mappings.

It is known, see Osilike [26], that the mappings satisfying (4) need not have
a fixed point but, if F (T ) 6= ∅, then F (T ) is a singleton.

Sintunavarat and Pitea [32] introduced a new iterative scheme in a Banach
space as follows: For an arbitrary x0 ∈ K, the sequence {xn} is defined by

(5)


yn = (1− βn)xn + βnTxn,

zn = (1− γn)xn + γnyn,

xn+1 = (1− αn)Tzn + αnTyn, ∀n ≥ 0,

where {αn} , {βn} and {γn} are real sequences in [0, 1]. They proved that the
iterative scheme (5) is faster than the iterative schemes of Mann [25], Ishikawa
[16] and Agarwal et al. [1]. It is worth mentioning that this iterative scheme
is reduced to the S-iterative scheme of Agarwal et al. [1] when γn = 0 for all
n ≥ 0.

In this paper, we prove the strong and ∆-convergence theorems of the iter-
ative scheme (5) for a finite family of nonexpansive mappings in a uniformly
convex hyperbolic space. Furthermore, we give the data dependence and stabil-
ity results of the iterative scheme (5) for a mapping satisfying (4) in a hyperbolic
space.

2. Preliminaries and lemmas

Throughout this paper, we study in the setting of hyperbolic space intro-
duced by Kohlenbach [21], defined below, which is more restrictive than the
hyperbolic type introduced in [11] and more general than the concept of hy-
perbolic space in [27].

A hyperbolic space is a triple (X, d,W ) where (X, d) is a metric space and
W : X ×X × [0, 1]→ X is a mapping such that

(W1) d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y),
(W2) d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2| d(x, y),
(W3) W (x, y, λ) = W (y, x, (1− λ)),
(W4) d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w)

for all x, y, z, w ∈ X and λ, λ1, λ2 ∈ [0, 1].
If a space satisfies only (W1), it coincides with the convex metric space

introduced by Takahashi [34]. A subset K of a hyperbolic space X is convex
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if W (x, y, λ) ∈ K for all x, y ∈ K and λ ∈ [0, 1]. The class of hyperbolic
spaces contains all normed linear spaces and convex subsets thereof, R-trees,
the Hilbert ball with the hyperbolic metric (see [12]), Cartesian products of
Hilbert balls, Hadamard manifolds and CAT(0) spaces (see [6]), as a special
case.

A hyperbolic space (X, d,W ) is said to be uniformly convex [31] if for all
u, x, y ∈ X, r > 0 and ε ∈ (0, 2], there exists δ ∈ (0, 1] such that

d

(
W

(
x, y,

1

2

)
, u

)
≤ (1− δ)r

whenever d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr.
A mapping η : (0,∞) × (0, 2] → (0, 1] providing such δ = η(r, ε) for given

r > 0 and ε ∈ (0, 2] is called modulus of uniform convexity. We call η monotone
if it decreases with r (for a fixed ε).

Let K be a nonempty subset of a metric space X, and let {xn} be a bounded
sequence in K. For x ∈ X, define r(x, {xn}) = lim supn→∞ d(x, xn). The
asymptotic radius of the sequence {xn} in K denoted by r(K, {xn}) is defined
by r(K, {xn}) = inf {r(x, {xn}) : x ∈ K}. A point z is called an asymptotic
center of the sequence {xn} in K if r (z, {xn}) = r (K, {xn}). The set of all
asymptotic center of the sequence {xn} in K is denoted by A(K, {xn}). The
asymptotic radius and asymptotic center of the sequence {xn} with respect to
whole space are denoted by r({xn}) and A({xn}), respectively.

It is known that uniformly convex Banach spaces and even CAT(0) spaces
enjoy the property that bounded sequences have unique asymptotic center with
respect to closed convex subsets. In case of hyperbolic space, we have the
following result.

Lemma 2.1 ([23, Proposition 3.3]). Let (X, d,W ) be a complete uniformly
convex hyperbolic space with monotone modulus of uniform convexity η. Then
every bounded sequence {xn} in X has unique asymptotic center with respect
to any nonempty closed convex subset K of X.

The concept of 4-convergence, introduced by Kuczumow [22] and Lim [24]
independently several years ago, is shown in CAT(0) space to behave similarly
as the weak convergence in Banach space.

Definition. A bounded sequence {xn} in X is said to be 4-convergent to
x ∈ X if x is the unique asymptotic center of {un} for every subsequence {un}
of {xn}. In this case, we write xn

∆→ x and call x as 4-limit of {xn} .

It is well known that one of the fundamental and celebrated results in the the-
ory of nonexpansive mappings is Browder’s demiclosedness principle [7] which
states that if K is a nonempty closed convex subset of a uniformly convex
Banach space X and T : K → X is a nonexpansive mapping, then I − T is
demiclosed at 0, that is, for any sequence {xn} in K if xn → x weakly and
(I − T )xn → 0 strongly, then (I − T )x = 0. Fukhar-ud-din and Khamsi [10]
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proved the demiclosedness principle for nonexpansive mappings in a hyperbolic
space as follows.

Lemma 2.2 ([10, Lemma 4.1]). Let K be a nonempty closed convex subset of a
complete uniformly convex hyperbolic space X. Let T : K → K be a nonexpan-
sive mapping. Let {xn} be a sequence in K such that limn→∞ d(xn, Txn) = 0.
If x ∈ K is the asymptotic center of {xn} with respect to K, then x is a fixed

point of T . In particular, if {xn} is a sequence in K such that xn
∆→ x and

limn→∞ d(xn, Txn) = 0, then x ∈ F (T ).

In the sequel, we shall need the following results.

Lemma 2.3 ([19, Lemma 2.5]). Let (X, d,W ) be a uniformly convex hyperbolic
space with monotone modulus of uniform convexity η. Let x ∈ X and {αn} be
a sequence in [a, b] for some a, b ∈ (0, 1). If {xn} and {yn} are sequences in X
such that

lim sup
n→∞

d (xn, x) ≤ r, lim sup
n→∞

d (yn, x) ≤ r, lim
n→∞

d (W (xn, yn, αn) , x) = r

for some r ≥ 0, then

lim
n→∞

d (xn, yn) = 0.

Lemma 2.4 ([33]). Let {an} be a non-negative sequence for which one assumes
that there exists an n0 ∈ N such that, for all n ≥ n0,

an+1 ≤ (1− rn)an + rntn

is satisfied, where rn ∈ (0, 1) for all n ∈ N,
∑∞

n=0 rn = ∞ and tn ≥ 0,∀n ∈ N.
Then the following holds:

0 ≤ lim sup
n→∞

an ≤ lim sup
n→∞

tn.

3. Some strong and ∆-convergence theorems

In the sequel, we denote {1, 2, . . . , N} by I, and we assume that F =
∩Ni=1F (Ti) 6= ∅. First, we define the iterative scheme (5) for a finite family
of nonexpansive mappings in a hyperbolic space as follows.

(6)


yn = W (xn, Tnxn, βn),

zn = W (xn, yn, γn),

xn+1 = W (Tnzn, Tnyn, αn), ∀n ≥ 0,

where Tn = Tn(modN), {αn} and {βn} are real sequences in [a, b] with a, b ∈
(0, 1) and the sequence {γn} is in [0, 1].

We prove the ∆-convergence theorem of the iterative sequence {xn} defined
by (6) for a finite family of nonexpansive mappings in a hyperbolic space.
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Theorem 3.1. Let K be a nonempty closed convex subset of a complete uni-
formly convex hyperbolic space X with the modulus of uniform convexity η, and
let {Ti : i ∈ I} be a finite family of nonexpansive self mappings on K. Then
the sequence {xn} defined by (6), is ∆-convergent to a point in F .

Proof. We divide our proof into three steps.
Step 1. First we prove that for each p ∈ F,

(7) lim
n→∞

d(xn, p) exists.

By using (6), we get

d(xn+1, p) = d(W (Tnzn, Tnyn, αn), p)

≤ (1− αn)d(Tnzn, p) + αnd(Tnyn, p)

≤ (1− αn)d(zn, p) + αnd(yn, p).(8)

Using (6) again, we obtain

d(yn, p) = d(W (xn, Tnxn, βn), p)

≤ (1− βn)d(xn, p) + βnd(Tnxn, p)

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p)(9)

and

d(zn, p) = d(W (xn, yn, γn), p)

≤ (1− γn)d(xn, p) + γnd(yn, p)

≤ d(xn, p).(10)

From (8), (9) and (10), we have

(11) d(xn+1, p) ≤ d(xn, p).

This inequality guarantees that the sequence {d(xn, p)} is non-increasing and
bounded below, and so limn→∞ d(xn, p) exists for any p ∈ F .

Step 2. Next we prove that

(12) lim
n→∞

d(xn, Tlxn) = 0 for each l = 1, 2, . . . , N.

It follows from (7) that limn→∞ d(xn, p) exists for each p ∈ F . We may assume
that

(13) lim
n→∞

d(xn, p) = r ≥ 0.

The case r = 0 is trivial. Next, we deal with the case r > 0. Taking lim sup on
both sides of the inequalities (9) and (10) and using (13), we have

(14) lim sup
n→∞

d(yn, p) ≤ r

and
lim sup
n→∞

d(zn, p) ≤ r,
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respectively. Since Tn is nonexpansive for all n = 1, 2, . . ., so

lim sup
n→∞

d(Tnyn, p) ≤ r and lim sup
n→∞

d(Tnzn, p) ≤ r.

Moreover,

r = lim
n→∞

d(xn+1, p) = lim
n→∞

d(W (Tnzn, Tnyn, αn), p)

gives, by Lemma 2.3, that

(15) lim
n→∞

d(Tnzn, Tnyn) = 0.

By (8) and (10), we have

d(xn+1, p) ≤ (1− αn)d(zn, p) + αnd(yn, p)

≤ (1− αn)d(xn, p) + αnd(yn, p).

This gives that

αnd(xn, p) ≤ d(xn, p) + αnd(yn, p)− d(xn+1, p)

or

d(xn, p) ≤ d(yn, p) +
1

αn
[d(xn, p)− d(xn+1, p)]

≤ d(yn, p) +
1

a
[d(xn, p)− d(xn+1, p)] .

This implies

r ≤ lim inf
n→∞

d(yn, p).

Reading it together with (14), we get

(16) r = lim
n→∞

d(yn, p) = lim
n→∞

d(W (xn, Tnxn, βn), p).

Also

d(Tnxn, p) ≤ d(xn, p)

for all n = 1, 2, . . ., so

(17) lim sup
n→∞

d(Tnxn, p) ≤ r.

With the help of (13), (16), (17) and Lemma 2.3, we have

(18) lim
n→∞

d(xn, Tnxn) = 0.

Now

d(yn, xn) = d(W (xn, Tnxn, βn), xn)

≤ βnd(xn, Tnxn)

implies by (18) that

(19) lim
n→∞

d(yn, xn) = 0.
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Using (18) and (19), we obtain

d(Tnyn, xn) ≤ d(Tnyn, Tnxn) + d(Tnxn, xn)

≤ d(yn, xn) + d(Tnxn, xn)

→ 0 as n→∞.(20)

Next,

d(xn+1, xn) = d(W (Tnzn, Tnyn, αn), xn)

≤ (1− αn)d(Tnzn, xn) + αnd(Tnyn, xn)

≤ (1− αn)[d(Tnzn, Tnyn) + d(Tnyn, xn)] + αnd(Tnyn, xn)

= (1− αn)d(Tnzn, Tnyn) + d(Tnyn, xn)

gives by (15) and (20) that

lim
n→∞

d(xn+1, xn) = 0.

This implies that

lim
n→∞

d(xn, xn+l) = 0 for each l ∈ I.

Further, we observe that

d(xn, Tn+lxn) ≤ d(xn, xn+l) + d(xn+l, Tn+lxn+l) + d(Tn+lxn+l, Tn+lxn)

≤ 2d(xn, xn+l) + d(xn+l, Tn+lxn+l).

Therefore
lim
n→∞

d(xn, Tn+lxn) = 0 for each l ∈ I.

This implies that limn→∞ d(xn, Tlxn) = 0 for each l ∈ I.
Step 3. Now we are in a position to prove the ∆-convergence case of {xn}.

It follows from (7) that {xn} is bounded. Therefore by Lemma 2.1, {xn} has
unique asymptotic center A(K, {xn}) = {x} . Let {un} be any subsequence
of {xn} with A(K, {un}) = {u} . By (12), we have limn→∞ d(un, Tlun) = 0
for each l = 1, 2, . . . , N. Then it follows from Lemma 2.2 that u ∈ F . By
the uniqueness of asymptotic center, we get x = u ∈ F . It implies that the
sequence {xn} is ∆-convergent to x ∈ F . The proof is completed. �

By taking Ti = T for all i ∈ I in Theorem 3.1, we get the following corollary,
yet it is new in the literature.

Corollary 3.2. Let K be a nonempty closed convex subset of a complete uni-
formly convex hyperbolic space X with the modulus of uniform convexity η, and
let T : K → K be a nonexpansive mapping with F (T ) 6= ∅. Then the sequence
{xn} defined by (5), is ∆-convergent to a fixed point of T .

Recall that a sequence {xn} in a metric space X is said to be Fejér monotone
with respect to K (a subset of X) if d(xn+1, p) ≤ d(xn, p) for all p ∈ K and
n ≥ 1. A mapping T : K → K is semi-compact if any bounded sequence {xn}
satisfying d(xn, Txn)→ 0 as n→∞, has a strongly convergent subsequence.
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Khan et al. [19] defined the Condition (A) for a finite family of mappings as
follows.

Let f be a non-decreasing self mapping on [0,∞) with f(0) = 0 and f(t) > 0
for all t ∈ (0,∞), and let d(x,H) = inf{d(x, y) : y ∈ H}. Then a family
{Ti : i ∈ I} of self mappings on K with F 6= ∅, satisfies Condition (A) if

d(x, Tx) ≥ f(d(x, F )) for all x ∈ K,

holds for at least one T ∈ {Ti : i ∈ I} or

max
i∈I

d(x, Tix) ≥ f(d(x, F )) for all x ∈ K,

holds.
For further development, we need the following technical result.

Lemma 3.3 ([2]). Let K be a nonempty closed subset of a complete metric
space (X, d), and let {xn} be Fejér monotone with respect to K. Then {xn}
converges strongly to some p ∈ K if and only if limn→∞ d(xn,K) = 0.

Lemma 3.4. Let K be a nonempty closed convex subset of a complete uni-
formly convex hyperbolic space X with the modulus of uniform convexity η, and
let {Ti : i ∈ I} be a finite family of nonexpansive self mappings on K. Then
the sequence {xn} defined by (6) converges strongly to p ∈ F if and only if
limn→∞ d(xn, F ) = 0.

Proof. It follows from (11), the sequence {xn} is Fejér monotone with respect
to F and limn→∞ d(xn, F ) exists for all p ∈ F . Hence, the result follows from
Lemma 3.3. �

We now establish the strong convergence theorems of the iterative scheme
(6) based on Lemma 3.4.

Theorem 3.5. Let X,K, {Ti : i ∈ I} and {xn} satisfy the hypotheses of Theo-
rem 3.1. Then the sequence {xn} converges strongly to some p ∈ F if and only
if lim infn→∞ d(xn, F ) = 0.

Proof. If {xn} converges to p ∈ F, then limn→∞ d(xn, p) = 0. Since 0 ≤
d(xn, F ) ≤ d(xn, p), we have lim infn→∞ d(xn, F ) = 0. Conversely, suppose
that lim infn→∞ d(xn, F ) = 0. It follows from (7) that limn→∞ d(xn, F ) exists.
Thus by hypothesis, we get limn→∞ d(xn, F ) = 0. Therefore, Lemma 3.4 implies
that {xn} converges strongly to a point p in F . �

Remark 3.6. In Theorem 3.5, the condition lim infn→∞ d(xn, F ) = 0 may be
replaced with lim supn→∞ d(xn, F ) = 0.

Theorem 3.7. Under the assumptions of Theorem 3.1, if {Ti : i ∈ I} satisfies
Condition (A), then the sequence {xn} defined by (6) converges strongly to a
point in F .
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Proof. It follows from (7) that limn→∞ d(xn, F ) exists for all p ∈ F . Also,
by (12), we have limn→∞ d(xn, Tlxn) = 0 for each l ∈ I. So Condition (A)
guarantees that limn→∞ f(d(xn, F )) = 0. Since f is a non-decreasing function
with f(0) = 0 and f(r) > 0,∀r > 0, we have limn→∞ d(xn, F ) = 0. Therefore,
Lemma 3.4 implies that {xn} converges strongly to a point p in F . �

Note that the Condition (A) is weaker than both of the compactness of K
and the semi-compactness of nonexpansive mappings {Ti : i ∈ I} (see [30])
therefore we already have the following result.

Theorem 3.8. Under the assumptions of Theorem 3.1, if either K is compact
or one of the mappings in {Ti : i ∈ I} is semi-compact, then the sequence {xn}
defined by (6) converges strongly to a point in F .

Remark 3.9. (1) The strong convergence results using the iterative scheme (5)
can now be obtained as corollaries from Theorems 3.5, 3.7, 3.8.

(2) Our results generalize the corresponding results Khan and Abbas [18] in
two ways: (i) from a nonexpansive mapping to a finite family of nonexpansive
mapping, (ii) from CAT(0) space to general setup of hyperbolic space.

4. Some data dependence and stability results

First, we prove the strong convergence theorem of the faster iterative scheme
(5) for a mapping satisfying (4) in a hyperbolic space.

Theorem 4.1. Let K be a nonempty closed convex subset of a hyperbolic space
X, and let T be a mapping satisfying (4) with F (T ) 6= ∅. Define an iterative
sequence {xn} by

(21)


yn = W (xn, Txn, βn),

zn = W (xn, yn, γn),

xn+1 = W (Tzn, Tyn, αn), ∀n ≥ 0,

where {αn} , {βn} and {γn} are real sequences in [0, 1]. Then the sequence {xn}
converges strongly to the unique fixed point p of T .

Proof. From (W1), (4) and (21), we have

d(xn+1, p) = d(W (Tzn, Tyn, αn), p)

≤ (1− αn)d(Tzn, p) + αnd(Tyn, p)

≤ (1− αn) {ad(zn, p) + Ld(p, Tp)}+ αn {ad(yn, p) + Ld(p, Tp)}
= (1− αn)ad(zn, p) + αnad(yn, p).(22)

Similarly, we obtain

d(yn, p) = d(W (xn, Txn, βn), p)

≤ (1− βn)d(xn, p) + βnd(Txn, p)

≤ (1− βn)d(xn, p) + βn {ad(xn, p) + Ld(p, Tp)}
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= (1− βn(1− a))d(xn, p)

≤ d(xn, p)(23)

and so

d(zn, p) = d(W (xn, yn, γn), p)

≤ (1− γn)d(xn, p) + γnd(yn, p)

≤ d(xn, p).(24)

Then from (22), (23) and (24), we get that

d(xn+1, p) ≤ (1− αn)ad(xn, p) + αnad(xn, p)

≤ ad(xn, p)

...

≤ an+1d(x0, p).

If a ∈ (0, 1), we obtain
lim
n→∞

d(xn+1, p) = 0.

Thus we have xn → p ∈ F (T ). If a = 0, the result is clear. This completes the
proof. �

Example 4.2. Let R be the real line with the usual metric |·| and let K = [0, 1].
Define a mapping T : K → K by Tx = x

2 . This mapping satisfies the condition

(4) with a = 1
2 and L = 0. It is clear that T has unique fixed point at 0. Let

αn = βn = γn = 0 for n = 1, 2, 3 and αn = βn = γn = 2√
n

for all n ≥ 4. It is

easy to see that the conditions of Theorem 4.1 are satisfied.

Example 4.3. Let R be the real line with the usual metric |·| and let K = [0, 1].
Define a mapping T : K → K by

Tx =

{
1
6 , x ∈ (0.5, 1]
0, x ∈ [0, 0.5].

It is easy to see that T satisfies (4). Clearly, F (T ) = {0}. Let αn = βn = γn = 0
for n = 1, 2, . . . , 15 and αn = βn = γn = 4√

n
for all n ≥ 16. So, the conditions

of Theorem 4.1 are satisfied.

Data dependence of fixed points has become an important subject for re-
search. The data dependence of various iterative schemes has been studied by
many authors; see [13,29,33].

Definition ([5, p. 166]). Let T, T̃ : X → X be two operators. We say that T̃
is an approximate operator for T if, for all x ∈ X and for a fixed ε > 0, we

have d(Tx, T̃x) ≤ ε.

By using this definition, we prove the data dependence result for the iterative
scheme defined by (21) in hyperbolic space.
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Theorem 4.4. Let X,K and T be the same as in Theorem 4.1. Suppose that

T̃ is approximate operator of T , that is, d(Tx, T̃x) ≤ ε. Let {xn} and {un} be
two iterative sequences defined by (21) and

(25)


vn = W (un, T̃ un, βn),

wn = W (un, vn, γn),

un+1 = W (T̃wn, T̃ vn, αn), n ∈ N,

respectively, where {αn} , {βn} and {γn} are real sequences in [0, 1] satisfying

αn ≥ 1
2 ,∀n ∈ N. If p = Tp and q = T̃ q, then we have

d(p, q) ≤ 4ε

1− a
.

Proof. From (W4), (4), (21) and (25), we have the following estimates:

d(xn+1, un+1) = d(W (Tzn, T yn, αn),W (T̃wn, T̃ vn, αn))

≤ (1− αn)d(Tzn, T̃wn) + αnd(Tyn, T̃ vn)

≤ (1− αn){d(Tzn, Twn) + d(Twn, T̃wn)}

+ αn{d(Tyn, T vn) + d(Tvn, T̃ vn)}
≤ (1− αn) {ad(zn, wn) + Ld(zn, T zn) + ε}

+ αn {ad(yn, vn) + Ld(yn, T yn) + ε}(26)

with

d(yn, vn) = d(W (xn, Txn, βn),W (un, T̃ un, βn))

≤ (1− βn)d(xn, un) + βnd(Txn, T̃ un)

≤ (1− βn)d(xn, un) + βn{d(Txn, Tun) + d(Tun, T̃ un)}
≤ (1− βn)d(xn, un) + βn {ad(xn, un) + Ld(xn, Txn) + ε}
= (1− βn(1− a))d(xn, un) + βnLd(xn, Txn) + βnε(27)

and

d(zn, wn) = d(W (xn, yn, γn),W (un, vn, γn))

≤ (1− γn)d(xn, un) + γnd(yn, vn)

≤ (1− γn)d(xn, un) + γn(1− βn(1− a))d(xn, un)

+ γnβnLd(xn, Txn) + γnβnε

= (1− γnβn(1− a))d(xn, un) + γnβnLd(xn, Txn) + γnβnε.(28)

Combining (26), (27) and (28), we get

d(xn+1, un+1)

≤ {(1− αn)a(1− γnβn(1− a)) + αna(1− βn(1− a))} d(xn, un)

+ {(1− αn)γnβna+ αnβna}Ld(xn, Txn) + αnLd(yn, T yn)
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+ (1− αn)Ld(zn, T zn) + (1− αn)γnβnaε

+ (1− αn)ε+ αnβnaε+ αnε.(29)

Since a ∈ [0, 1) and {αn} , {βn} , {γn} ⊂ [0, 1], we have

(30)
1− γnβn(1− a) ≤ 1, (1− αn)a ≤ 1− αn, 1− βn(1− a) ≤ 1,

γnβna ≤ 1, αnβna ≤ αn.

It follows from the condition αn ≥ 1
2 for all n ∈ N that

(31) 1− αn ≤ αn, ∀n ∈ N.

By substituting (30) and (31) into (29), we obtain

d(xn+1, un+1) ≤ (1− αn(1− a))d(xn, un)

+ 2αnLd(xn, Txn) + αnLd(yn, T yn) + αnLd(zn, T zn)

+ 4αnε,

or, equivalently,

d(xn+1, un+1)

≤ (1− αn(1− a))d(xn, un)

+ αn(1− a)
2Ld(xn, Txn) + Ld(yn, T yn) + Ld(zn, T zn) + 4ε

1− a
.(32)

Now define

an = d(xn, un),

rn = αn(1− a),

tn =
2Ld(xn, Txn) + Ld(yn, T yn) + Ld(zn, T zn) + 4ε

1− a
.

Thus, the inequality (32) becomes

(33) an+1 ≤ (1− rn)an + rntn.

From Theorem 4.1, it follows that limn→∞ d(xn, p) = 0 and limn→∞ d(un, q) =
0. Since the mapping T satisfies (4) and p = Tp, we get

0 ≤ d(xn, Txn)

≤ d(xn, p) + d(Tp, Txn)

≤ d(xn, p) + ad(p, xn) + Ld(p, Tp)

= (1 + a)d(xn, p)→ 0 as n→∞.(34)

It is easy to see from (34) that this result is also valid for d(yn, Tyn) and
d(zn, T zn). Therefore, using Lemma 2.4, the inequality (33) yields

d(p, q) ≤ 4ε

1− a
.

�



SOME RESULTS OF THE NEW ITERATIVE SCHEME IN HYPERBOLIC SPACE 1021

The stability of iterative schemes has extensively been studied by various
authors [3,14,15,20,26,28,35] due to its increasing importance in computational
mathematics, especially due to revolution in computer programming.

Definition ([8]). Two sequences {xn}∞n=0 and {yn}∞n=0 are said to be equiva-
lent sequences if limn→∞ d(xn, yn) = 0.

Definition ([35]). Let (X, d) be a metric space and let T be a self mapping
on X. Let {xn}∞n=0 ⊂ X be an iterative sequence generated by the general
algorithm of the form

(35)

{
x0 ∈ X,
xn+1 = f(T, xn), ∀n ≥ 0,

where x0 is an initial approximation and f is a function. Suppose that {xn}
converges strongly to a fixed point p of T . Let {yn}∞n=0 ⊂ X be an equivalent
sequence of {xn}∞n=0 ⊂ X. Then, the iterative scheme (35) is said to be weak
w2-stable with respect to T if and only if limn→∞ d (yn+1, f(T, yn)) = 0 implies
that limn→∞ yn = p.

We now study an open problem of Sintunavarat and Pitea [32] in hyperbolic
space.

Theorem 4.5. Let X,K and T be the same as in Theorem 4.1. Then, for
x0 ∈ K, the sequence {xn} defined by (21) is weak w2-stable with respect to T .

Proof. Suppose that {pn}∞n=0 ⊂ K is an equivalent sequence of {xn},
εn = d(pn+1,W (Trn, T qn, αn)),

where qn = W (pn, Tpn, βn), rn = W (pn, qn, γn), and let limn→∞ εn = 0. Then,
using (4) we have

d(pn+1, p) ≤ d(pn+1, xn+1) + d(xn+1, p)

≤ d(pn+1,W (Trn, T qn, αn))

+ d(W (Trn, T qn, αn),W (Tzn, Tyn, αn)) + d(xn+1, p)

≤ εn + (1− αn)d(Trn, T zn) + αnd(Tqn, Tyn) + d(xn+1, p)

≤ εn + (1− αn) {ad(rn, zn) + Ld(zn, T zn)}
+ αn {ad(qn, yn) + Ld(yn, T yn)}+ d(xn+1, p)

= εn + (1− αn)ad(rn, zn) + αnad(qn, yn)

+ (1− αn)Ld(zn, T zn) + αnLd(yn, T yn) + d(xn+1, p).(36)

Again from (4), we have the following estimates:

d(qn, yn) ≤ (1− βn)d(pn, xn) + βnd(Tpn, Txn)

≤ (1− βn)d(pn, xn) + βn {ad(pn, xn) + Ld(xn, Txn)}
= (1− βn(1− a))d(pn, xn) + βnLd(xn, Txn)(37)
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and

d(rn, zn) ≤ (1− γn)d(pn, xn) + γnd(qn, yn)

≤ (1− γn)d(pn, xn) + γn(1− βn(1− a))d(pn, xn)

+ γnβnLd(xn, Txn)

= (1− γnβn(1− a))d(pn, xn) + γnβnLd(xn, Txn).(38)

Using (36), (37) and (38), we arrive that

d(pn+1, p)

≤ εn + {(1− αn)a(1− γnβn(1− a)) + αna(1− βn(1− a))} d(pn, xn)

+ {(1− αn)γnβna+ αnβna}Ld(xn, Txn) + αnLd(yn, T yn)

+ (1− αn)Ld(zn, T zn) + d(xn+1, p).(39)

Now, from Theorem 4.1, we have limn→∞ d(xn, p) = 0. Since {xn} and {pn}
are equivalent sequences, therefore we have limn→∞ d(xn, pn) = 0. Also as in
the proof of Theorem 4.4, we can get

lim
n→∞

d(xn, Txn) = lim
n→∞

d(yn, Tyn) = lim
n→∞

d(zn, T zn) = 0.

By taking the limit on both sides of (39), we obtain limn→∞ pn = p. This
shows that {xn} is weak w2-stable with respect to T . �

Remark 4.6. The similar results of Theorems 4.1, 4.4, 4.5 can also be proved
for a finite family of mappings satisfying (4).
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[35] I. Timiş, On the weak stability of Picard iteration for some contractive type mappings,

An. Univ. Craiova Ser. Mat. Inform. 37 (2010) no. 2, 106–114.
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