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UNIQUENESS OF SOLUTIONS FOR THE BOUNDARY
VALUE PROBLEM OF CERTAIN NONLINEAR ELLIPTIC
OPERATORS VIA p-HARMONIC BOUNDARY

YoNG HaH LEE

ABSTRACT. We prove the uniqueness of solutions for the boundary value
problem of certain nonlinear elliptic operators in the setting: Given any
continuous function f on the p-harmonic boundary of a complete Rie-
mannian manifold, there exists a unique solution of certain nonlinear
elliptic operators, which is a limit of a sequence of solutions of the oper-
ators with finite energy in the sense of supremum norm, on the manifold
taking the same boundary value at each p-harmonic boundary as that of

f.

1. Introduction

In this paper, we consider the boundary value problem of certain nonlinear
elliptic operators on a complete Riemannian manifold. The behavior of energy
finite solution of certain nonlinear elliptic operators (of type p) depends on the
value of the solution on the p-harmonic boundary of the manifold. This is well
understood in the case of the Laplacian which is of type p = 2. In [3, Theorem
1], the present author proved that in the case when the p-harmonic boundary
of a complete Riemannian manifold has finite cardinality, the behavior of the
solution of certain nonlinear elliptic operators is completely determined by the
value of the solution on the p-harmonic boundary of the manifold. Later,
in general case, he [4, Theorem 1] proved the existence of the solution for
the boundary value problem of certain nonlinear elliptic operators via the p-
harmonic boundary of a complete Riemannian manifold. In this paper, we will
prove the uniqueness of the solution for the boundary value problem in the
following setting: Let M be an n-dimensional complete Riemannian manifold
and  be an open subset of M. Let W!P(Q) be the Sobolev space of all

Received November 7, 2016; Accepted February 2, 2017.

2010 Mathematics Subject Classification. 58J05, 31B05.

Key words and phrases. A-harmonic function, p-harmonic boundary, boundary value
problem.

This research was supported by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and
Technology(2012006926).

©2017 Korean Mathematical Society

1025



1026 Y. H. LEE

functions w in LP(2) whose distributional gradient Vu also belongs to L?(f2),
where p is a constant such that 1 < p < co. We equip W1P(Q) with the
norm |[ul|y, = |[ul|, + ||Vul|,. We denote by Wy?(Q) the closure of C5°(Q)
in WHP(Q).
We consider functionals associated with F : TQ) — R, where
(A1) the mapping F,, = F|r,a : T M — R is strictly convex and differ-
entiable for all z in Q, and the mapping = +— F, () is measurable
whenever £ is;
(A2) for a constant 1 < p < oo, there exist constants 0 < C; < Cy < o0
such that
Culel” < Fo(€) < Calel?

forallz € Qand £ € T, M.
(A3) in case 2 < p < o0,

() b E (8 < Lo 1 Ra@)),

incase 1 <p <2

RS R (558) < (@ +Rae)
where £, € T,M and p=1/(p — 1);
(A4) for all A € R\ {0},
Ar(A8) = A2 AL (9),

where Ay (€)= (AL(€), A2(€), .., A%(€)) is defined by AL () = 22 Fu(€)

fori=1,2,...,n.

Using the Clarkson inequality, the condition (A3) holds in the typical case
F(¢) = %\ﬂp, i.e., the p-harmonic case. (See [2, Section 15].)

A function w in W'lif (Q) is a solution of the equation
(1) —div4,(Vu) =0
in Q if
/(Ax(Vu),ng) =0
Q

for any ¢ in C§°(€2). We say that a function w is A-harmonic (of type p) if u
is a continuous solution of (1). In a typical case A, () = £[¢[P~2, A-harmonic
functions are called p-harmonic and, in particular, if p = 2, then we obtain

harmonic functions. Suppose that E is a measurable set and that u € Wﬁ)f Q)
for an open neighborhood 2 of E. Then the variational integral

I(u, E) = /E F,(Vu)

is well defined. Given f € W1P(Q), each A-harmonic function u with u — f €
WyP(€) minimizes the energy functional J(v, Q) on the set {v € WhP(Q) :



UNIQUENESS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEM 1027

v—feWyP(Q)}. (See [5, Theorem 2.96].) We say that u is an energy finite
A-harmonic function if u is an A-harmonic function with J(u, M) < oo.

In the above setting, we prove the uniqueness of solutions for the boundary
value problem of the nonlinear elliptic operator on a complete Riemannian
manifold in terms of the p-harmonic boundary of the manifold as follows:

Theorem 1.1. Let M be a complete Riemannian manifold and A be an elliptic
operator on M satisfying (A1), (A2), (A3) and (A4). Then for any continuous
function f on the p-harmonic boundary AL, of M, expounded later, there exists
a unique A-harmonic function h, which is a limit of a sequence of bounded
energy finite A-harmonic functions in the sense of supremum norm, such that

lim A(z) = f(x)

reEM—x

for all x € AL,

2. A-harmonic functions and p-harmonic boundary

We begin with introducing some notations and relevant results which we
need in this paper. Let BD,(M) denote the set of all bounded continuous
functions u on a complete Riemannian manifold M whose distributional gra-
dient Vu belongs to LP(M). Then BD,(M) forms an algebra over the real
numbers with the usual addition and multiplication of functions and scalar
multiplication defined pointwise. The function space BD,(M) is called the
Royden p-algebra of M. (See [6, Chapter 3].) We say that a sequence {f,} of
functions in BD,(M) converges to a function f € BD,(M) if {f,,} is uniformly
bounded on M, f, converges uniformly to f on each compact subset of M and

i [ [V(fa = PP =0,
n—oo M

Let BD,, o(M) denote the closure of the set of all compactly supported smooth
functions in BD,(M). We denote by HBD (M) the subset of all bounded
energy finite A-harmonic functions in BD, (M), where A is an elliptic operator
on M satisfying condition (A1), (A2), (A3) and (A4). Then one can prove the
A-harmonic function version of the Royden decomposition theorem as follows:
(See [3, Lemma 3].)

Lemma 2.1. For each f € BD,(M), there exist unique h € HBD 4(M) and
g € BDy, o(M) such that f =h+g.

For a complete Riemannian manifold M, there exists a locally compact
Hausdorff space M , called the Royden p-compactification of M, which contains
M as an open dense subset. In particular, every function f € BD,(M) can be
extended to a continuous function, denoted again by f, on M and the class
of such extended functions separates points in M. By the Stone-Weierstrass
theorem, BD, (M) is dense in the set of all bounded continuous functions on
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M with respect to the following sense: For any continuous function f on M ,
there is a sequence {f,} in BD,(M) such that

(2) lim sup| f, — f| = 0.
n—oo pAr

The Royden p-boundary of M is the set M \ M and will be denoted by oM.
An important part of the Royden p-boundary 0M is the p-harmonic boundary
AL, defined by

AP ={x€dM: f(x)=0 for all f&BD,q(M)}.

In particular, the duality relation between BD,, o(M) and A%, holds as follows:
(See [3, Lemma 2].)

BD,o(M)={f € BD,(M): f(x)=0 for all x € Al }.

In fact, the p-harmonic boundary of a complete Riemannian manifold is empty
if and only if the manifold is p-parabolic. This case is the trivial one in our
problem since every bounded .4-harmonic function on the manifold is constant.
So, from now on, we assume that the p-harmonic boundary of each manifold
M is nonempty unless otherwise specified.

Using the duality relation, we get the comparison principle for A-harmonic
functions in terms of the p-harmonic boundary as follows:

Lemma 2.2. Let hy and hy be functions in HBD4(M) such that hy < hs on
AR, Then hy < hy on M.

Proof. Let g = max{hy — h2,0}. Then ¢ > 0 on M and g = 0 on A}, since
hy —hs < 0 on AR, By the duality relation, g € BD,o(M). Since there
exists a sequence of compactly supported continuous functions converging to g
in BD, (M), we have

/ (Ao(Vh),Vg) =0 and / (A, (Vha), Vig) = 0,
M M
hence

/ (Ao(Vhn) — A (Vhy), Vg) = 0.

M

Let Q ={x € M : hi(z) > ha(x)}, then

/Q (Ao (Vhy) — Ap(Vha), Vi(hr — ho)) = / (Au(Vh) — Ap(Vha), Vg) = 0.

M

By the assumptions (A1) and (A2), hy — ho must be constant on Q. (See [5,
Theorem 2.98].) From the continuity of h; and hge and the assumption hy < hg
on Afw, we have h; — ho = 0 on 2. Consequently, h; < hy on M. [l

We are now ready to prove our main result:
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Theorem 2.3. Let M be a complete Riemannian manifold and A be an elliptic
operator on M satisfying (A1), (A2), (A3) and (A4). Then for any continu-
ous function f on the p-harmonic boundary A%, of M, there exists a unique
A-harmonic function h, which is a limit of a sequence {h,} of functions in
HBD A(M) with respect to the topology (2), such that

(3) limh(z) = f(x)

for all x € AL,

Proof. Let f: Af, — R be a continuous function. Then there is a continuous
extension f on M of f such that f | ar, = f. By the Stone-Weierstrass theorem,
there is a sequence {f,} in BD,(M) such that

lim sup|f, — f| = 0.
n—oo pNr
For any given € > 0, there is an N € N such that for all n > N,
sup | fn — f‘ <€
M

By the proof of Theorem 1 in [4], there exist a sequence {h,} in HBD 4(M)
and an A-harmonic function h on M such that h, = f, on Af, and for all
n>N,

(4) sup |hn, — h| <,
M
furthermore, h satisfies the equation (3).
Suppose that A’ is another A-harmonic function on M satisfying (3) and
there is a sequence {k,} in HBD 4(M) converging to h' with respect to the

topology (2). Then for any given ¢ > 0, we can choose N € N such that for all
n>N,

(5) sup | k, — M| <e.
M
From this together with (3), we get

sup |k, — f| < e and sup|h, — f| <e.
N v

A]\/I
Since |k, — hy| < 2¢ on AR, by Lemma 2.2,

sup | k, — hy| < 2e.
M

From this together with (4) and (5), we have

sup | h' — h| < 4e.
M

Since € > 0 is arbitrarily chosen, h’ = h on M. (|
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We denote by n(r) the number of unbounded components of M \ B, (o),
where o is a fixed point of M, and we call each of the components an end of
M corresponding to B,.(0). In particular, n(r) is nondecreasing in r > 0. Let
lim, o n(r) = k, where k may be infinity, then we say that the number of
ends of M is k. In fact, if an end E is p-nonparabolic, then the closure F of the
end F in M has at least one point of the p-harmonic boundary, and otherwise,
it has no point of the p-harmonic boundary. In particular, if every A-harmonic
function on M is asymptotically constant at infinity of the p-nonparabolic end
E, then E contains only one point of the p-harmonic boundary. (See [3, Section
4].)

If the number of p-nonparabolic ends of a complete Riemannian manifold M
is finite and every A-harmonic function on the manifold M is asymptotically
constant at infinity of each p-nonparabolic end, then the p-harmonic boundary
of the manifold M has finite cardinality. In the case, every continuous function
on M is in BD,,(M). Hence, as a corollary of Theorem 2.3, we have the following
result:

Corollary 2.4. Let M be a complete Riemannian manifold with p-nonparabolic
ends E1,Es, ..., E;, and A be an elliptic operator on M satisfying (A1), (A2),
(A3) and (A4). Suppose that every A-harmonic function on M is asymptot-
ically constant at infinity of each end of M. Then for given real numbers
ay,as,...,a;, there exists a unique A-harmonic function h in HBD 4(M) such
that
lim h(z)=a; 1=1,2,...,1.
rEE; —00

In particular, if an end of a complete Riemannian manifold satisfies the vol-
ume doubling condition, the Poincaré inequality, and the finite covering condi-
tion at infinity, then every A-harmonic function on the manifold is asymptoti-
cally constant at infinity of the end. (See [3, Section 4].) In fact, if a complete
Riemannian manifold with nonnegative Ricci curvature outside a compact set
and finite first Betti number, then the three conditions holds on each end of
the manifold. Hence every A-harmonic function on the manifold is also asymp-
totically constant at infinity of each end. As a simpler case, if a complete
Riemannian manifold has nonnegative Ricci curvature everywhere, then by the
splitting theorem of Cheeger and Gromoll [1], the manifold has at most two
ends. In particular, in the case that the manifold is p-nonparabolic, the number
of ends of the manifold is one. Therefore, as a corollary of Theorem 2.3, we
have a generalization of the result of [3] and of [4], in which the finiteness of
connected sum is necessary, as follows:

Corollary 2.5. Let M;, i =1,2,..., be complete Riemannian manifolds with
nonnegative Ricci curvature. Let M be a connected sum 452, M; and A be an
elliptic operator on M satisfying (A1), (A2), (A3) and (A4). Suppose that P
is a subset of N such that M; is p-nonparabolic for each j € P. Then for given
real numbers aj, j € P, there exists a unique A-harmonic function h, which
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is a limit of a sequence of functions in HBD o(M) with respect to the topology
(2), such that
zez{}?ﬁm h(z) =aj, j€P

In fact, if an end of a complete Riemannian manifold is roughly isometric
to an end satisfying the volume doubling condition, the Poincaré inequality
and the finite covering condition at infinity, then every A-harmonic function
on the manifold is asymptotically constant at infinity of the end. Furthermore,
the number of ends and the p-nonparabolicity of ends are roughly isometric
invariants. (See [3] and [4].) Therefore, our results can be extended to the
class being roughly isometric to the complete Riemannian manifolds given in
Theorem 2.3, Corollary 2.4 and Corollary 2.5, respectively.

References

[1] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci
curvature, J. Differential Geometry 6 (1971), 119-128.

[2] E. Hewitt and K. Stormberg, Real and Abstract Analysis, Springer-Verlag, New York,
Heidelberg, Berlin, 1965.

[3] Y. H. Lee, Rough isometry and energy finite solutions of elliptic equations on Riemannian
manifolds, Math. Ann. 318 (2000), no. 1, 181-204.

, Rough isometry and p-harmonic boundaries of complete Riemannian manifolds,
Potential Anal. 23 (2005), no.1, 83-97.

[5] J. Maly and W. P. Ziemer, Fine regularity of solutions of elliptic partial differential
equations, Mathematical Surveys and Monographs, 51. American Mathematical Society,
Providence, RI, 1997.

[6] L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer Verlag,
Berlin, Heidelberg, New York, 1970.

(4]

YoNG HAH LEE

DEPARTMENT OF MATHEMATICS EDUCATION
EwHA WOMANS UNIVERSITY

SEOUL 120-750, KOREA

E-mail address: yonghah@ewha.ac.kr





