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THE LAWS OF THE ITERATED LOGARITHM FOR

THE TENT MAP

Jongsig Bae, Changha Hwang, and Doobae Jun

Abstract. This paper considers the asymptotic behaviors of the pro-

cesses generated by the classical ergodic tent map that is defined on the
unit interval. We develop a sequential empirical process and get the uni-

form version of law of iterated logarithm for the tent map by using the
bracketing entropy method.

1. Introduction and the main results

The tent map is an iterated function forming a discrete-time dynamical
system. The tent map demonstrates a chaotic dynamical behavior. In Bae et
al. [1], we have developed the uniform laws of large numbers for the tent map.
In Bae et al. [2], we have developed the uniform central limit theorem for the
tent map.

The aim of our work is to develop the law of the iterated logarithm (LIL)
and the uniform LIL of Strassen type, see for example Kuelbs and Dudley [7],
for the process generated by the tent map by employing Ossiander [8]’s idea of
the bracketing entropy method.

We begin with illustrating the tent map. Let Ω = [0, 1] be the sample space,
A be the Borel sets and P be the Lebesgue measure. The tent map on the unit
interval is defined by

ϕ(y) =

{
2y for 0 ≤ y < 1

2
2(1− y) for 1

2 ≤ y ≤ 1.

The tent map is an iterated function, in the shape of a tent. More specifically,
if you plot ϕ(y) versus y, it has two linear sections which rise to meet at [1/2, 1].
It looks like a tent.
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The tent map ϕ preserves Lebesgue measure and is equivalent to a shift and
flip map τ on {0, 1}{0,1,2,...}:

τ(ω0, ω1, ω2, . . . ) =

{
(ω1, ω2, . . . ) if ω0 = 0

(1− ω1, 1− ω2, . . . ) if ω0 = 1.

We can think of (ω0, ω1, ω2, . . . ) ∈ {0, 1}{0,1,2,...} as a point y in the unit
interval [0, 1] by putting y =

∑∞
i=0

ωi

2i+1 . It is known that the map ϕ is ergodic.
See Durrett [4].

We now consider a series of stationary processes generated by the tent map
ϕ.

First, we start with f 1
2
(y) = 1[0, 12 )(y). Then {f 1

2
(ϕm−1(y)) : m ≥ 1} are

identically distributed random variables which have uniform distribution with

P (f 1
2
(ϕm−1(y)) = 0) =

1

2
,

P (f 1
2
(ϕm−1(y)) = 1) =

1

2
.

Therefore {f 1
2
(ϕm−1(y)) : m ≥ 1} is a sequence of stationary random variables.

Observe that Ef 1
2
(y) = 1

2 and V ar(f 1
2
(y)) = 1

4 . Define

Tn(1, 1) = n−1/2
n∑

m=1

2

(
f 1

2
(ϕm−1(y))− 1

2

)
.

Then, by the LIL for stationary process (see Heyde [6]), the set of the limit

points of (2 ln lnn)
−1/2

Tn(1, 1) is [−1, 1].
Second, for fixed j ∈ N and for fixed i = 1, 2, . . . , 2j , we look at fi,j(y) =

1[ i−1

2j
, i

2j
)(y). Then {fi,j(ϕm−1(y)) : m ≥ 1} are identically distributed random

variables with

P (fi,j(ϕ
m−1(y)) = 0) = 1− 2−j ,

P (fi,j(ϕ
m−1(y)) = 1) = 2−j .

Observe that Efi,j(y) = 1
2j and V ar(fi,j(y)) = 1

2j (1− 1
2j ). Define

Tn(i, j) = n−1/2
n∑

m=1

fi,j(ϕ
m−1(y))− 2−j

{2−j(1− 2−j)}1/2
for given i and j.

Then, similar as above, the set of the limit points of (2 ln lnn)
−1/2

Tn(i, j) is
[−1, 1].

Third, for each fixed j ∈ N, we consider the sum

fj(y) =

2j∑
i=1

fi,j(y)− 2−j

{2−j(1− 2−j)}1/2
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of the random variables

f1,j(y)− 2−j

{2−j(1− 2−j)}1/2
,

f2,j(y)− 2−j

{2−j(1− 2−j)}1/2
, . . . ,

f2j ,j(y)− 2−j

{2−j(1− 2−j)}1/2
.

Then, for fixed j ∈ N, being a sequence of identically distributed random
variables, {fj(ϕm−1(y)) : m ≥ 1} is stationary and ergodic process. Consider
the equation

2j∑
i=1

fi,j(y)− 2−j

{2−j(1− 2−j)}1/2
−

2j−1∑
i=1

fi,j(y)− 2−j

{2−j(1− 2−j)}1/2
=

f2j ,j(y)− 2−j

{2−j(1− 2−j)}1/2
.

We simply denote

dj(y) :=
f2j ,j(y)− 2−j

{2−j(1− 2−j)}1/2
.

Observe that dj(y) is uniformly bounded in the sense that supj∈N |dj(y)| <∞.
Observe also that for j, k ∈ N,

Cov(dj(y), dk(y)) =
2−j ∧ 2−k − 2−j · 2−k

{2−j(1− 2−j)}1/2{2−k(1− 2−k)}1/2
,

where x ∧ y denotes the minimum of x and y.
Recall that Ω = [0, 1] is the sample space, A is the Borel sets and P

is the Lebesgue measure. Then ϕ : Ω → Ω is a P -preserving measurable
transformation. Assume that F0 := {∅,Ω} is the ϕ-invariant σ-field (i.e.,
ϕ−1F0 ⊂ F0), set Fn = ϕ−nF0, and denote by En the conditional expec-
tation operator with respect to the σ-algebra Fn. Then, for fixed j ∈ N,
the sequence {dj(ϕm−1(y)) : m ≥ 1} is an ergodic, stationary sequence of
martingale-differences. See Bae et al. [2].

From stationarity, using the Kolmogorov consistency theorem, we may as-
sume that the process, for fixed j ∈ N, {dj(ϕm−1(y)) : m ∈ Z} is double sided.
Define a (j, s) ∈ N⊗ [0, 1] indexed sequential empirical process

(1) Tn(j, s) := n−1/2
[ns]∑
m=1

dj(ϕm−1(y)) for (j, s) ∈ N⊗ [0, 1],

where [x] denotes the integer part of x.
Let X be a uniformly bounded random variable defined on ([0, 1], B[0, 1], P

= Lebesgue measure) whose distribution function is F . Consider a sequence
{Xi : i ≥ 1} of independent copies of X. Given a Borel measurable function
f : R → [−1, 1], we see that {f(Xi) : i ≥ 1} forms a sequence of IID random
variables that are more flexible in applications than the sequence {Xi : i ≥ 1}.
Consider a class F of real-valued Borel measurable functions defined on R.
Introduce the usual empirical distribution function Fn defined by Fn(x) =
n−1

∑n
i=1 1{Xi≤x} for x ∈ R. Define a function indexed sequential integral

process Sn by Sn(f, s) = n1/2 [ns]
n

∫
f(x)d(F[ns]−F )(x) for f ∈ F and s ∈ [0, 1].
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Given a class F of functions, establishing a uniform LIL includes the follow-
ing two steps. First, establish a uniform central limit theorem (CLT) for the
sequential integral process. Second, try to find an almost sure representation
of the uniform CLT for the sequential integral process that involves the order
of (ln lnn)−1/2.

Establishing a uniform CLT for the sequential integral process means show-
ing that L(Sn(f, s) : (f, s) ∈ F× [0, 1]])→ L(Z(f, s) : (f, s) ∈ F× [0, 1]), where
the processes are considered as random elements of the Banach space,

B (F × [0, 1]) := {z : F × [0, 1]→ R : ||z||F <∞} ,
the space of the bounded real-valued functions on F × [0, 1], taken with the
sup norm. The limiting process Z = (Z(f, s) : (f, s) ∈ F × [0, 1]) is a Gaussian
process whose sample paths are contained in

UB(F × [0, 1], ρ) := {z ∈ B(F × [0, 1]) : z is uniformly continuous in ρ}.
Notice that

(
B (F × [0, 1]) , || · ||F×[0,1]

)
is a Banach space and UB(F× [0, 1], ρ)

is a closed subspace which is separable if and only if (F × [0, 1], ρ) is totally
bounded. We equip the space F with the L2 metric d. Consider ρ((f, s), (g, t))
= d(f, g) + |s− t| so that (F × [0, 1], ρ) is totally bounded.

We use the following weak convergence. See Van der Vaart and Wellner [11].

Definition 1. A sequence of B (F × [0, 1])-valued random functions {Yn : n ≥
1} converges in law to aB (F × [0, 1])-valued Borel measurable random function
Y whose law concentrates on a separable subset of B (F × [0, 1]), denoted by
Yn ⇒ Y , if Eg (Y ) = limn→∞E∗g (Yn) for all g ∈ C(B (F × [0, 1]) , ||·||F×[0,1]),
where C(B (F × [0, 1]) , || · ||F×[0,1]) is the set of real bounded, continuous
functions. Here E∗ denotes upper expectation.

In [8], Ossiander obtained the uniform LIL for the sequence of IID random
variables under bracketing entropy. Ossiander’s result states that if F has a
bracketing entropy then {(2 ln lnn)−1/2Sn(f, 1) : f ∈ F} is relatively compact.

Identify the points j ∈ N with the class of indicator functions {1[0,2−j ] : j ∈
N}.

We firstly state the following LIL for the sequence of random variables gen-
erated by the tent map.

Notice that {Tn(j, 1) : j ≥ 1} is a sequence of stochastic processes indexed
by j ∈ N, whereas by fixing j, {Tn(j, 1)} is a sequence of random variables.
The LIL is one dimensional version of the uniform LIL given in Theorem 2.

Theorem 1. For each fixed j ∈ N, the set of the limit points of the sequence{
(2 ln lnn)−1/2Tn(j, 1) : n ≥ 3

}
is the closed interval [−1, 1].

Proof. The result directly follows from Theorem 2 below by fixing j ∈ N. �

Recall that dj(y) =
f2j ,j(y)−2

−j

{2−j(1−2−j)}1/2 for j ∈ N. We define M = {dj(y) ∈
l2(N) : Edj(y) = 0}. It is easy to see thatM is a closed subspace of the Hilbert
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space l2(N), and hence M is also a Hilbert space. Let U be the unit ball of
M: U =

{
dj(y) ∈M : E|dj(y)|2 ≤ 1

}
. Then U defines a set U(N) of function

on N:
U(N) =

{
dj(y) 7→ E(dj(y) · dk(y)) : j ∈ N, dk(y) ∈ U

}
,

where

E(dj(y) · dk(y)) =
2−j ∧ 2−k − 2−j · 2−k

{2−j(1− 2−j)}1/2{2−k(1− 2−k)}1/2
.

We secondly state the uniform LIL for the process generated by the tent
map.

Theorem 2.
{

(2 ln lnn)−1/2Tn(j, 1) : j ∈ N, n ≥ 3
}

is relatively compact with

respect to l2(N) norm almost surely, and the set of its limit points is U(N).

Remark 1. Consider the example in Pollard [10, p. 2]: Goodness of fit test
statistics can be expressed as functionals on a suitably standardized empiri-
cal distribution function. Consider the basic case of an independent sample
ξ1, . . . , ξn from the Uniform(0, 1) distribution. Define the uniform empirical
process Un by

Un(t) = n−1/2
n∑
i=1

(
1{ξi≤t} − t

)
for 0 ≤ t ≤ 1.

Then, they discussed the motivation of the studying the uniform CLT of Un ⇒
U where U is the mean zero Gaussian process with Cov(U(ti), U(tj)) = ti ∧
tj − titj . One can consider the problem of LIL and uniform LIL for the process
Un. Our process Tn is, in some sense, non-independent stationary martingale-
difference version of the process Un.

In Section 3, we restate the main results in a more general setting of function
indexed processes. Finally, in Section 4, we provide the proofs.

2. The sequential empirical process for martingale differences

We use the following setup to state problem in a concrete fashion. From
stationarity, using the Kolmogorov consistency theorem, we may assume that
the process, for fixed j ∈ N, {dj(ϕm−1(y))} is double sided. We choose (Ω =
[0, 1]Z, T = (B[0, 1])Z, P ). We know that the Lebesgue measure P is invariant
under ϕ, that is, Pϕ−1 = P . We also know that ϕ is an ergodic map. Define
for m ∈ Z a σ-field Mm−1 = σ(ϕn(y) : n ≤ m − 1) and Hm−1 = {f : Ω →
[−1, 1] : f is Mm−1 measurable and f ∈ L2(Ω)}. For each f ∈ L2(Ω) we simply
denote Em−1f to mean E(f |Mm−1) and H0 	 H−1 = {f ∈ H0 : E(fg) =
0 for each g ∈ H−1}. On L2(Ω) we define a metric d by d(f, g) = [E(f−g)2]1/2.
Let F ⊆ H0	H−1. Consider the function indexed sequential empirical process
defined by

Tn(f, s) = n−1/2
[ns]∑
m=1

f(ϕm−1(y)), f ∈ F and s ∈ [0, 1],
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where Ef(y) = 0 and V ar(f(y)) = 1 for f ∈ F .
We introduce the empirical distribution function Fn for the random variables

y, ϕ(y), ϕ2(y), . . . , ϕn−1(y) defined by

Fn(x) = n−1
n∑

m=1

1{ϕm−1(y)≤x}

for x ∈ R. Then the function indexed processes Tn(f, s) can be represented as
the following integral forms:

(2) Tn(f, s) =
√
n

[ns]

n

∫
f(x)dF[ns](x) for f ∈ F and s ∈ [0, 1].

We name Tn in (2) as the sequential integral process.
We firstly state the following LIL for the sequence of the random variables.
Notice that {Tn(f, 1) : f ∈ F} is a sequence of stochastic processes indexed

by f ∈ F , whereas by fixing f ∈ F , {Tn(f, 1)} is a sequence of random variables.
The LIL is one dimensional version of the uniform LIL given in Theorem 2.

Theorem 3. For each fixed f ∈ F , as n → ∞, the set of the limit points of
the sequence

{
(2 ln lnn)−1/2Tn(f, 1) : n ≥ 3

}
is the closed interval [−1, 1].

Proof. The result directly follows from Theorem 4 below by fixing f ∈ F . �

We define M = {f ∈ L2(Ω) : Ef = 0}. Then, as before, M is a closed
subspace of the Hilbert space L2(Ω), and M is a Hilbert space. Let U be
the unit ball of M. Then U defines a set U(F) of function on F : U(F) =
{f 7→ E(f · g) : f ∈ F , g ∈ U} .

In order to measure the size of the function space, we define the following
version of metric entropy with bracketing. See Van der Vaart and Wellner [11].

Definition 2. Given two functions l and u, the bracket [l, u] is the set of all
functions f with l ≤ f ≤ u. An ε-bracket is a bracket [l, u] with ||u − l|| <
ε. The bracketing number N[ ](ε) := N[ ](ε,F , d) is the minimum number of
ε-brackets needed to cover F . We say that F has a bracketing entropy if∫ 1

0
[lnN[ ](ε,F , d)]1/2dε <∞.

Remark 2. It is known that F = {1[0,2−j ] : j ∈ N} has a bracketing entropy.
This is possible because the cardinality of F is the same as that of N. See Van
der Vaart and Wellner [11].

Define σ2
n(f, g) := n−1

∑n
m=1Em−2[f(ϕm−1(y))−g(ϕm−1(y))]2 for f, g ∈ F .

We secondly state the following uniform LIL for the process.

Theorem 4. Suppose that F has a bracketing entropy. Assume that there
exists a constant L such that

P ∗

{
sup
f,g∈F

σ2
n(f, g)

d2(f, g)
≥ L

}
→ 0 as n→∞.(3)
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Then
{

(2 ln lnn)−1/2Tn(f, 1) : f ∈ F , n ≥ 3
}

is relatively compact with respect
to || · ||F almost surely, and the set of its limit points is U(F).

3. The proofs

In this section we make our effort to prove Theorem 4 and Theorem 2.
The following Proposition 1 whose proof depends on a chaining argument with
stratification appears in Bae and Levental [3].

Proposition 1. Suppose that F has the bracketing entropy. Assume that there
exists a constant L such that

P ∗

{
sup
f,g∈F

σ2
n(f, g)

d2(f, g)
≥ L

}
→ 0 as n→∞.

Then there exist a Gaussian process {Z(f, s) : (f, s) ∈ F × [0, 1]} with bounded
and continuous sample paths such that Tn ⇒ Z, as random elements of B(F ×
[0, 1]). The Gaussian process has the mean EZ(f, s) = 0 and covariance struc-
ture EZ(f, s)Z(g, t) = (s ∧ t)E(fg).

We need the following definition.

Definition 3. A sequence of B(F × [0, 1])-valued random functions {Yn : n ≥
1} converges in probability to 0, denoted Yn →P 0, if limn→∞ P ∗{|Yn| > ε} → 0
for every ε > 0. Here P ∗ denotes outer probability.

We will use the following restatement of Proposition 2 in the proof of The-
orem 4. See Theorem 1.3 of Dudley and Philipp [5].

Proposition 2. Suppose that F has the bracketing entropy. Assume that there
exists a constant L such that

P ∗

{
sup
f,g∈F

σ2
n(f, g)

d2(f, g)
≥ L

}
→ 0 as n→∞.

Then there exist a sequence {Zn : n ≥ 1} of IID copies of Gaussian pro-
cess {Z(f) : f ∈ F}, defined on (Ω, T , P ), with bounded and continuous
sample paths on F with the mean EZ(f) = 0 and the covariance structure
EZ(f)Z(g) = E(fg) such that

n−1/2 max
1≤k≤n

sup
f∈F
|

k∑
m=1

(f(ϕm−1)(y)− Zm(f))| →P 0.

The Zm’s can be chosen such that, almost surely for some measurable Un

sup
f∈F
|n−1/2

k∑
m=1

(f(ϕm−1)(y)− Zm(f))| ≤ Un = o((ln lnn)−1/2).

The following Corollary 1 follows easily from Proposition 2.
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Corollary 1. Suppose that F has the bracketing entropy. Assume that there
exists a constant L such that

P ∗

{
sup
f,g∈F

σ2
n(f, g)

d2(f, g)
≥ L

}
→ 0 as n→∞.

Then there exist a sequence {Z̃n : n ≥ 1}, with bounded and continuous sample
paths, of copies of a Gaussian process {Z(f) : f ∈ F}, defined on (Ω, T , P )

such that ||Tn(·, 1) − Z̃n|| →P 0. The Z̃m’s can be chosen such that, almost

surely for some measurable Un ||Tn(·, 1)− Z̃n|| ≤ Un = o((ln lnn)−1/2).

Proof. Let {Zm} be as in Proposition 2. Set Z̃n = n−1/2
∑n
m=1 Zm. Observe

that

||Tn(·, 1)− Z̃n|| ≤ sup
f∈F
|n−1/2

n∑
m=1

(f(ϕm−1(y))− Zm(f))|

+ sup
f∈F
|n−1/2

n∑
m=1

(Zm(f)− Z̃m(f))|.

Since the Gaussian processes Z and Z̃ have the same mean and the same
covariance structure, they have the same distribution. That is, P (||Tn(·, 1) −
Z̃n|| = 0) = 1. Proposition 2 implies the result. �

Proposition 3 (Theorem 4.3 of Pisier [9]). Suppose that F has the bracketing
entropy. Let {Zi : i ≥ 1} be a sequence of IID copies of a Gaussian process
{Z(f) : f ∈ F} defined on (Ω, T , P ). Suppose {Z(f) : f ∈ F} has bounded and
continuous sample paths with the mean EZ(f) = 0 and E||Z|| < ∞. Then,
as n→∞,

{
(2n ln lnn)−1/2

∑n
m=1 Zm(f) : f ∈ F , n ≥ 3

}
is relatively compact

with respect to || · ||F almost surely, and the set of its limit points is U(F) where
U = {h ∈ L2(Ω, T , P ) : EZ2(h) ≤ 1}.

Remark 3. Z takes values in C(F), the bounded and continuous functions from
F to R, forms a separable Banach space with sup-norm || · ||F .

We are ready to prove Theorem 4.

Proof of Theorem 4. By Proposition 1, there exists a Gaussian process {Z(f, 1)
: f ∈ F} with bounded and continuous sample paths whose mean is zero and
covariance structure is

(4) EZ(f, 1)Z(g, 1) = E(gh).

Apply Corollary 1 to choose a sequence {Z̃n : n ≥ 1} of Gaussian process such
that

(5) ||(2 ln lnn)−1/2(Tn(·, 1)− Z̃n)|| ≤ Yn = o(1),

almost surely for some sequence of measurable Yn’s. By Proposition 3,{
(2 ln lnn)−1/2Z̃n(f) : f ∈ F , n ≥ 3

}
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is relatively compact with respect to || · ||F almost surely, and the set of its limit
points is U(F) where U = {h ∈ L2(Ω, T , P ) : EZ2(h) ≤ 1}. This, together
with (4) and (5), complete the proof of Theorem 4. �

Finally, we finish the proof of Theorem 2.

Proof of Theorem 2. By Remark 2, we see that F = {1[0,2−j ] : j ∈ N} has a
bracketing entropy. We need to verify the assumption (3) for F = {1[0,2−j ] :

j ∈ N}. Notice that d2(f, g) = E[1[0,2−j ] − 1[0,2−k]]
2 = |2−j − 2−k| and

Em−2[f(ym−1)−g(ym−1)]2 = 1[2−j ,2−k](ym−1), where ym−1 := ϕm−1(y). Then
the assumption (3) boils down to the following: There exists a constant L such
that

(6) P

(
sup
j∈N

n∑
i=1

1[0,(2j−1)2−j)(yi)

n(2j − 1)2−j
> L

)
→ 0 as n→∞.

For the proof of (6), see the proof of Lemma 1 in [2]. Now apply Theorem 4 to
finish the proof of Theorem 2. �
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