DOI QR코드

DOI QR Code

Effects of combination treatment with sulfur dioxide generating pad and modified atmosphere packaging (MAP) on the quality of 'Campbell Early'grape under simulated export conditions

모의수출조건에서 유황패드와 MAP 복합처리가 '캠벨얼리' 포도의 품질에 미치는 영향

  • Choi, Mi-Hee (Postharvest Research Division, National Institute of Horticultural and Herbal Science (NIHHS), RDA) ;
  • Lee, Jin-Su (Postharvest Research Division, National Institute of Horticultural and Herbal Science (NIHHS), RDA) ;
  • Lim, Byung-Seon (Postharvest Research Division, National Institute of Horticultural and Herbal Science (NIHHS), RDA)
  • 최미희 (농촌진흥청 국립원예특작과학원 저장유통과) ;
  • 이진수 (농촌진흥청 국립원예특작과학원 저장유통과) ;
  • 임병선 (농촌진흥청 국립원예특작과학원 저장유통과)
  • Received : 2017.08.25
  • Accepted : 2017.10.19
  • Published : 2017.10.30

Abstract

The effects of combination treatment with sulfur dioxide generating pad ($SO_2$ pad) and modified atmosphere packaging (MAP) on grape quality were examined under simulated exporting condition and actual export to Los Angeles, USA. The 'Campbell Early' grape harvested in Hwaseong, Gyeonggi was precooled at $0^{\circ}C$, selected and packaged at $10^{\circ}C$, and stored at $0^{\circ}C$ for 30 days. The treatment was as follows: general export packaging (control), only $SO_2$ pad, combination of $SO_2$ pad and MAP (perforated polyethylene film, $SO_2$ pad+MA). In case of control and only $SO_2$ pad under simulated exporting condition, the grape quality changes with storage time were decrease in hardness and brush length, increase in stem browning, and increased in shattering rate. The treatment of $SO_2$ pad+MA was the most effective in preserving the grape quality since $SO_2$ concentration inside the package remained around 2.9 ppm by MA film. Grape exports from harvest to local distribution of the USA took 30 days, and only $SO_2$ pad+MA package showed no fungus, maintained brush length and rachis color, and was lowest at 4.0% of shattering rate since the concentration of $SO_2$ in the package was about 4.0 ppm. As a result, it was considered that the combination of $SO_2$ pad and MA was the most effective way to maintain freshness of grape during long-term marine transportation and extend the shelf-life in exporting countries.

장기 해상운송 시 포도과실의 신선도 유지 및 수입국에서의 유통기간 연장을 통한 수출국 다변화 및 수출경쟁력 향상을 위해, 모의수출조건 및 실제 수출 시 유황패드와 MA포장 복합처리에 따른 포도과실의 선도유지 효과를 검토하였다. 캠벨얼리 포도는 경기도 화성지역에서 재배되었으며 2016년 8월 말에 수확하여, 예냉은 $0^{\circ}C$, 선별 및 포장은 $10^{\circ}C$에서 실시하였고 $0^{\circ}C$에 30일간 저장하였다. 시험처리는 관행 수출포장(대조구), 유황패드처리, 유황패드+MA 복합처리의 3가지로 하였다. 모의수출 조건인 $0^{\circ}C$, 30일 저장 시 포도상자 내부의 온도와 상대습도는 처리에 따라 약간의 차이가 있기는 했으나 각각 $0.6-2^{\circ}C$, 94-100% 범위 내에서 안정적으로 유지되었다. 무처리와 유황패드 단독처리의 경우 저장기간이 경과할수록 경도의 감소, 과경의 갈변, brush 길이의 감소, 탈립률의 증가 등에서 유황패드+MA 복합처리와 유의적인 차이를 보였다. 유황패드+MA 복합처리의 경우 MA포장에 의한 선도유지 효과와 더불어 PE필름으로 인해 저장 30일 후에도 포장 내부에 2.9 ppm 정도의 $SO_2$ 농도가 유지되면서 장기 저장 및 운송 시 포도의 품질을 가장 잘 유지시켜 주는 것으로 나타났으며, 이러한 효과는 $15^{\circ}C$, 7일 저장의 모의유통조건에서도 동일하게 나타났다. 또한 수확 후 11일간의 해상운송을 거쳐 미국 현지 소매점에 유통될 때까지 30일이 소요된 대미수출 포도의 경우에도 모의수출 조건에서 수행된 것과 동일한 결과를 보였다. 미국 현지에서 품질 조사 수행 결과, 유황패드+MA 복합처리에서만 4.0 ppm의 $SO_2$가 측정되었으며 신선도 유지를 통한 상품성 보존이나 현지에서의 유통기한 연장 효과도 가장 우수한 것으로 나타났다. 결과적으로 장기 해상운송에 의한 캠벨얼리 포도 수출 시 유황패드+MA 복합처리는 상품성 및 유통기간 연장에 매우 효과적인 방법이라고 판단된다.

Keywords

References

  1. aTkati. 2016 Grape export by country. http://www.kati.net (accessed July 2017).
  2. Ji ST, Lee HK, Ahn SJ (2014) The present status of import and domestic production of table grape. FTA Issue Report, 7, 1-9
  3. Korean Statistical Information Service (KOSIS). 2015 The present status of main varieties cultivated in grape farm. http://kosis.kr/wnsearch/totalSearch.jsp (accessed July 2017).
  4. Ji ST, Yoo JY (2017) Change in import structure of fruit and its implications. KREI Analysis of Issues, 36, 1-16
  5. Nam SY, Kang HC, Kim TS (2000) Storage life investigation of diverse grape cultivars. Korean J Postharvest Sci Technol, 7, 29-32
  6. Lichter A, Zutahy Y, Kaplunov T, Lurie S (2008) Evaluation of table grape storage in boxes with sulfur dioxide-releasing pads with either an internal plastic liner or external wrap. HortTechnol, 18, 206-214
  7. Romanazzi G, Lichter A, Gabler FM, Smilanick JL (2012) Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol Technol, 63, 141-147 https://doi.org/10.1016/j.postharvbio.2011.06.013
  8. Karabulut OA, Gabler FM, Mansour M, Smilanick JL (2004) Postharvest ethanol and hot water treatments of table grapes to control gray mold. Postharvest Biol Technol, 34, 169-177 https://doi.org/10.1016/j.postharvbio.2004.05.003
  9. Nelson KE, Baker GA (1963) Studies on the sulfur dioxide fumigation of table grapes. Am J Enol Vitic, 14, 13-22
  10. Smilanick JL, Henson DJ (1992) Minimum gaseous sulphur dioxide concentrations and exposure periods to control Botrytis cinerea. Crop Prot, 11, 535-540 https://doi.org/10.1016/0261-2194(92)90171-Z
  11. Crisosto CH, Garner D, Crisosto G (2002) Carbon dioxide-enriched atmospheres during cold storage limit losses from Botrytis but accelerate rachis browning of 'Redglobe' table grapes. Postharvest Biol Technol, 26, 181-189 https://doi.org/10.1016/S0925-5214(02)00013-3
  12. Franck J, Latorre BA, Torres R, Zoffoli JP (2005) The effect of preharvest fungicide and postharvest sulfur dioxide use on postharvest decay of table grapes caused by Penicillium expansum. Postharvest Biol Technol, 37, 20-30 https://doi.org/10.1016/j.postharvbio.2005.02.011
  13. Carter MQ, Chapman MH, Gabler F, Brandl MT (2015) Effect of sulfur dioxide fumigation on survival of foodborne pathogens on table grapes under standard storage temperature. Food Microbiol, 49, 189-196 https://doi.org/10.1016/j.fm.2015.02.002
  14. Zoffoli JP, Latorre BA, Rodriguez EJ, Aldunce P (1999) Modified atmosphere packaging using chlorine gas generators to prevent Botrytis cinerea on table grapes. Postharvest Biol Technol, 15, 135-142 https://doi.org/10.1016/S0925-5214(98)00078-7
  15. Chung DS, Chang EH, Choi JU (2007) Effects of chlorine dioxide (Cl$O_{2}$) gas treatment on postharvest quality of grapes. Korean J Food Preserv, 14, 1-7
  16. Venditti T, Ladu G, Cubaiu L, Myronycheva O, Dhallewin G (2017) Repeated treatments with acetic acid vapors during storage preserve table grapes fruit quality. Postharvest Biol Technol, 125, 91-98 https://doi.org/10.1016/j.postharvbio.2016.11.010
  17. Jang KI, Lee JH, Choi GS, Lee HB (2008) Quality of stored grape (Vitis labruscana) treated with electrolyzed acid water humidification, electrolyzed acid water sterilization and ozone water sterilization. J Agric Life Sci, 42, 47-57
  18. Yun HJ, Joe MH, Kwon JH, Lim BL, Kim DH (2008) Quality characteristics of grapes during post-irradiation storage at different temperatures. Korean J Food Preserv, 15, 648-655
  19. Gabler FM, Smilanick JL, Mansour MF, Karaca H (2010) Influence of fumigation with high concentrations of ozone gas on postharvest gray mold and fungicide residues on table grapes. Postharvest Biol Technol, 55, 85-90 https://doi.org/10.1016/j.postharvbio.2009.09.004
  20. Youssef K, Roberto SR (2014) Salt strategies to control Botrytis mold of 'Bnitaka' table grapes and to maintain fruit quality during storage. Postharvest Biol Technol, 95, 95-102 https://doi.org/10.1016/j.postharvbio.2014.04.009
  21. Serrano M, Martinez-Romero D, Guillen F, Valverde JM, Zapata PJ, Castillo S, Valero D (2008) The addition of essential oils to MAP as a tool to maintain the overall quality of fruits. Trends Food Sci Technol, 19, 464-471 https://doi.org/10.1016/j.tifs.2008.01.013
  22. Chervin C, Westercamp P, Monteils G (2005) Ethanol vapors limit Botrytis development over the postharvest life of table grapes. Postharvest Biol Technol, 36, 319-322 https://doi.org/10.1016/j.postharvbio.2005.02.001
  23. Animal and Plant Quarantine Agency. 2017 Quarantine of Korean grapes for Australia export. http://www.qia.go.kr/planet/exQua/plant_exp_ostest_nat.jsp (accessed July 2017)
  24. Kim CW, Jeong MC, Choi JH (2009) Effect of high $CO_{2}$ MA packaging on the quality of 'Campbell Early' grapes during marketing simulation at ambient temperature. Kor J Hort Sci Technol, 27, 612-617
  25. Deng Y, Wu Y, Li Y (2007) Effects of high $CO_{2}$ and low $O_{2}$ atmospheres on the berry drop of 'Kyoho' grapes. Food Chem, 100, 768-773 https://doi.org/10.1016/j.foodchem.2005.10.036
  26. Yang YJ, Hwang YS, Park YM (2007) Modified atmosphere packaging extends freshness of grapes 'Campbell Early' and 'Kyoho'. Kor J Hort Sci Technol, 25, 138-144
  27. Silva-Sanzana C, Balic I, Sepúlveda P, Olmedo P, Leon G, Defilippi BG, Blanco-Herrera F, Campos-Vargas R (2016) Effect of modified atmosphere packaging (MAP) on rachis quality of 'Red Globe' table grape variety. Postharvest Biol Technol, 119, 33-40 https://doi.org/10.1016/j.postharvbio.2016.04.021
  28. Hong YP, Lee EJ (2007) Effect of relative humidity under various packaging treatments on quality of grape fruits during cold storage. Kor J Hort Sci Technol, 25, 47-53
  29. Lichter A, Kaplunov T, Zutahy Y, Daus A, Alchanatis V, Ostrovsky V, Lurie S (2011) Physical and visual properties of grape rachis as affected by water vapor pressure deficit. Postharvest Biol Technol, 59, 25-33 https://doi.org/10.1016/j.postharvbio.2010.07.009
  30. Yun SD, Lee SK, Ko KC (1995) Effect of cultivars and various treatments on storability of grapes. J Kor Soc Hort Sci, 36, 224-230
  31. Zutahy Y, Lichter A, Kaplunov T, Lurie S (2008) Extended storage of 'Red Globe' grapes in modified $SO_{2}$ generating pads. Postharvest Biol Technol, 50, 12-17 https://doi.org/10.1016/j.postharvbio.2008.03.006
  32. Laszlo J, Combrink JC, Eksteen GJ, Truter AB (1981) Effect of temperature on the emission of sulphur dioxide from gas generators for grapes. Decid Fruit Grow, 31, 112-119
  33. Smilanick JL, Hartsell PI, Henson DJ, Fouse DC, Assemi M, Harris CM (1990) Inhibitory activity of sulfur dioxide on the germination of spores of Botrytis cinerea. Phytopathology, 80, 217-220 https://doi.org/10.1094/Phyto-80-217
  34. Ha SY, Hwang YS, Yang YJ, Park YM (2007) Correlation between instrumental quality attributes and consumers' sensory evaluation in refrigerated-stored 'Campbell Early' and 'Kyoho' grape. Kor J Hort Sci Technol, 25, 125-132
  35. Vashisth T. Malladi A (2013) Fruit detachment in rabbiteye bluberry: Abscission and physical seperation. J Amer Soc Hort Sci, 138, 95-101
  36. Malladi A, Vashisth T, Johns LK (2012) Ethephon and methyl jasmonate affect fruit detachment in rabbiteye and southern highbush blueberry. HortSci, 47, 1745-1749
  37. Li L, Kaplunov T, Zutahy Y, Daus A, Porat R, Lichter A (2015) The effects of 1-methylcyclopropane and ethylene on postharvest rachis browning in table grapes. Postharvest Biol Technol, 107, 16-22 https://doi.org/10.1016/j.postharvbio.2015.04.001
  38. Ricquebourg SL, Robert-Da Silva CMF, Rouch CC, Cadet FR (1996) Theoretical support for a conformational change of polyphenol oxidase induced by metabisulfite. J Agric Food Chem, 44, 3457-3460 https://doi.org/10.1021/jf960012x
  39. Gao P, Zhu Z, Zhang P (2013) Effects of chitosan-glucose complex coating on postharvest quality and shelf life of table grapes. Carbohydr Polym, 95, 371-378 https://doi.org/10.1016/j.carbpol.2013.03.029
  40. Ozden C, Bayindirli L (2002) Effects of combinational use of controlled atmosphere, cold storage and edible coating applications on shelf life and quality attributes of green peppers. Eur Food Res Technol, 214, 320-326 https://doi.org/10.1007/s00217-001-0448-z
  41. Candir E, Ozdemir AE, Kamiloglu O, Soylu EM, Dilbaz R, Ustun D (2012) Modified atmosphere packaging and ethanol vapor to control decay of 'Red Globe' table grapes during storage. Postharvest Biol Technol, 63, 98-106 https://doi.org/10.1016/j.postharvbio.2011.09.008
  42. Ustun D, Candir E, Ozdemir AE, Kamiloglu O, Soylu EM, Dilbaz R (2012) Effects of modified atmosphere packaging and ethanol vapor treatment on the chemical composition of 'Red Globe' table grapes during storage. Postharvest Biol Technol, 68, 8-15 https://doi.org/10.1016/j.postharvbio.2012.01.006
  43. Takma DK, Korel F (2017) Impact of preharvest and postharvest alginate treatments enriched with vanillin on postharvest decay, biochemical properties, quality and sensory attributes of table grapes. Food Chem, 221, 187-195 https://doi.org/10.1016/j.foodchem.2016.09.195
  44. Ha SY, Hwang YS, Yang YJ, Park YM (2008) Analysis of quality changes and losses to indicate storability of 'Campbell Early' grape as related to marketing conditions. Kor J Hort Sci Technol, 26, 277-283
  45. Palou L, Crisosto CH, Garner D, Basinal LM, Smilanick JL, Zoffoli JP (2002) Minimum constant sulfur dioxide emission rates to control gray mold of cold stored table grapes. Amer J Enol Vitic, 53, 110-115
  46. Yun SD, Lee SK (1996) Effect of ethylene removal and sulfur dioxide fumigation on grape quality during MA storage. J Kor Soc Hort Sci, 37, 696-699
  47. Pretel MT, Martinez-Madrid MC, Martinez JR, Carreno JC, Romojaro F (2006) Prolonged storage of 'Aledo' table grapes in slightly $CO_{2}$ enriched atmosphere in combination with generators of $SO_{2}$. LWT-Food Sci Technol, 39, 1109-1116 https://doi.org/10.1016/j.lwt.2005.07.022
  48. Noh YH, Kim YE, Song MJ, An JH, Jeong MJ, Hong SB, Kim SH, Lee HI, Cha JS (2014) Post-harvest decay of 'Campbell early' grape. Res Plant Dis, 20, 275-282 https://doi.org/10.5423/RPD.2014.20.4.275

Cited by

  1. Radical scavenging activity of domestic fruit wine vol.25, pp.3, 2017, https://doi.org/10.11002/kjfp.2018.25.3.351
  2. Quality characteristics of grapes stored using phytoncide and sulfur dioxide pads vol.26, pp.3, 2017, https://doi.org/10.11002/kjfp.2019.26.3.253
  3. Quality characteristics of grapes stored using phytoncide and sulfur dioxide pads vol.26, pp.3, 2017, https://doi.org/10.11002/kjfp.2019.26.3.253