DOI QR코드

DOI QR Code

Radical scavenging and α-glucosidase inhibitory effects of Mongolian Iris bungei extract

몽골산 Iris bungei 추출물의 자유 라디칼 소거 및 α-glucosidase 저해 활성

  • Jeong, Yun Hee (Department of Food Science and Biotechnology, Daegu University) ;
  • Jeong, Gyeong Han (Department of Food Science and Biotechnology, Daegu University) ;
  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University)
  • 정윤희 (대구대학교 식품공학과) ;
  • 정경한 (대구대학교 식품공학과) ;
  • 김태훈 (대구대학교 식품공학과)
  • Received : 2017.08.22
  • Accepted : 2017.09.25
  • Published : 2017.10.30

Abstract

In a continuing screening of selected medicinal plants native to Mongolia, the antioxidant and ${\alpha}$-glucosidase inhibitory activities of methanol extract of Iris bungei were investigated. After extraction with 80% of methanol, the methanol fraction was further extracted with n-hexane, EtOAc and n-BuOH in order to obtain four different solvent-soluble fractions, namely n-hexane-soluble, EtOAc-soluble, n-BuOH-soluble and $H_2O$ residue. The antioxidant properties were evaluated by radical scavenging assay using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ($ABTS^+$) radicals. The anti-diabetic efficacy of I. bungei extract was investigated by ${\alpha}$-glucosidase assay. All tested samples showed dose-dependent radical scavenging and ${\alpha}$-glucosidase inhibitory activities. Among the tested extracts, the EtOAc-soluble fractions showed the greatest radical scavenging activity and ${\alpha}$-glucosidase inhibitory properties among other solvent-soluble fractions. This result suggested that there was a significant relationship between the total phenolic content and biological efficacy. Thus, I. bungei extract might be considered as a new potential source of natural antioxidant and as a ${\alpha}$-glucosidase inhibitory source. A more systematic investigation of this biomass sill be performed for further investigation of activity against antioxidative and anti-diabetic effects.

몽골산 I. bungei를 80% 메탄올로 침지 추출하여 얻어진 추출물에 대해 n-hexane, EtOAc 및 n-BuOH의 유기용매를 활용하여 순차 분획을 실시하였고, 얻어진 결과물에 대하여 총 페놀함량, DPPH, $ABTS^+$ 라디칼 소거능 및 ${\alpha}$-glucosidase 저해활성을 평가하였다. DPPH 라디칼 소거활성은 페놀성 화합물의 함량이 높은 EtOAc 가용 분획물에서 $IC_{50}$ 값이 $148.7{\pm}1.6{\mu}g/mL$으로 우수한 DPPH 라디칼 소거 활성을 확인하였고, $ABTS^+$ 라디칼 소거활성 역시 I. bungei의 EtOAc 가용 분획물에서 $IC_{50}$ 값이 $27.8{\pm}0.9{\mu}g/mL$의 매우 우수한 라디칼 소거활성을 확인하였고, 다량 존재하는 페놀성 화합물과 라디칼 소거활성의 관련성을 나타내었다. 또한 ${\alpha}$-glucosidase 저해활성을 평가한 결과 EtOAc 가용 분획물에서 $IC_{50}$값은 $4.6{\pm}0.1{\mu}g/mL$의 강력한 저해활성을 나타내었으며, 이는 양성 대조군인 acarbose의 $IC_{50}$ 값인 $473.2{\pm}5.5{\mu}g/mL$과 비교했을 때 매우 우수한 활성을 나타내었으며, 다양한 화합물이 함유된 상태의 추출물 시료를 단일물질로 정제할 경우 더욱 우수한 활성의 화합물이 존재할 가능성을 기대하게 한다. 향후 이들 추출물의 활성물질 동정을 통한 활성 기작에 대한 연구가 필요하며, 본 연구결과로 보다 우수한 라디칼 소거활성 및 ${\alpha}$-glucosidase 저해활성을 가지는 새로운 천연 기능성 소재 발굴을 위한 기초자료로 활용 가능할 것으로 사료된다.

Keywords

References

  1. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition, 18, 872-879 https://doi.org/10.1016/S0899-9007(02)00916-4
  2. Videla LA, Fermandez V (1988) Biochemical aspects of cellular oxidative stress. Arch Biol Med Exp, 21, 85-92
  3. Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species its mechanism and measurement in mammalian systems. FEBS Lett, 281, 9-19 https://doi.org/10.1016/0014-5793(91)80347-6
  4. Jennings PE, Barnett AH (1988) New approaches to the pathogenesis and treatment of diabetic microangiopathy. Diabetic Med, 5, 111-117 https://doi.org/10.1111/j.1464-5491.1988.tb00955.x
  5. Shim JS, Kim SD, Kim TS, Kim KN (2005) Biological activities of flavonoid glycosides isolated from Angelica keiskei. Korean J Food Sci Technol, 37, 78-83
  6. Farag RS, Badei AZMA, Hewedi FM, EI-Baroty GSA (1989) Antioxidant activity of some spice essential oils on linoleic acid oxidation in aqueous media. J Am Oil Chem Soc, 66, 792-799 https://doi.org/10.1007/BF02653670
  7. Frei B (1994) National Antioxidants in Human Health and Disease. Academic Press, San Diego, CA, USA, p 44-55
  8. Branen AL (1975) Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc, 52, 59-63 https://doi.org/10.1007/BF02901825
  9. Rubin RR, Peyrot M (1999) Quality of life and diabetes. Diabetes Metab Res Rev, 15, 205-218 https://doi.org/10.1002/(SICI)1520-7560(199905/06)15:3<205::AID-DMRR29>3.0.CO;2-O
  10. Patel DK, Kumar R, Laloo D, Hemalatha S (2012) Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed, 2, 411-420
  11. Lee EB, Na GH, Ryu CR, Cho MR (2004) The review on the study of diabetes mellitus in oriental medicine journals. J Korean Orient Med, 25, 169-179
  12. Schwarz K, Mertz W (1959) Chromium (III) and the glucose tolerance factor. Arch Biochem Biophys, 85, 292-295 https://doi.org/10.1016/0003-9861(59)90479-5
  13. Derosa G, Maffioli P (2012) ${\alpha}$-Glucosidase inhibitors and their use in clinical practice. Arch Med Sci, 8, 899-906
  14. Tsujimoto T, Shioyama E, Moriya K, Kawaratani H, Shirai Y, Toyohara M, Mitoro A, Yamao J, Fujii H, Fukui H (2008) Pneumatosis cystoides intestinalis following alpha-glucosidase inhibitor treatment: A case report and review of the literature. World J Gastroenterol, 14, 6087-6092 https://doi.org/10.3748/wjg.14.6087
  15. Kihara Y, Ogami Y, Tabaru A, Unoki H, Otsuki M (1997) Safe and effective treatment of diabetes mellitus associated with chronic liver diseases with an alpha-glucosidase inhibitor, acarbose. J Gastroenterol, 32, 777-782 https://doi.org/10.1007/BF02936954
  16. Zhang A, Ye F, Lu J, Zhao S (2013) Screening ${\alpha}$-glucosidase inhibitor from natural products by capillary electrophoresis with immobilised enzyme onto polymer monolith modified by gold nanoparticles. Food Chem, 141, 1854-1859 https://doi.org/10.1016/j.foodchem.2013.04.100
  17. Choudhary MI, Baig I, Nur-e-Alam M, Shahzad-ul-Hussan S, Ondognii P, Bunderya M, Oyun Z, Atta-ur-Rahman (2001) New ${\alpha}$-glucosidase inhibitors from the Mongolian medicinal plant Ferula mongolica. Helv Chim Acta, 84, 2409-2416 https://doi.org/10.1002/1522-2675(20010815)84:8<2409::AID-HLCA2409>3.0.CO;2-D
  18. Atta-ur-Rahman M, Choudhary MI, Nur-e-Alam M, Ndognii PO, Badarchiin T, Purevsuren G (2000) Two new quinones from Iris bungei. Chem Pharm Bull, 48, 738-739 https://doi.org/10.1248/cpb.48.738
  19. Lin B, Wang G, Wang Q, Ge C, Qin M (2011) A new belamcandaquinone from the seeds of Iris bungei Maxim.. Fitoterapia, 82, 1137-1139 https://doi.org/10.1016/j.fitote.2011.07.016
  20. Choudhary MI, NureAlam M, Akhtar F, Ahmad S, Baig I, Ondoegnii P, Gombosurengyin P, AttaurRahman (2001) Five new peltogynoids from underground parts of Iris bungei: A Mongolian medicinal plant. Chem Pharm Bull, 49, 1295-1298 https://doi.org/10.1248/cpb.49.1295
  21. Choudhary MI, Nur-e-Alam M, Baig I, Akhtar F, Khan AM, Ndognii PO, Badarchiin T, Purevsuren G, Nahar N, Atta-ur-Rahman (2001) Four new flavones and a new isoflavone from Iris bungei. J Nat Prod, 64, 857-860 https://doi.org/10.1021/np000560b
  22. Gao X, Bjork L, Trajkovski V, Uggla M (2000) Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J Sci Food Agric, 80, 2021-2027 https://doi.org/10.1002/1097-0010(200011)80:14<2021::AID-JSFA745>3.0.CO;2-2
  23. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  24. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  25. Eom SH, Lee SH, Yoon NY, Jung WK, Jeon YJ, Kim SK, Lee MS, Kim YM (2012) ${\alpha}$-Glucosidase- and ${\alpha}$-amylase inhibitory activities of phlorotannins from Eisenia bicyclis. J Sci Food Agric, 92, 2084-2090 https://doi.org/10.1002/jsfa.5585
  26. Wang SY, Chang HN, Lin KT, Lo CP, Yang NS, Shyur LF (2003) Antioxidant properties and phytochemical characteristics of extracts from Lactuca indica. J Agric Food Chem, 51, 1506-1512 https://doi.org/10.1021/jf0259415
  27. Selenge E, Murata T, Tanaka S, Sasaki K, Batkhuu J, Yoshizaki F (2014) Monoterpene glycosides, phenylpropanoids, and acacetin glycosides from Dracocephalum foetidum. Phytochemistry, 101, 91-100 https://doi.org/10.1016/j.phytochem.2014.02.007
  28. Boldbaatar D, EI-Seedi HR, Findakly M, Jabri S, Javzan B, Choidash B, Goransson U, Hellman B (2014) Antigenotoxic and antioxidant effects of the Mongolian medicinal plant Leptopyrum fumarioides (L): An in vitro study. J Ethnopharmacol, 155, 599-606 https://doi.org/10.1016/j.jep.2014.06.005
  29. Birasuren B, Kim NY, Jeon HL, Kim MR (2013) Evaluation of the antioxidant capacity and phenolic content of Agriophyllum pungens seed extracts from Mongolia. Prev Nutr Food Sci, 18, 188-195 https://doi.org/10.3746/pnf.2013.18.3.188