DOI QR코드

DOI QR Code

Heating Performance Analysis of the Heat Pump System for Agricultural Facilities using the Waste Heat of the Thermal Power Plant as Heat Source

발전소 폐열을 이용한 농업시설용 히트펌프시스템의 난방 성능 분석

  • Kang, Youn Koo (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Kang, Suk Won (Division of Energy & Environmental Engineering, NIAS, RDA) ;
  • Paek, Yee (Division of Energy & Environmental Engineering, NIAS, RDA) ;
  • Kim, Young Hwa (Division of Energy & Environmental Engineering, NIAS, RDA) ;
  • Jang, Jae Kyung (Division of Energy & Environmental Engineering, NIAS, RDA) ;
  • Ryou, Young Sun (Division of Energy & Environmental Engineering, NIAS, RDA)
  • 강연구 (농촌진흥청 국립원예특작과학원 시설원예연구소) ;
  • 강석원 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과) ;
  • 백이 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김영화 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과) ;
  • 장재경 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과) ;
  • 유영선 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과)
  • Received : 2017.07.24
  • Accepted : 2017.09.28
  • Published : 2017.10.31

Abstract

In this study, the heating performance and the energy saving effect of the heat pump system using hot waste water(waste heat) of the thermal power plant discharged from a thermal power plant to the sea were analyzed. The greenhouse area was $5,280m^2$ and scale of the heat pump system was 120 RT(Refrigeration Ton), which was divided into 30 RT, 40 RT and 50 RT. The heat pump system consisted of the roll type heat exchangers, hot waste water transfer pipes, heat pumps(30, 40, 50 RT), a heat storage tank and fan coil units. The roll type heat exchangers was made of PE(Poly Ethylene) pipes in consideration of low cost and durability against corrosion, because hot waste water(sea water) is highly corrosive. And the heating period was 5 months from October to February. During the heating performance test(12 hours), the inlet water temperature of evaporator was changed from $32^{\circ}C$ to $26^{\circ}C$, and heat absorption of he evaporator was changed from 175 kW to 120 kW. The inlet water temperature of the condenser rose linearly from $15^{\circ}C$ to $50^{\circ}C$, and the heat release of condenser was reduced by 40 kW from 200 kW to 160 kW. And the power consumption of the heat pump system increased from 30 kW to 42 kW. When the inlet water temperature of condenser was $15^{\circ}C$, the heating COP(Coefficient Of Performance) was over 7.0. When it was $30^{\circ}C$, it dropped to 5.0, and when it was above $40^{\circ}C$, it decreased to less than 4.0. It was analyzed that the reduction of heating energy cost was 87% when compared to the duty free diesel that the carbon dioxide emission reduction effect was 62% by recycling the waste heat of the thermal power plant as a heat source of the heat pump system.

쓰레기 소각장이나 산업체의 폐열을 농업에 활용한 사례는 몇몇 있었다. 그러나 온배수를 농업에 활용한 사례는 전무하였으며, 치어, 종패 등을 양식하는 수산업이 대부분이었다. 본 연구에서는 화력발전소의 온배수(폐열)를 열원으로 이용하는 120 RT 규모의 냉난방시스템을 제주특별자치도 서귀포시 안덕면 소재의 $5,280m^2$ 아열대 작물(망고) 재배온실에 설치, 10월에서 다음해 2월까지 약 5개월 동안 난방을 실시하여 난방에너지 비용 절감 효과 등 분석하였다. 난방에너지 비용 절감효과는 면세경유에 대하여 87%이였으며, 또한 발전소의 온배수를 에너지원으로 재활용함으로서 62%의 이산화탄소 배출 저감 효과를 얻었다. 본 연구를 계기로 2015년에 해수가 수열에너지 분야로 재생에너지에 포함되었다. 해수의 표층의 열을 히트펌프를 사용하여 변환시켜 얻은 에너지라는 수열에너지 분야의 기준과 범위를 볼 때, 이는 온배수가 재생에너지에 포함되었다고 말해도 과언이 아닐 것으로 사료된다. 그 이유는 온배수도 해수임에도 불구하고 온도가 일반 해수보다 $7{\sim}8^{\circ}C$ 높아, 일반 해수를 히트펌프의 열원으로 이용하는 것보다 온배수를 열원으로 이용했을 때 히트펌프의 성능이 높기 때문이다. 또한 같은 해 농식품부의 폐열 재이용 시설 지원 사업이 발표되어, 발전소 온배수뿐만 아니라 산업체와 소각장의 폐열을 농업에 활용하면 지원을 받을 수 있게 되었다. 이 사업에 의하여 2015년 당진시, 하동군, 제주시, 곡성군이 선정되었으며, 2016년 태안군, 서귀포시 등이 선정되어, 2016년 말 곡성군과 제주시가 공사를 완료, 농업에 폐열을 활용하고 있으며(제주시는 발전소, 곡성군은 산업체 폐열을 이용하고 있음), 기타 지역은 추진 중이다.

Keywords

References

  1. Ahn, J.S., S.W. Kim, M.H. Park, J.D. Hwang, and J.W. Lim. 2014. Seasonal variation of thermal effluents dispersion from Kori nuclear power plant derived form satellite data. Journal of the Korean Association of Geographic Information Studies 17(4):52-68 (in Korean). https://doi.org/10.11108/kagis.2014.17.4.052
  2. http://www.sisaweek.com/news/articleView.html?idxno=46987 (in Korean).
  3. http://co2.kemco.or.kr/directory/toe.asp. 2011. Oil conversion tons calculated. Korea energy agency (in Korean).
  4. Hwang, I.T., and D.H. Kim. 2011. Near field hydrodynamic analysis of the submerged thermal discharge using CFD model. Journal of Korean Society of Coastal and Ocean Engineers 23(6):466-473 (in Korean). https://doi.org/10.9765/KSCOE.2011.23.6.466
  5. Jeon, J.G., D.G. Lee, Y. Peak, and H.K. Kim. 2015. Study on heating performance of hybrid heat pump system using geothermal source and solar heat for protected horticulture. J. of the Korean Solar Energy Society 35(5):49-56 (in Korean). https://doi.org/10.7836/kses.2015.35.5.049
  6. Jeong, J.C, 2015, The comparison of thermal infrared satellite observation for plume assessment of thermal discharge, Journal of environmental impact assessment 24(4):367-374 (in Korean). https://doi.org/10.14249/eia.2015.24.4.367
  7. Jeong, J.H., 2012, A feasibility analysis on the thermal energy utilization of power plants cooling water for greenhouse heating. MD Diss., Korea Univ. (in Korean).
  8. Kang, Y.K., Y.S. Ryou, G.C. Kang, Y. Paek, and Y.J. Kim. 2007. Heating performance of horizontal geothermal heat pump system for protected horticulture. J. of Biosystems Eng. 32(1):30-36 (in Korean). https://doi.org/10.5307/JBE.2007.32.1.030
  9. Kang, Y.K., Y.S. Ryou, J.G. Kim, Y.H. Kim, and J.K. Jang. 2013. Analysis on Cooling Effects of the Vertical Type Geothermal Heat Pump System Installed in a Greenhouse for Raising Seedling. Protected horticulture and plant factory 22(1):19-25 (in Korean). https://doi.org/10.12791/KSBEC.2013.22.1.019
  10. Kwon, J.K., G.H. Kang, J.P. Moon, Y.K. Kang, C.K. Kim, and S.J. Lee. 2013. Performance Improvement of an Air Source Heat Pump by Storage of Surplus Solar Energy in Greenhouse. Protected Horticulture and Plant Factory 22(4):328-334 (in Korean). https://doi.org/10.12791/KSBEC.2013.22.4.328
  11. Kwon, J.K., J.G. Jeon, S.H. Kim, and H.G. Kim. 2016. Application Effect of Heating Energy Saving Package on Venlo Type Glasshouse of Paprika Cultivation. Protected Horticulture and Plant Factory 25(4):225-231 (in Korean). https://doi.org/10.12791/KSBEC.2016.25.4.225
  12. Lee, G. G., I. G. Jung, and H. D. Chun. 2011. An Analysis on the Construction of Energy Exchange Network to Recover Waste Heat Energy in Pohang Steel Industrial Complex. Clean technology 17(4):406-411 (in Korean). https://doi.org/10.7464/KSCT.2011.17.4.406
  13. Lee, J. H. 2016. Energetic and economic feasibility analysis of utilizing waste heat from power plant and incineration facility for large-scale horticulture facilities. MD Diss., Hanbat Univ. (in Korean).
  14. Maeng, J.H., K.Y. Kim, Y.R. Kim, M.B. Shon, J.H. Kim and M.H. Son. 2015. Difference in macrobenthic community structure at thermal effluent discharge areas of two nuclear power plants in Korea. Journal of the Korean Society for Marine Environment & Energy 18(3):157-165 (in Korean). https://doi.org/10.7846/JKOSMEE.2015.18.3.157
  15. Ministry of Agriculture, Food and Rural Affairs. 2016. Major statistics of agriculture, forestry and fisheries (in Korean).
  16. Ministry of Trade, Industry and Energy. 2015. http://www.sisapress.com/journal/article/141801 (in Korean).
  17. Rural Development Administration(RDA). 2013. Agricultural products income book (in Korean).
  18. Ryou, Y.S., Y.K. Kang, G.C. Kang, Y.J. Kim, and Y. Paek. 2008. Cooling performance of horizontal type geothermal heat pump system for protected hoticulture. Journal of Bio-Environment Control 17(2):90-95 (in Korean).
  19. Ryou, Y.S., Y.K. Kang, J.K. Jang, Y.H. Kim, J.G. Kim, and G.C. Kang. 2012. Heat Exchanger Design of a Heat Pump System Using the Heated Effluent of Thermal Power Generation Plant as a Heat Source for Greenhouse Heating. Journal of Bio-Environment Control 21(4):372-378 (in Korean). https://doi.org/10.12791/KSBEC.2012.21.4.372