DOI QR코드

DOI QR Code

Identifying Roadway Sections Influenced by Speed Humps Using Survival Analysis

생존분석을 활용한 과속방지턱 영향구간 분석

  • YOON, Gyugeun (Department of Transportation System Research, The Seoul Institute) ;
  • JANG, Youlim (Transportation Big Data Center, Korea Transportation Safety Authority) ;
  • KHO, Seung-Young (Department of Civil and Environmental Engineering, Seoul National University) ;
  • LEE, Chungwon (Department of Civil and Environmental Engineering, Seoul National University)
  • 윤규근 (서울연구원 교통시스템연구실) ;
  • 장유림 (교통안전공단 교통빅데이터센터) ;
  • 고승영 (서울대학교 건설환경공학부) ;
  • 이청원 (서울대학교 건설환경공학부)
  • Received : 2016.07.04
  • Accepted : 2017.08.29
  • Published : 2017.08.31

Abstract

This study defines influencing sections as the part of the road section where passing vehicles are traveling with the lower speed compared to speed limit due to speed humps. The influencing section was divided into 3 parts; influencing section before the speed hump, interval section, and influencing section after the speed hump. This analysis focused on the changes of each part depending on installation types, vehicle types, and daytime or nighttime. For the interval section, especially, the ratio of distance traveled with lower speed than speed limit to interval section is defined as effective influencing section ratio to be analyzed. Vehicle speed profiles were collected with a speed gun to extract influencing section lengths. The survival analysis was applied and estimated survival functions are compared with each other by several statistical tests. As a consequence, the average length of influencing section on the 50m sequential speed humps was 75.3% longer during the deceleration than that of isolated speed hump, and 18.9% during the acceleration. The effective influencing section ratio for the 30m and 50m sequential speed humps had a small difference of 81.0% and 76.0% while the absolute values of the section that passing speed were less than the speed limit were longer on 50m sequential speed humps, each being 24.3m and 38.0m. Using the log rank test, it was evident that sequential speed humps were more effective to increase the length of influencing sections compared to the isolated speed hump. Vehicle type was the strong factor for influencing section length on the isolated speed hump, but daytime or nighttime was not the effective one. This research result can be used for improving the efficiency selecting the installation point of speed humps for road safety and estimating the standard of the distance between sequential speed humps.

본 연구에서는 과속방지턱으로 인해 통과차량이 제한속도 이하로 주행하게 되는 구간을 영향구간이라 정의하였다. 이를 과속방지턱 통과 전 구간 사이 구간 통과 후 구간으로 구분한 뒤, 단독 및 연속 설치 여부 차종 시간대 등 다양한 요인들로 인한 변화를 분석하였다. 특히, 사이 구간에서는 구간 내에서 제한속도 이하로 주행한 거리의 비율을 유효영향구간비율로 정의하여 분석하였다. 스피드건으로 과속방지턱을 통과하는 차량들의 속도궤적을 수집하여 영향구간의 길이를 산출하였고, 생존분석을 이용하여 추정한 영향구간의 생존함수를 비교하였다. 설치 형태에 따른 변화 분석 결과, 50m 간격 연속형 과속방지턱의 통과 전 평균 영향구간 길이는 단일형보다 75.3% 길었으며, 통과 후 평균 영향구간은 18.9% 긴 것으로 나타났다. 연속형 과속방지턱의 유효영향구간비율은 30m와 50m 간격에서 각각 81.0%와 76.0%로 큰 차이가 없었으나, 제한속도 이하로 주행한 절대적 길이는 각각 24.3m와 38.0m로 50m 간격에서 더 길었다. 차종별로 추정된 영향구간의 생존함수에 대해 로그순위검정을 수행한 결과 연속형 과속방지턱의 영향구간이 단일형 과속방지턱보다 길다는 것이 통계적으로 유의하였다. 차종은 단일형 과속방지턱에서 유의한 차이를 나타냈으나, 주야 시간대는 유효한 요인이 아닌 것으로 판명되었다. 본 연구의 결과는 과속방지턱의 적정 설치 위치 또는 연속형 과속방지턱의 적정 간격 산정의 근거로 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Barbosa H. M., Tight M. R., May A. D. (2000), A Model of Speed Profiles for Traffic Calmed Roads, Transp. Res., Part A, 34(2), Pergamon, 103-123. https://doi.org/10.1016/S0965-8564(98)00067-6
  2. Gilmore D. K., Bauer K. M., Torbic D. J., Kinzel C. S., Frazier R. J. (2013), Treatment Effects and Design Guidance for High-to Low-Speed Transition Zones for Rural Highways, Transp. Res. Rec., 2348(1), TRB, 47-57. https://doi.org/10.3141/2348-06
  3. Herrstedt L. (1992), Traffic Calming Design-a Speed Management Method: Danish Experiences on Environmentally Adapted Through Roads, Accid. Anal. Prev., 24(1), Elsevier, 3-16. https://doi.org/10.1016/0001-4575(92)90067-S
  4. Jung Y. I., Beak T. H., Kim Y. H., Park B. H. (2014), Traffic Accident Reduction Effects of Section Speed Enforcement Systems(SSES) Operation in Freeways, J. Korea Soc. Transp, 32(2), Korean Society of Transportation, 119-129. https://doi.org/10.7470/jkst.2014.32.2.119
  5. Kim J. S. (2003), An Effect Analysis on the Traffic Speed Variations of Vehicles Passing the Speed Hump, Master Thesis, Graduate School of Environmental Studies, Hanyang University, Seoul.
  6. Kim Y. J. (2013), Survival Analysis, Jayu Academy, Paju, South Korea, 33-42.
  7. Lee C. H., Kum K. J. (2015), A Study on the Speeding Intention and Behaviors Based on a Driver Behavior Questionnaire, J. Korea Soc. Transp, 33(2), Korean Society of Transportation, 159-169. https://doi.org/10.7470/jkst.2015.33.2.159
  8. Lee H. W., Joo D. H., Hyun C. S., Kim D. H., Park B. H., Lee C. K. (2012), An Analysis Effects of Travel Speed Using the Safety Facilities in the School Zones, J. of Korea Inst. of Intell. Transp. Syst., 11(3), Korea Institute of Intelligent Transport Systems, 124-132. https://doi.org/10.12815/kits.2012.11.3.124
  9. Ministry of Land, Transport and Maritime Affairs (2011), Manual for Installation and Maintenance of Road Safety Measures: Speed Humps (도로안전시설 설치 및 관리 지침 - 과속방지턱 편).
  10. Moon J., Kim D. (2014), A Study on Headway Distribution Models of Rural Two Lane Roads, Int. J. Highw. Eng., 16(1), Korea Society of Road Engineers, 49-56. https://doi.org/10.7855/IJHE.2014.16.1.049
  11. Moreno A. T., Garcia A. (2013), Use of Speed Profile as Surrogate Measure: Effect of Traffic Calming Devices on Crosstown Road Safety Performance, Accid. Anal. Prev., 61, Elsevier, 23-32. https://doi.org/10.1016/j.aap.2012.10.013
  12. Moreno A. T., García A., Romero M. A. (2011), Speed Table Evaluation and Speed Modeling for Low-Volume Crosstown Roads, Transp. Res. Rec., 2203(1), TRB, 85-93. https://doi.org/10.3141/2203-11
  13. Park J. B. (2006), Survival Analysis: Theory and Practice, Shinkwang, Seoul, South Korea, 11-14.
  14. Yeo I., Baek J. G., Choi J. W., Kim Y. S. (2013), The Optimal Spacing of Speed Humps in Traffic Calming Areas, Int. J. of Highw. Eng., 15(3), Korea Society of Road Engineers, 151-157. https://doi.org/10.7855/IJHE.2013.15.3.151
  15. Yoo C. H. (1994), The Analysis of the Effect in the Vehicle Speed Control Hump: Focused on the NoWon Gu in Seoul, Master Thesis, Graduate School of Public Administration, Sungkyunkwan University, Seoul.