DOI QR코드

DOI QR Code

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part I. All Vanadium Redox Flow Battery

가교도가 조절된 세공충진 이온교환막의 제조 및 전기화학적 응용: Part I. 전 바나듐 레독스 흐름전지

  • Lee, Ji-Eun (Department of Green Chemical Engineering, Sangmyung University) ;
  • Park, Ye-Rin (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kim, Do-Hyeong (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
  • 이지은 (상명대학교 그린화학공학과) ;
  • 박예린 (상명대학교 그린화학공학과) ;
  • 김도형 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2017.10.23
  • Accepted : 2017.10.26
  • Published : 2017.10.31

Abstract

In this study, we have developed pore-filled ion-exchange membranes (PFIEMs) filled with ionomer in a thin polyethylene porous film (thickness = $25{\mu}m$) and investigated the charge-discharge characteristics of the all vanadium redox flow battery (VRFB) employing them. Especially, the degree of crosslinking and free volume of the PFIEMs were appropriately controlled to produce ion-exchange membranes exhibiting both the low membrane resistance and low vanadium permeability by mixing crosslinking agents having different molecular size. As a result, the prepared PFIEMs exhibited excellent electrochemical properties which are comparable to those of the commercial membranes. Also, it was confirmed through the experiments of vanadium ion permeability and VRFB performance evaluation that the PFIEMs showed low vanadium ion permeability and high charge-discharge efficiency in comparison with the commercial membrane despite their thin film thickness.

본 연구에서는 얇은 폴리에틸렌 계 다공성 필름(두께 = $25{\mu}m$)에 이오노머를 충진시킨 세공충진 이온교환막을 개발하였으며 이를 적용한 전 바나듐 레독스 흐름전지의 충방전 특성을 고찰하였다. 특히 분자 크기가 다른 가교제를 혼합함으로써 이온교환막의 가교도 및 자유체적을 적절히 제어하여 저저항 및 저 바나듐 투과도를 나타내는 이온교환막을 제조하고자 하였다. 실험 결과, 제조된 세공충진 이온교환막은 상용막 대비하여 동등 수준의 우수한 전기화학적 특성을 나타내었다. 또한 바나듐 이온 투과도 및 전 바나듐 레독스 흐름전지 성능 평가 실험을 통해 얇은 막 두께에도 불구하고 상용막 대비하여 낮은 바나듐 이온 투과도와 높은 충방전 효율을 나타냄을 확인하였다.

Keywords

References

  1. M. Skyllas-Kazacos and F. Grossmith, "Efficient vanadium redox flow cell", J. Electrochem. Soc., 134, 2950 (1987). https://doi.org/10.1149/1.2100321
  2. G. J. Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 120, 55 (1996). https://doi.org/10.1016/0376-7388(96)00135-4
  3. W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, "Recent progress in redox flow battery research and development", Adv. Funct. Mater., 23, 970 (2013). https://doi.org/10.1002/adfm.201200694
  4. G. J. Hwang and H. Ohya, "Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 132, 55 (1997). https://doi.org/10.1016/S0376-7388(97)00040-9
  5. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, "Electrochemical energy storage for green grid", Chemical reviews, 111, 3021 (2011). https://doi.org/10.1021/cr1003612
  6. C. Ding, H. Zhang, X. Li, T. Liu, and F. Xing, "Vanadium flow battery for energy storage: Prospects and challenges", J. Phys. Chem. Lett., 4, 1281 (2013). https://doi.org/10.1021/jz4001032
  7. B. Jiang, L. Yu, L. Wu, D. Mu, L. Liu, J. Xi, and X. Qiu, "Insights into the impact of the Nafion membrane pretreatment process on vanadium flow battery Performance", ACS Appl. Mater. Interfaces, 8, 12228 (2016). https://doi.org/10.1021/acsami.6b03529
  8. S. C. Chieng, M. Kazacos, and M. S. Kazacos, "Preparation and evaluation of composite membrane for vanadium redox battery application", J. Power Sources, 39, 11 (1992). https://doi.org/10.1016/0378-7753(92)85002-R
  9. T. Mohammadi, S. C. Chieng, and M. S. Kazacos, "Water transport study across commercial ion exchange membranes in the vanadium redox flow battery", J. Membr. Sci., 133, 151 (1997). https://doi.org/10.1016/S0376-7388(97)00092-6
  10. T. Mohammadi and M. S. Kazacos, "Evaluation of the chemical stability of some membranes in vanadium solution", J. Appl. Electrochem., 27, 153 (1997). https://doi.org/10.1023/A:1018495722379
  11. C. Sun, J. Chen, H. Zhang, X. Han, and Q. Luo, "Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery", J. Power Sources, 195, 890 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.041
  12. D. Chen, M. A. Hickner, E. Agar, and E. C. Kumbur, "Optimized anion exchange membranes for vanadium redox flow batteries", ACS Appl. Mater. Interfaces, 5, 7559 (2013). https://doi.org/10.1021/am401858r
  13. M. Vijayakumar, B. Schwenzer, S. Kim, Z. Yang, S. Thevuthasan, J. Liu, G. L. Graff, and J. Hu, "Investigation of local environments in Nafion- $SiO_2$ composite membranes used in vanadium redox flow batteries", Solid State Nuclear Magnetic Resonance, 42, 71 (2012). https://doi.org/10.1016/j.ssnmr.2011.11.005
  14. T. Yamaguchi, S. Nakao, and S. Kimura, "Plasmagraft filling polymerization: Preparation of a new type of pervaporation membrane for organic liquid mixtures", Macromolecules, 24, 5522 (1991). https://doi.org/10.1021/ma00020a006
  15. T. Yamaguchi, F. Miyata, and S. Nakao, "Porefilling type polymer electrolyte membranes for a direct methanol fuel cell", J. Membr. Sci., 214, 283 (2003). https://doi.org/10.1016/S0376-7388(02)00579-3
  16. D.-H. Kim, J.-S. Park, M. Choun, J. Lee, and M.-S. Kang, "Pore-filled anion-exchange membranes for electrochemical energy conversion applications", Electrochim. Acta, 222, 212 (2016). https://doi.org/10.1016/j.electacta.2016.10.041
  17. D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.43
  18. D.-H. Kim, J.-S. Park, and M.-S. Kang, "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 152 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.152
  19. S.-J. Seo, B.-C. Kim, K.-W. Sung, J. Shim, J.-D. Jeon, K.-H. Shin, S.-H. Shin, S.-H. Yun, J.-Y. Lee, and S.-H. Moon, "Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications", J. Membr. Sci., 428, 17 (2013). https://doi.org/10.1016/j.memsci.2012.11.027
  20. W. Wei, H. Zhang, X. Li, Z. Mai, and H. Zhang, "Poly(tetrafluoroethylene) reinforced sulfonated poly(ether ether ketone) membranes for vanadium redox flow battery application", J. Power Sources, 208, 421 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.047
  21. X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, "Ion exchange membranes for vanadium redox flow battery (VRB) applications", Energy Environ. Sci., 4, 1147 (2011). https://doi.org/10.1039/c0ee00770f
  22. D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.129