DOI QR코드

DOI QR Code

Writing, erasing and reading histone lysine methylations

  • Hyun, Kwangbeom (Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Jeon, Jongcheol (Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Park, Kihyun (Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jaehoon (Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Received : 2016.12.19
  • Accepted : 2016.12.20
  • Published : 2017.04.30

Abstract

Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases ('writers') and demethylases ('erasers'). In addition, distinct effector proteins ('readers') recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Luger K, Hansen JC. Nucleosome and chromatin fiber dynamics. Curr Opin Struct Biol 2005; 15: 188-196. https://doi.org/10.1016/j.sbi.2005.03.006
  2. Kouzarides T. Chromatin modifications and their function. Cell 2007; 128: 693-705. https://doi.org/10.1016/j.cell.2007.02.005
  3. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet 2016; 17: 487-500. https://doi.org/10.1038/nrg.2016.59
  4. Wang GG, Allis CD. Misinterpretation' of a histone mark is linked to aberrant stem cells and cancer development. Cell Cycle 2009; 8: 1982-1983.
  5. Chi P, Allis CD, Wang GG. Covalent histone modifications-miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 2010; 10: 457-469. https://doi.org/10.1038/nrc2876
  6. Allfrey VG, Mirsky AE. Structural modifications of histones and their possible role in the regulation of RNA synthesis. Science 1964; 144: 559.
  7. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M et al. Regulation of chromatin structure by site specific histone H3 methyltransferases. Nature 2000; 406: 593-599. https://doi.org/10.1038/35020506
  8. Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 2005; 6: 227. https://doi.org/10.1186/gb-2005-6-8-227
  9. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119: 941-953. https://doi.org/10.1016/j.cell.2004.12.012
  10. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P et al. Histone demethylation by a family of JmjC domaincontaining proteins. Nature 2006; 439: 811-816. https://doi.org/10.1038/nature04433
  11. Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005; 6: 838-849. https://doi.org/10.1038/nrm1761
  12. Musselman CA, Khorasanizadeh S, Kutateladze TG. Towards understanding methyllysine readout. Biochim Biophys Acta 2014; 1839: 686-693. https://doi.org/10.1016/j.bbagrm.2014.04.001
  13. Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 2012; 48: 491-507. https://doi.org/10.1016/j.molcel.2012.11.006
  14. Chandrasekharan MB, Huang F, Sun ZW. Histone H2B ubiquitination and beyond: regulation of nucleosome stability, chromatin dynamics and the trans-histone H3 methylation. Epigenetics 2010; 5: 460-468. https://doi.org/10.4161/epi.5.6.12314
  15. Vastenhouw NL, Schier AF. Bivalent histone modifications in early embryogenesis. Curr Opin Cell Biol 2012; 24: 374-386. https://doi.org/10.1016/j.ceb.2012.03.009
  16. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012; 13: 343-357.
  17. Song Y, Wu F, Wu J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J. Hematol Oncol 2016; 9: 49. https://doi.org/10.1186/s13045-016-0279-9
  18. Wang Y, Han Y, Fan E, Zhang K. Analytical strategies used to identify the readers of histone modifications: a review. Anal Chim Acta 2015; 891: 32-42. https://doi.org/10.1016/j.aca.2015.06.049
  19. Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012; 81: 65-95. https://doi.org/10.1146/annurev-biochem-051710-134100
  20. Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 2001; 15: 3286-3295. https://doi.org/10.1101/gad.940201
  21. Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M et al. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 2001; 98: 12902-12907. https://doi.org/10.1073/pnas.231473398
  22. Roguev A, Schaft D, Shevchenko A, Pijnappel WW, Wilm M, Aasland R et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 2001; 20: 7137-7148. https://doi.org/10.1093/emboj/20.24.7137
  23. Dehe PM, Geli V. The multiple faces of Set1. Biochem Cell Biol 2006; 84: 536-548. https://doi.org/10.1139/o06-081
  24. Patel A, Dharmarajan V, Vought VE, Cosgrove MS. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J Biol Chem2009; 284: 24242-24256.
  25. Patel A, Vought VE, Dharmarajan V, Cosgrove MS. A conserved argininecontaining motif crucial for the assembly and enzymatic activity of the mixed lineage leukemia protein-1 core complex. J Biol Chem 2008; 283: 32162-32175. https://doi.org/10.1074/jbc.M806317200
  26. Shinsky SA, Hu M, Vought VE, Ng SB, Bamshad MJ, Shendure J et al. A non-active-site SET domain surface crucial for the interaction of MLL1 and the RbBP5/Ash2L heterodimer within MLL family core complexes. J Mol Biol 2014; 426: 2283-2299. https://doi.org/10.1016/j.jmb.2014.03.011
  27. Shinsky SA, Monteith KE, Viggiano S, Cosgrove MS. Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation. J Biol Chem 2015; 290: 6361-6375. https://doi.org/10.1074/jbc.M114.627646
  28. Lee JH, Skalnik DG. Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol 2008; 28: 609-618. https://doi.org/10.1128/MCB.01356-07
  29. Lee JH, Skalnik DG. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 2005; 280: 41725-41731. https://doi.org/10.1074/jbc.M508312200
  30. Xu C, Bian C, Lam R, Dong A, Min J. The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain. Nat Commun 2011; 2: 227. https://doi.org/10.1038/ncomms1237
  31. Clouaire T, Webb S, Skene P, Illingworth R, Kerr A, Andrews R et al. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev 2012; 26: 1714-1728. https://doi.org/10.1101/gad.194209.112
  32. Agarwal SK, Jothi R. Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors. PLoS ONE 2012; 7: e37952. https://doi.org/10.1371/journal.pone.0037952
  33. Lefevre GM, Patel SR, Kim D, Tessarollo L, Dressler GR. Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype. PLoS Genet 2010; 6: e1001142. https://doi.org/10.1371/journal.pgen.1001142
  34. Takahashi YH, Westfield GH, Oleskie AN, Trievel RC, Shilatifard A, Skiniotis G. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci USA 2011; 108: 20526-20531. https://doi.org/10.1073/pnas.1109360108
  35. Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S et al. Structural basis for activity regulation of MLL family methyltransferases. Nature 2016; 530: 447-452. https://doi.org/10.1038/nature16952
  36. Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 2002; 418: 104-108. https://doi.org/10.1038/nature00883
  37. Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston M et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 2002; 277: 28368-28371. https://doi.org/10.1074/jbc.C200348200
  38. Dehe PM, Pamblanco M, Luciano P, Lebrun R, Moinier D, Sendra R et al. Histone H3 lysine 4 mono-methylation does not require ubiquitination of histone H2B. J Mol Biol 2005; 353: 477-484. https://doi.org/10.1016/j.jmb.2005.08.059
  39. Shahbazian MD, Zhang K, Grunstein M. Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1. Mol Cell 2005; 19: 271-277. https://doi.org/10.1016/j.molcel.2005.06.010
  40. Lee JS, Shukla A, Schneider J, Swanson SK, Washburn MP, Florens L et al. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 2007; 131: 1084-1096. https://doi.org/10.1016/j.cell.2007.09.046
  41. Vitaliano-Prunier A, Menant A, Hobeika M, Geli V, Gwizdek C, Dargemont C. Ubiquitylation of the COMPASS component Swd2 links H2B ubiquitylation to H3K4 trimethylation. Nat Cell Biol 2008; 10: 1365-1371. https://doi.org/10.1038/ncb1796
  42. Kim J, Kim JA, McGinty RK, Nguyen UT, Muir TW, Allis CD et al. The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation. Mol Cell 2013; 49: 1121-1133. https://doi.org/10.1016/j.molcel.2013.01.034
  43. Kim J, Hake SB, Roeder RG. The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell 2005; 20: 759-770. https://doi.org/10.1016/j.molcel.2005.11.012
  44. Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P et al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 2005; 20: 601-611. https://doi.org/10.1016/j.molcel.2005.09.025
  45. Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA et al. RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 2009; 137: 459-471. https://doi.org/10.1016/j.cell.2009.02.027
  46. Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 2009; 461: 415-418. https://doi.org/10.1038/nature08315
  47. Lee MG, Wynder C, Cooch N, Shiekhattar R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 2005; 437: 432-435. https://doi.org/10.1038/nature04021
  48. Lan F, Collins RE, De Cegli R, Alpatov R, Horton JR, Shi X et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 2007; 448: 718-722. https://doi.org/10.1038/nature06034
  49. Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI et al. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 2010; 29: 1803-1816. https://doi.org/10.1038/emboj.2010.63
  50. Hojfeldt JW, Agger K, Helin K. Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Discov 2013; 12: 917-930. https://doi.org/10.1038/nrd4154
  51. Sinha KM, Yasuda H, Coombes MM, Dent SY, de Crombrugghe B. de Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase. EMBO J 2010; 29: 68-79. https://doi.org/10.1038/emboj.2009.332
  52. Christensen J, Agger K, Cloos PA, Pasini D, Rose S, Sennels L et al. RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 2007; 128: 1063-1076. https://doi.org/10.1016/j.cell.2007.02.003
  53. Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H et al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 2007; 25: 801-812. https://doi.org/10.1016/j.molcel.2007.03.001
  54. Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 2007; 447: 601-605. https://doi.org/10.1038/nature05823
  55. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 2007; 318: 447-450. https://doi.org/10.1126/science.1149042
  56. Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 2007; 128: 1077-1088. https://doi.org/10.1016/j.cell.2007.02.017
  57. Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P et al. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 2007; 128: 889-900. https://doi.org/10.1016/j.cell.2007.02.013
  58. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007; 39: 311-318. https://doi.org/10.1038/ng1966
  59. Kim T, Buratowski S. Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5' transcribed regions. Cell 2009; 137: 259-272. https://doi.org/10.1016/j.cell.2009.02.045
  60. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC. Active genes are tri-methylated at K4 of histone H3. Nature 2002; 419: 407-411. https://doi.org/10.1038/nature01080
  61. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G et al. Genome-wide maps of chromatin state in pluripotent and lineagecommitted cells. Nature 2007; 448: 553-560. https://doi.org/10.1038/nature06008
  62. Narayanan A, Ruyechan WT, Kristie TM. The coactivator host cell factor-1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection. Proc Natl Acad Sci USA 2007; 104: 10835-10840. https://doi.org/10.1073/pnas.0704351104
  63. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004; 24: 5639-5649. https://doi.org/10.1128/MCB.24.13.5639-5649.2004
  64. Song ZT, Sun L, Lu SJ, Tian Y, Ding Y, Liu JX. Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants. Proc Natl Acad Sci USA 2015; 112: 2900-2905. https://doi.org/10.1073/pnas.1419703112
  65. Tang Z, Chen WY, Shimada M, Nguyen UT, Kim J, Sun XJ et al. SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53. Cell 2013; 154: 297-310. https://doi.org/10.1016/j.cell.2013.06.027
  66. Ng HH, Robert F, Young RA, Struhl K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 2003; 11: 709-719. https://doi.org/10.1016/S1097-2765(03)00092-3
  67. Sims RJ III, Chen CF, Santos-Rosa H, Kouzarides T, Patel SS, Reinberg D. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem2005; 280: 41789-41792.
  68. Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 2006; 442: 86-90. https://doi.org/10.1038/nature04815
  69. Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 2007; 131: 58-69. https://doi.org/10.1016/j.cell.2007.08.016
  70. Lauberth SM, Nakayama T, Wu X, Ferris AL, Tang Z, Hughes SH et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 2013; 152: 1021-1036. https://doi.org/10.1016/j.cell.2013.01.052
  71. Bian C, Xu C, Ruan J, Lee KK, Burke TL, Tempel W et al. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 2011; 30: 2829-2842. https://doi.org/10.1038/emboj.2011.193
  72. Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H et al. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 2006; 24: 785-796. https://doi.org/10.1016/j.molcel.2006.10.026
  73. Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY et al. ING4 mediates crosstalk between histone H3K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 2009; 33: 248-256. https://doi.org/10.1016/j.molcel.2008.12.016
  74. Eberl HC, Spruijt CG, Kelstrup CD, Vermeulen M, Mann M. A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics. Mol Cell 2013; 49: 368-378. https://doi.org/10.1016/j.molcel.2012.10.026
  75. Clouaire T, Webb S, Bird A. Cfp1 is required for gene expressiondependent H3K4 trimethylation and H3K9 acetylation in embryonic stem cells. Genome Biol 2014; 15: 451.
  76. Wang Z, Song J, Milne TA, Wang GG, Li H, Allis CD et al. Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 2010; 141: 1183-1194. https://doi.org/10.1016/j.cell.2010.05.016
  77. Ali M, Hom RA, Blakeslee W, Ikenouye L, Kutateladze TG. Diverse functions of PHD fingers of the MLL/KMT2 subfamily. Biochim Biophys Acta 2014; 1843: 366-371. https://doi.org/10.1016/j.bbamcr.2013.11.016
  78. Rao RC, Dou Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer 2015; 15: 334-346. https://doi.org/10.1038/nrc3929
  79. Tenney K, Shilatifard A. A COMPASS in the voyage of defining the role of trithorax/MLL-containing complexes: linking leukemogensis to covalent modifications of chromatin. J Cell Biochem 2005; 95: 429-436. https://doi.org/10.1002/jcb.20421
  80. Thiel AT, Blessington P, Zou T, Feather D, Wu X, Yan J et al. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 2010; 17: 148-159. https://doi.org/10.1016/j.ccr.2009.12.034
  81. Karatas H, Townsend EC, Cao F, Chen Y, Bernard D, Liu L et al. High-affinity, small-molecule peptidomimetic inhibitors of MLL1/WDR5 protein-protein interaction. J Am Chem Soc 2013; 135: 669-682. https://doi.org/10.1021/ja306028q
  82. Cao F, Townsend EC, Karatas H, Xu J, Li L, Lee S et al. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol Cell 2014; 53: 247-261. https://doi.org/10.1016/j.molcel.2013.12.001
  83. de Rooij JD, Hollink IH, Arentsen-Peters ST, van Galen JF, Berna Beverloo H, Baruchel A et al. NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia 2013; 27: 2280-2288. https://doi.org/10.1038/leu.2013.87
  84. Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet 2005; 76: 227-236. https://doi.org/10.1086/427563
  85. Liu K, Liu Y, Lau JL, Min J. Epigenetic targets and drug discovery. Part 2: histone demethylation and DNA methylation. Pharmacol Ther 2015; 151: 121-140. https://doi.org/10.1016/j.pharmthera.2015.04.001
  86. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129: 823-837. https://doi.org/10.1016/j.cell.2007.05.009
  87. Hu D, Garruss AS, Gao X, Morgan MA, Cook M, Smith ER et al. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat Struct Mol Biol 2013; 20: 1093-1097. https://doi.org/10.1038/nsmb.2653
  88. Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G, Singh S et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 2014; 141: 526-537. https://doi.org/10.1242/dev.102681
  89. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genomewide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006; 20: 1123-1136. https://doi.org/10.1101/gad.381706
  90. Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 2011; 145: 183-197. https://doi.org/10.1016/j.cell.2011.03.003
  91. Wan M, Liang J, Xiong Y, Shi F, Zhang Y, Lu W et al. The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells. J Biol Chem2013; 288: 5039-5048.
  92. Jiang H, Shukla A, Wang X, Chen WY, Bernstein BE, Roeder RG. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 2011; 144: 513-525. https://doi.org/10.1016/j.cell.2011.01.020
  93. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 2001; 292: 110-113. https://doi.org/10.1126/science.1060118
  94. Ekwall K, Nimmo ER, Javerzat JP, Borgstrom B, Egel R, Cranston G et al. Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J Cell Sci 1996; 10: 2637-2648.
  95. Jia S, Yamada T, Grewal SI. Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell 2004; 119: 469-480. https://doi.org/10.1016/j.cell.2004.10.020
  96. Brower-Toland B, Riddle NC, Jiang H, Huisinga KL, Elgin SC. Multiple SET methyltransferases are required to maintain normal heterochromatin domains in the genome of Drosophila melanogaster. Genetics 2009; 181: 1303-1319. https://doi.org/10.1534/genetics.108.100271
  97. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410: 116-120. https://doi.org/10.1038/35065132
  98. Collins RE, Tachibana M, Tamaru H, Smith KM, Jia D, Zhang X et al. In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J Biol Chem 2005; 280: 5563-5570. https://doi.org/10.1074/jbc.M410483200
  99. Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 2003; 12: 1591-1598. https://doi.org/10.1016/S1097-2765(03)00479-9
  100. Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP, Imhof A et al. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 2009; 10: 769-775. https://doi.org/10.1038/embor.2009.90
  101. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 2002; 16: 1779-1791. https://doi.org/10.1101/gad.989402
  102. Kubicek S, O'Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 2007; 25: 473-481. https://doi.org/10.1016/j.molcel.2007.01.017
  103. Ueda J, Tachibana M, Ikura T, Shinkai Y. Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP. J Biol Chem 2006; 281: 20120-20128. https://doi.org/10.1074/jbc.M603087200
  104. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 2005; 19: 815-826. https://doi.org/10.1101/gad.1284005
  105. Fumasoni I, Meani N, Rambaldi D, Scafetta G, Alcalay M, Ciccarelli FD. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol Biol 2007; 7: 187. https://doi.org/10.1186/1471-2148-7-187
  106. Hohenauer T, Moore AW. The Prdm family: expanding roles in stem cells and development. Development 2012; 139: 2267-2282. https://doi.org/10.1242/dev.070110
  107. Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 2006; 125: 483-495. https://doi.org/10.1016/j.cell.2006.03.027
  108. Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 2007; 450: 119-123. https://doi.org/10.1038/nature06236
  109. Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 2006; 442: 307-311. https://doi.org/10.1038/nature04837
  110. Loenarz C, Ge W, Coleman ML, Rose NR, Cooper CD, Klose RJ et al. PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an Nepsilon-dimethyl lysine demethylase. Hum Mol Genet 2010; 19: 217-222. https://doi.org/10.1093/hmg/ddp480
  111. Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 2006; 442: 312-316. https://doi.org/10.1038/nature04853
  112. Horton JR, Upadhyay AK, Qi HH, Zhang X, Shi Y, Cheng X. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol 2010; 17: 38-43. https://doi.org/10.1038/nsmb.1753
  113. Fuks F, Hurd PJ, Deplus R, Kouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 2003; 31: 2305-2312. https://doi.org/10.1093/nar/gkg332
  114. Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 2003; 13: 1192-1200. https://doi.org/10.1016/S0960-9822(03)00432-9
  115. Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 2006; 8: 188-194. https://doi.org/10.1038/ncb1353
  116. Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol 2008; 15: 1176-1183. https://doi.org/10.1038/nsmb.1476
  117. Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI et al. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 2012; 19: 1155-1160. https://doi.org/10.1038/nsmb.2391
  118. Babbio F, Pistore C, Curti L, Castiglioni I, Kunderfranco P, Brino L et al. The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression. Oncogene 2012; 31: 4878-4887. https://doi.org/10.1038/onc.2011.641
  119. Sarraf SA, Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 2004; 15: 595-605. https://doi.org/10.1016/j.molcel.2004.06.043
  120. Dodge JE, Kang YK, Beppu H, Lei H, Li E. Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 2004; 24: 2478-2486. https://doi.org/10.1128/MCB.24.6.2478-2486.2004
  121. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001; 410: 120-124. https://doi.org/10.1038/35065138
  122. Wang T, Xu C, Liu Y, Fan K, Li Z, Sun X et al. Crystal structure of the human SUV39H1 chromodomain and its recognition of histone H3K9me2/3. PLoS ONE 2012; 7: e52977. https://doi.org/10.1371/journal.pone.0052977
  123. Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI. Establishment and maintenance of a heterochromatin domain. Science 2002; 297: 2232-2237. https://doi.org/10.1126/science.1076466
  124. Lechner MS, Schultz DC, Negorev D, Maul GG, Rauscher FJ. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem Biophys Res Commun 2005; 331: 929-937. https://doi.org/10.1016/j.bbrc.2005.04.016
  125. Yamada T, Fischle W, Sugiyama T, Allis CD, Grewal SI. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol Cell 2005; 20: 173-185. https://doi.org/10.1016/j.molcel.2005.10.002
  126. Penke TJ, McKay DJ, Strahl BD, Matera AG, Duronio RJ. Direct interrogation of the role of H3K9 in metazoan heterochromatin function. Genes Dev 2016; 30: 1866-1880. https://doi.org/10.1101/gad.286278.116
  127. Grewal SI. RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev 2010; 20: 134-141. https://doi.org/10.1016/j.gde.2010.02.003
  128. Tamaru H. Confining euchromatin/heterochromatin territory: jumonji crosses the line. Genes Dev 2010; 24: 1465-1478. https://doi.org/10.1101/gad.1941010
  129. Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 2002; 296: 1132-1136. https://doi.org/10.1126/science.1069861
  130. Duan Z, Zarebski A, Montoya-Durango D, Grimes HL, Horwitz M. Gfi1 coordinates epigenetic repression of p21Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol Cell Biol 2005; 25: 10338-10351. https://doi.org/10.1128/MCB.25.23.10338-10351.2005
  131. Nishida M, Kato M, Kato Y, Sasai N, Ueda J, Tachibana M et al. Identification of ZNF200 as a novel binding partner of histone H3 methyltransferase G9a. Genes Cells 2007; 12: 877-888. https://doi.org/10.1111/j.1365-2443.2007.01098.x
  132. Gupta-Agarwal S, Franklin AV, Deramus T, Wheelock M, Davis RL, McMahon LL et al. G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J Neurosci 2012; 32: 5440-5453. https://doi.org/10.1523/JNEUROSCI.0147-12.2012
  133. Antignano F, Burrows K, Hughes MR, Han JM, Kron KJ, Penrod NM et al. Methyltransferase G9A regulates T cell differentiation during murine intestinal inflammation. J Clin Invest 2014; 124: 1945-1955. https://doi.org/10.1172/JCI69592
  134. Liu N, Zhang Z, Wu H, Jiang Y, Meng L, Xiong J et al. Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev 2015; 29: 379-393. https://doi.org/10.1101/gad.254425.114
  135. Schaefer A, Sampath SC, Intrator A, Min A, Gertler TS, Surmeier DJ et al. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 2009; 64: 678-691. https://doi.org/10.1016/j.neuron.2009.11.019
  136. Wang L, Xu S, Lee JE, Baldridge A, Grullon S, Peng W et al. Histone H3K9 methyltransferase G9a represses PPARgamma expression and adipogenesis. EMBO J 2013; 32: 45-59.
  137. Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 2005; 19: 381-391. https://doi.org/10.1016/j.molcel.2005.06.011
  138. Kwon SH, Florens L, Swanson SK, Washburn MP, Abmayr SM, Workman JL. Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II. Genes Dev 2010; 24: 2133-2145. https://doi.org/10.1101/gad.1959110
  139. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifications. Science 2010; 327: 996-1000. https://doi.org/10.1126/science.1184208
  140. Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 2012; 22: 1616-1625. https://doi.org/10.1101/gr.134445.111
  141. Bieberstein NI, Kozakova E, Huranova M, Thakur PK, Krchnakova Z, Krausova M et al. TALE-directed local modulation of H3K9 methylation shapes exon recognition. Sci Rep 2016; 6: 29961. https://doi.org/10.1038/srep29961
  142. Salton M, Voss TC, Misteli T. Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing. Nucleic Acids Res 2014; 42: 13662-13673. https://doi.org/10.1093/nar/gku1226
  143. Saint-Andre V, Batsche E, Rachez C, Muchardt C. Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons. Nat Struct Mol Biol 2011; 18: 337-344. https://doi.org/10.1038/nsmb.1995
  144. Kwak H, Fuda NJ, Core LJ, Lis JT. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 2013; 339: 950-953. https://doi.org/10.1126/science.1229386
  145. Casciello F, Windloch K, Gannon F, Lee JS. Functional role of G9a histone methyltransferase in cancer. Front Immunol 2015; 6: 487.
  146. Kramer JM. Regulation of cell differentiation and function by the euchromatin histone methyltranserfases G9a and GLP. Biochem Cell Biol 2016; 94: 26-32. https://doi.org/10.1139/bcb-2015-0017
  147. Walker MP, LaFerla FM, Oddo SS, Brewer GJ. Reversible epigenetic histone modifications and Bdnf expression in neurons with aging and from a mouse model of Alzheimer's disease. Age (Dordr) 2013; 35: 519-531. https://doi.org/10.1007/s11357-011-9375-5
  148. Ryu H, Lee J, Hagerty SW, Soh BY, McAlpin SE, Cormier KA et al. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc Natl Acad Sci USA 2006; 103: 19176-19181. https://doi.org/10.1073/pnas.0606373103
  149. Wozniak RJ, Klimecki WT, Lau SS, Feinstein Y, Futscher BW. 5-Aza-2'-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene 2007; 26: 77-90. https://doi.org/10.1038/sj.onc.1209763
  150. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.
  151. Hua KT, Wang MY, Chen MW, Wei LH, Chen CK, Ko CH et al. The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis. Mol Cancer 2014; 13: 189. https://doi.org/10.1186/1476-4598-13-189
  152. Mechanic S, Raynor K, Hill JE, Cowin P. Desmocollins form a distinct subset of the cadherin family of cell adhesion molecules. Proc Natl Acad Sci USA 1991; 88: 4476-4480. https://doi.org/10.1073/pnas.88.10.4476
  153. Pirrotta V. Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 1998; 93: 333-336. https://doi.org/10.1016/S0092-8674(00)81162-9
  154. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 2002; 298: 1039-1043. https://doi.org/10.1126/science.1076997
  155. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 2002; 111: 185-196. https://doi.org/10.1016/S0092-8674(02)00975-3
  156. Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B et al. Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell 2002; 111: 197-208. https://doi.org/10.1016/S0092-8674(02)00976-5
  157. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein. Genes Dev 2002; 16: 2893-2905. https://doi.org/10.1101/gad.1035902
  158. Margueron R, Reinberg D. The polycomb complex PRC2 and its mark in life. Nature 2011; 469: 343-349. https://doi.org/10.1038/nature09784
  159. Alekseyenko AA, Gorchakov AA, Kharchenko PV, Kuroda MI. Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP-XL cross-linking and affinity purification. Proc Natl Acad Sci USA 2014; 111: 2488-2493. https://doi.org/10.1073/pnas.1400648111
  160. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 2004; 23: 4061-4071. https://doi.org/10.1038/sj.emboj.7600402
  161. Nekrasov M, Wild B, Muller J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep 2005; 6: 348-353. https://doi.org/10.1038/sj.embor.7400376
  162. Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ III et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 2009; 461: 762-767. https://doi.org/10.1038/nature08398
  163. Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A et al. A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 2008; 10: 1291-1300. https://doi.org/10.1038/ncb1787
  164. Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N et al. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 2012; 337: 971-975. https://doi.org/10.1126/science.1225237
  165. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 2007; 449: 731-734. https://doi.org/10.1038/nature06145
  166. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 2007; 130: 1083-1094. https://doi.org/10.1016/j.cell.2007.08.019
  167. Walport LJ, Hopkinson RJ, Vollmar M, Madden SK, Gileadi C, Oppermann U et al. Human UTY(KDM6C) is a male-specific Nc-methyl lysyl demethylase. J Biol Chem 2014; 289: 18302-18313. https://doi.org/10.1074/jbc.M114.555052
  168. Issaeva I, Zonis Y, Rozovskaia T, Orlovsky K, Croce CM, Nakamura T et al. Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol Cell Biol 2007; 27: 1889-1903. https://doi.org/10.1128/MCB.01506-06
  169. Kim JH, Sharma A, Dhar SS, Lee SH, Gu B, Chan CH et al. UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res 2014; 74: 1705-1717. https://doi.org/10.1158/0008-5472.CAN-13-1896
  170. Jiang W, Wang J, Zhang Y. Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway. Cell Res 2013; 23: 122-130. https://doi.org/10.1038/cr.2012.119
  171. De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 2009; 28: 3341-3352. https://doi.org/10.1038/emboj.2009.271
  172. Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 2003; 4: 481-495. https://doi.org/10.1016/S1534-5807(03)00068-6
  173. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606-11611. https://doi.org/10.1073/pnas.1933744100
  174. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624-629. https://doi.org/10.1038/nature01075
  175. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 2003; 22: 5323-5335. https://doi.org/10.1093/emboj/cdg542
  176. Velichutina I, Shaknovich R, Geng H, Johnson NA, Gascoyne RD, Melnick AM et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 2010; 116: 5247-5255. https://doi.org/10.1182/blood-2010-04-280149
  177. Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 2011; 117: 2451-2459. https://doi.org/10.1182/blood-2010-11-321208
  178. McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS, Jiang Y et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci USA 2012; 109: 2989-2994. https://doi.org/10.1073/pnas.1116418109
  179. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108-112. https://doi.org/10.1038/nature11606
  180. Ren C, Morohashi K, Plotnikov AN, Jakoncic J, Smith SG, Li J et al. Small-molecule modulators of methyl-lysine binding for the CBX7 chromodomain. Chem Biol 2015; 22: 161-168. https://doi.org/10.1016/j.chembiol.2014.11.021
  181. Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 2005; 25: 3305-3316. https://doi.org/10.1128/MCB.25.8.3305-3316.2005
  182. Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 2012; 13: 115-126. https://doi.org/10.1038/nrm3274
  183. Edmunds JW, Mahadevan LC, Clayton AL. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 2008; 27: 406-420. https://doi.org/10.1038/sj.emboj.7601967
  184. Li Y, Trojer P, Xu CF, Cheung P, Kuo A, Drury WJ et al. The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J Biol Chem 2009; 284: 34283-34295. https://doi.org/10.1074/jbc.M109.034462
  185. Qiao Q, Li Y, Chen Z, Wang M, Reinberg D, Xu RM. The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. J Biol Chem 2011; 286: 8361-8368. https://doi.org/10.1074/jbc.M110.204115
  186. Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature 2009; 460: 287-291. https://doi.org/10.1038/nature08086
  187. Yuan W, Xie J, Long C, Erdjument-Bromage H, Ding X, Zheng Y et al. Heterogeneous nuclear ribonucleoprotein L is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo. J Biol Chem 2009; 284: 15701-15707. https://doi.org/10.1074/jbc.M808431200
  188. Ho TH, Park IY, Zhao H, Tong P, Champion MD, Yan H et al. High-resolution profiling of histone h3 lysine 36 trimethylation in metastatic renal cell carcinoma. Oncogene 2016; 35: 1565-1574. https://doi.org/10.1038/onc.2015.221
  189. Zhu K, Lei PJ, Ju LG, Wang X, Huang K, Yang B et al. SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing. Nucleic Acids Res 2016; 45: 92-105.
  190. Lucio-Eterovic AK, Singh MM, Gardner JE, Veerappan CS, Rice JC, Carpenter PB. Role for the nuclear receptor-binding SET domain protein 1 (NSD1) methyltransferase in coordinating lysine 36 methylation at histone 3 with RNA polymerase II function. Proc Natl Acad Sci USA 2010; 107: 16952-16957. https://doi.org/10.1073/pnas.1002653107
  191. Li H, Ilin S, Wang W, Duncan EM, Wysocka J, Allis CD et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 2006; 442: 91-95. https://doi.org/10.1038/nature04802
  192. Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 2005; 280: 17732-17736. https://doi.org/10.1074/jbc.M500796200
  193. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 2005; 123: 581-592. https://doi.org/10.1016/j.cell.2005.10.023
  194. Fang R, Barbera AJ, Xu Y, Rutenberg M, Leonor T, Bi Q et al. Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol Cell 2010; 39: 222-233. https://doi.org/10.1016/j.molcel.2010.07.008
  195. Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem 2010; 285: 26114-26120. https://doi.org/10.1074/jbc.M109.089433
  196. Rahman S, Sowa ME, Ottinger M, Smith JA, Shi Y, Harper JW et al. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol Cell Biol 2011; 31: 2641-2652. https://doi.org/10.1128/MCB.01341-10
  197. Yuan W, Xu M, Huang C, Liu N, Chen S, Zhu B. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem 2011; 286: 7983-7989. https://doi.org/10.1074/jbc.M110.194027
  198. Young MD, Willson TA, Wakefield MJ, Trounson E, Hilton DJ, Blewitt ME et al. ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity. Nucleic Acids Res 2011; 39: 7415-7427. https://doi.org/10.1093/nar/gkr416
  199. Li F, Mao G, Tong D, Huang J, Gu L, Yang W et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 2013; 153: 590-600. https://doi.org/10.1016/j.cell.2013.03.025
  200. Fnu S, Williamson EA, De Haro LP, Brenneman M, Wray J, Shaheen M et al. Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining. Proc Natl Acad Sci USA 2011; 108: 540-545. https://doi.org/10.1073/pnas.1013571108
  201. Pfister SX, Ahrabi S, Zalmas LP, Sarkar S, Aymard F, Bachrati CZ et al. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep 2014; 7: 2006-2018. https://doi.org/10.1016/j.celrep.2014.05.026
  202. Kim S, Kim H, Fong N, Erickson B, Bentley DL. Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc Natl Acad Sci USA 2011; 108: 13564-13569. https://doi.org/10.1073/pnas.1109475108
  203. Guo R, Zheng L, Park JW, Lv R, Chen H, Jiao F et al. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol Cell 2014; 56: 298-310. https://doi.org/10.1016/j.molcel.2014.08.022
  204. deAlmeida SF, Grosso AR, Koch F, Fenouil R, Carvalho S, Andrade J et al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol 2011; 18: 977-983. https://doi.org/10.1038/nsmb.2123
  205. Kurotaki N, Imaizumi K, Harada N, Masuno M, Kondoh T, Nagai T et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet 2002; 30: 365-366. https://doi.org/10.1038/ng863
  206. Wang GG, Cai L, Pasillas MP, Kamps MP. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 2007; 9: 804-812. https://doi.org/10.1038/ncb1608
  207. Kuo AJ, Cheung P, Chen K, Zee BM, Kioi M, Lauring J et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 2011; 44: 609-620. https://doi.org/10.1016/j.molcel.2011.08.042
  208. Jaju RJ, Fidler C, Haas OA, Strickson AJ, Watkins F, Clark K et al. A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 2001; 98: 1264-1267. https://doi.org/10.1182/blood.V98.4.1264
  209. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463: 360-363. https://doi.org/10.1038/nature08672
  210. Zhu X, He F, Zeng H, Ling S, Chen A, Wang Y et al. Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet 2014; 46: 287-293. https://doi.org/10.1038/ng.2894
  211. Nguyen AT, Zhang Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev 2011; 25: 1345-1358. https://doi.org/10.1101/gad.2057811
  212. Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C et al. Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 1998; 150: 613-632.
  213. van Leeuwen F, Gafken PR, Gottschling DE. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 2002; 109: 745-756. https://doi.org/10.1016/S0092-8674(02)00759-6
  214. Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 2002; 12: 1052-1058. https://doi.org/10.1016/S0960-9822(02)00901-6
  215. Shanower GA, Muller M, Blanton JL, Honti V, Gyurkovics H, Schedl P. Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 2005; 169: 173-184. https://doi.org/10.1534/genetics.104.033191
  216. Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 2008; 4: e1000190. https://doi.org/10.1371/journal.pgen.1000190
  217. McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 2008; 453: 812-816. https://doi.org/10.1038/nature06906
  218. Min J, Feng Q, Li Z, Zhang Y, Xu RM. Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 2003; 112: 711-723. https://doi.org/10.1016/S0092-8674(03)00114-4
  219. Sawada K, Yang Z, Horton JR, Collins RE, Zhang X, Cheng X. Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase. J Biol Chem 2004; 279: 43296-43306. https://doi.org/10.1074/jbc.M405902200
  220. Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P, Zhang Y et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 2002; 16: 1518-1527. https://doi.org/10.1101/gad.1001502
  221. Lacoste N, Utley RT, Hunter JM, Poirier GG, Cote J. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 2002; 277: 30421-30424. https://doi.org/10.1074/jbc.C200366200
  222. Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 2002; 418: 498. https://doi.org/10.1038/nature00970
  223. Ng HH, Xu RM, Zhang Y, Struhl K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 2002; 277: 34655-34657. https://doi.org/10.1074/jbc.C200433200
  224. McGinty RK, Kohn M, Chatterjee C, Chiang KP, Pratt MR, Muir TWStructure-activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2BACS Chem Biol 2009; 4: 958-968. https://doi.org/10.1021/cb9002255
  225. Holt MT, David Y, Pollock S, Tang Z, Jeon J, Kim J et al. Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc Natl Acad Sci USA 2015; 112: 10365-10370. https://doi.org/10.1073/pnas.1504483112
  226. Zhou L, Holt MT, Ohashi N, Zhao A, Muller MM, Wang B et al. Evidence that ubiquitylated H2B corrals hDot1L on the nucleosomal surface to induce H3K79 methylation. Nat Commun 2016; 7: 10589. https://doi.org/10.1038/ncomms10589
  227. Altaf M, Utley RT, Lacoste N, Tan S, Briggs SD, Cote J. Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol Cell 2007; 28: 1002-1014. https://doi.org/10.1016/j.molcel.2007.12.002
  228. Katan-Khaykovich Y, Struhl K. Heterochromatin formation involves changes in histone modifications over multiple cell generations. EMBO J 2005; 24: 2138-2149. https://doi.org/10.1038/sj.emboj.7600692
  229. Kim W, Kim R, Park G, Park JW, Kim JE. Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J Biol Chem 2012; 287: 5588-5599. https://doi.org/10.1074/jbc.M111.328138
  230. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of ${\alpha}$-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19: 17-30. https://doi.org/10.1016/j.ccr.2010.12.014
  231. Onishi M, Liou GG, Buchberger JR, Walz T, Moazed D. Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Mol Cell 2007; 28: 1015-1028. https://doi.org/10.1016/j.molcel.2007.12.004
  232. Huyen Y, Zgheib O, DiTullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 2004; 432: 406-411. https://doi.org/10.1038/nature03114
  233. Wysocki R, Javaheri A, Allard S, Sha F, Cote J, Kron SJ. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol 2005; 25: 8430-8443. https://doi.org/10.1128/MCB.25.19.8430-8443.2005
  234. Giannattasio M, Lazzaro F, Plevani P, Muzi-Falconi M. The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem 2005; 280: 9879-9886. https://doi.org/10.1074/jbc.M414453200
  235. Game JC, Williamson MS, Spicakova T, Brown JM. The RAD6/BRE1 histone modification pathway in Saccharomyces confers radiation resistance through a RAD51-dependent process that is independent of RAD18. Genetics 2006; 173: 1951-1968. https://doi.org/10.1534/genetics.106.057794
  236. Conde F, Ontoso D, Acosta I, Gallego-Sanchez A, Bueno A, San-Segundo PA. Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae. DNA Repair 2010; 9: 1038-1049. https://doi.org/10.1016/j.dnarep.2010.07.003
  237. Levesque N, Leung GP, Fok AK, Schmidt TI, Kobor MS. Loss of H3 K79 trimethylation leads to suppression of Rtt107-dependent DNA damage sensitivity through the translesion synthesis pathway. J Biol Chem 2010; 285: 35113-35122. https://doi.org/10.1074/jbc.M110.116855
  238. Farooq Z, Banday S, Pandita TK, Altaf M. The many faces of histone H3K79 methylation. Mutat Res Rev Mutat Res 2016; 768: 46-52. https://doi.org/10.1016/j.mrrev.2016.03.005
  239. Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci USA 2003; 100: 1820-1825. https://doi.org/10.1073/pnas.0437846100
  240. Schubeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 2004; 18: 1263-1271. https://doi.org/10.1101/gad.1198204
  241. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005; 122: 517-527. https://doi.org/10.1016/j.cell.2005.06.026
  242. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 2008; 40: 897-903. https://doi.org/10.1038/ng.154
  243. Kouskouti A, Talianidis I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J 2005; 24: 347-357. https://doi.org/10.1038/sj.emboj.7600516
  244. Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 2008; 28: 2825-2839. https://doi.org/10.1128/MCB.02076-07
  245. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 2007; 110: 4445-4454.
  246. Bitoun E, Oliver PL, Davies KE. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 2007; 16: 92-106. https://doi.org/10.1093/hmg/ddl444
  247. Mueller D, Garcia-Cuellar MP, Bach C, Buhl S, Maethner E, Slany RK. Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol 2009; 7: e1000249. https://doi.org/10.1371/journal.pbio.1000249
  248. Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y et al. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 2010; 24: 574-589. https://doi.org/10.1101/gad.1898410
  249. Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695-5707. https://doi.org/10.1038/sj.onc.1204639
  250. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167-178. https://doi.org/10.1016/j.cell.2005.02.020
  251. Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y. Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol 2006; 8: 1017-1024. https://doi.org/10.1038/ncb1464
  252. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355-368. https://doi.org/10.1016/j.ccr.2008.10.001
  253. Chang MJ, Wu H, Achille NJ, Reisenauer MR, Chou CW, Zeleznik-Le NJ et al. Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res 2010; 70: 10234-10242. https://doi.org/10.1158/0008-5472.CAN-10-3294
  254. Nguyen AT, Taranova O, He J, Zhang Y. DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood 2011; 117: 6912-6922. https://doi.org/10.1182/blood-2011-02-334359
  255. Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 2011; 20: 53-65. https://doi.org/10.1016/j.ccr.2011.06.009
  256. Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 2013; 122: 1017-1025. https://doi.org/10.1182/blood-2013-04-497644
  257. Zhang L, Deng L, Chen F, Yao Y, Wu B, Wei L et al. Inhibition of histone H3K79 methylation selectively inhibits proliferation, self-renewal and metastatic potential of breast cancer. Oncotarget 2014; 5: 10665-10677.
  258. Yang A, Ha S, Ahn J, Kim R, Kim S, Lee Y et al. A chemical biology route to site-specific authentic protein modifications. Science 2016; 354: 623-626. https://doi.org/10.1126/science.aah4428
  259. Fang J, Feng Q, Ketel CS, Wang H, Cao R, Xia L et al. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr Biol 2002; 12: 1086-1099. https://doi.org/10.1016/S0960-9822(02)00924-7
  260. Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 2002; 9: 1201-1213. https://doi.org/10.1016/S1097-2765(02)00548-8
  261. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 2004; 18: 1251-1262. https://doi.org/10.1101/gad.300704
  262. Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callen E et al. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 2008; 22: 2048-2061. https://doi.org/10.1101/gad.476008
  263. Yang H, Pesavento JJ, Starnes TW, Cryderman DE, Wallrath LL, Kelleher NL et al. Preferential dimethylation of histone H4 lysine 20 by Suv4-20. J Biol Chem 2008; 283: 12085-12092. https://doi.org/10.1074/jbc.M707974200
  264. Southall SM, Cronin NB, Wilson JR. A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases. Nucleic Acids Res 2014; 42: 661-671. https://doi.org/10.1093/nar/gkt776
  265. van Nuland R, Gozani O. Histone H4 lysine 20 (H4K20) methylation, expanding the signaling potential of the proteome one methyl moiety at a time. Mol Cell Proteomics 2016; 15: 755-764. https://doi.org/10.1074/mcp.R115.054742
  266. Kapoor-Vazirani P, Kagey JD, Vertino PM. SUV420H2-mediated H4K20 trimethylation enforces RNA polymerase II promoter-proximal pausing by blocking hMOF-dependent H4K16 acetylation. Mol Cell Biol 2011; 31: 1594-1609. https://doi.org/10.1128/MCB.00524-10
  267. Qi HH, Sarkissian M, Hu GQ, Wang Z, Bhattacharjee A, Gordon DB et al. Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature 2010; 466: 503-507. https://doi.org/10.1038/nature09261
  268. Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 2010; 466: 508-512. https://doi.org/10.1038/nature09272
  269. Wang J, Telese F, Tan Y, Li W, Jin C, Basnet H et al. LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control. Nat Neurosci 2015; 18: 1256-1264. https://doi.org/10.1038/nn.4069
  270. Stender JD, Pascual G, Liu W, Kaikkonen MU, Do K, Spann NJ et al. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell 2012; 48: 28-38. https://doi.org/10.1016/j.molcel.2012.07.020
  271. Jorgensen S, Schotta G, Sorensen CS. Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res 2013; 41: 2797-2806. https://doi.org/10.1093/nar/gkt012
  272. Oda H, Okamoto I, Murphy N, Chu J, Price SM, Shen MM et al. Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol 2009; 29: 2278-2295. https://doi.org/10.1128/MCB.01768-08
  273. Huen MS, SM-H Sy, van Deursen JM, Chen J. Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J Biol Chem 2008; 283: 11073-11077. https://doi.org/10.1074/jbc.C700242200
  274. Houston SI, McManus KJ, Adams MM, Sims JK, Carpenter PB, Hendzel MJ et al. Catalytic function of the PR-Set7 histone H4 lysine 20 monomethyltransferase is essential for mitotic entry and genomic stability. J Biol Chem 2008; 283: 19478-19488. https://doi.org/10.1074/jbc.M710579200
  275. Li Y, Armstrong RL, Duronio RJ, MacAlpine DM. Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in Drosophila. Nucleic Acids Res 2016; 44: 7204-7218.
  276. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 2006; 127: 1361-1373. https://doi.org/10.1016/j.cell.2006.10.043
  277. Oda H, Hubner MR, Beck DB, Vermeulen M, Hurwitz J, Spector DL et al. Regulation of the histone H4 monomethylase PR-Set7 by CRL4 Cdt2-mediated PCNA-dependent degradation during DNA damage. Mol Cell 2010; 40: 364-376. https://doi.org/10.1016/j.molcel.2010.10.011
  278. Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzarides T. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 2004; 119: 603-614. https://doi.org/10.1016/j.cell.2004.11.009
  279. Boccuni P, MacGrogan D, Scandura JM, Nimer SD. The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J Biol Chem 2003; 278: 15412-15420. https://doi.org/10.1074/jbc.M300592200
  280. Trojer P, Li G, Sims RJ, Vaquero A, Kalakonda N, Boccuni P et al. L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 2007; 129: 915-928. https://doi.org/10.1016/j.cell.2007.03.048
  281. Lu X, Simon MD, Chodaparambil JV, Hansen JC, Shokat KM, Luger K. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 2008; 15: 1122-1124. https://doi.org/10.1038/nsmb.1489
  282. Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 2012; 484: 115-119. https://doi.org/10.1038/nature10956
  283. Beck DB, Burton A, Oda H, Ziegler-Birling C, Torres-Padilla ME, Reinberg D. The role of PR-Set7 in replication licensing depends on Suv4-20h. Genes Dev 2012; 26: 2580-2589. https://doi.org/10.1101/gad.195636.112
  284. Jorgensen S, Elvers I, Trelle MB, Menzel T, Eskildsen M, Jensen ON et al. The histone methyltransferase SET8 is required for S-phase progression. J Cell Biol 2007; 179: 1337-1345. https://doi.org/10.1083/jcb.200706150
  285. Tardat M, Brustel J, Kirsh O, Lefevbre C, Callanan M, Sardet C et al. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol 2010; 12: 1086-1093. https://doi.org/10.1038/ncb2113
  286. Yang H, Kwon CS, Choi Y, Lee D. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast. Biochem Biophys Res Commun 2016; 476: 515-521. https://doi.org/10.1016/j.bbrc.2016.05.155
  287. Svensson JP, Shukla M, Menendez-Benito V, Norman-Axelsson U, Audergon P, Sinha I et al. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Res 2015; 25: 872-883. https://doi.org/10.1101/gr.188870.114
  288. Scharf AN, Barth TK, Imhof A. Establishment of histone modifications after chromatin assembly. Nucleic Acids Res 2009; 37: 5032-5040. https://doi.org/10.1093/nar/gkp518
  289. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37: 391-400. https://doi.org/10.1038/ng1531
  290. Van Den Broeck A, Brambilla E, Moro-Sibilot D, Lantuejoul S, Brambilla C, Eymin B et al. Loss of histone h4k20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res 2008; 14: 7237-7245. https://doi.org/10.1158/1078-0432.CCR-08-0869
  291. Elsheikh SE, Green AR, Rakha EA, Powe DG, Ahmed RA, Collins HM et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res 2009; 69: 3802-3809. https://doi.org/10.1158/0008-5472.CAN-08-3907
  292. Bagnyukova TV, Tryndyak VP, Montgomery B, Churchwell MI, James SR, Muskhelishvili L et al. Genetic and epigenetic changes in rat preneoplastic liver tissue induced by 2-acetylaminofluorene. Carcinogenesis 2008; 29: 638-646. https://doi.org/10.1093/carcin/bgm303
  293. Li T, Zheng Q, An J, Wu M, Li H, Gui X et al. SET1A cooperates with CUDR to promote liver cancer growth and hepatocyte-like stem cell malignant transformation epigenetically. Mol Ther 2016; 24: 261-275. https://doi.org/10.1038/mt.2015.208
  294. Lim S, Metzger E, Schule R, Kirfel J, Buettner R. Epigenetic regulation of cancer growth by histone demethylases. Int J Cancer 2010; 127: 1991-1998. https://doi.org/10.1002/ijc.25538
  295. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239-243. https://doi.org/10.1038/nature11125
  296. Yang Y, Yin X, Yang H, Xu Y. Histone demethylase LSD2 acts as an E3 ubiquitin ligase and inhibits cancer cell growth through promoting proteasomal degradation of OGT. Mol Cell 2015; 58: 47-59. https://doi.org/10.1016/j.molcel.2015.01.038
  297. Bowser R, Giambrone A, Davies P. FAC1, a novel gene identified with the monoclonal antibody Alz50, is developmentally regulated in human brain. Dev Neurosci 1995; 17: 20-37. https://doi.org/10.1159/000111270
  298. Kurabe N, Murakami S, Tashiro F. SGF29 and Sry pathway in hepatocarcinogenesis. World J Biol Chem 2015; 6: 139-147. https://doi.org/10.4331/wjbc.v6.i3.139
  299. Piunti A, Shilatifard A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 2016; 352: aad9780. https://doi.org/10.1126/science.aad9780
  300. Lu PJ, Sundquist K, Baeckstrom D, Poulsom R, Hanby A, Meier-Ewert S. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J Biol Chem 1999; 274: 15633-15645. https://doi.org/10.1074/jbc.274.22.15633
  301. Zhang X, Xu LS, Wang ZQ, Wang KS, Li N, Cheng ZH et al. ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Lett 2004; 570: 7-12. https://doi.org/10.1016/j.febslet.2004.06.010
  302. Kim S, Welm AL, Bishop JM. A dominant mutant allele of the ING4 tumor suppressor found in human cancer cells exacerbates MYC-initiated mouse mammary tumorigenesis. Cancer Res 2010; 70: 5155-5162. https://doi.org/10.1158/0008-5472.CAN-10-0425
  303. Young SR, Skalnik DG. CXXC finger protein 1 is required for normal proliferation and differentiation of the PLB-985 myeloid cell line. DNA Cell Biol 2007; 26: 80-90. https://doi.org/10.1089/dna.2006.0535
  304. Coda DM, Lingua MF, Morena D, Foglizzo V, Bersani F, Ala U et al. SMYD1 and G6PD modulation are critical events for miR-206-mediated differentiation of rhabdomyosarcoma. Cell Cycle 2015; 14: 1389-1402. https://doi.org/10.1080/15384101.2015.1005993
  305. Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008; 30: 393-402. https://doi.org/10.1016/j.molcel.2008.04.009
  306. Sinha S, Singh RK, Alam N, Roy A, Roychoudhury S, Panda CK. Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late-onset breast carcinoma. Mol Cancer 2008; 7: 84. https://doi.org/10.1186/1476-4598-7-84
  307. Reynoird N, Mazur PK, Stellfeld T, Flores NM, Lofgren SM, Carlson SM et al. Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev 2016; 30: 772-785. https://doi.org/10.1101/gad.275529.115
  308. Komatsu S, Ichikawa D, Hirajima S, Nagata H, Nishimura Y, Kawaguchi T. Overexpression of SMYD2 contributes to malignant outcome in gastric cancer. Br J Cancer 2015; 112: 357-364. https://doi.org/10.1038/bjc.2014.543
  309. Yuan H, Zhang P, Qin L, Chen L, Shi S, Lu Y et al. Overexpression of SPINDLIN1 induces cellular senescence, multinucleation and apoptosis. Gene 2008; 410: 67-74. https://doi.org/10.1016/j.gene.2007.11.019
  310. Franz H, Greschik H, Willmann D, Ozretic L, Jilg CA, Wardelmann E et al. The histone code reader SPIN1 controls RET signaling in liposarcoma. Oncotarget 2015; 6: 4773-4789.
  311. Akiyama Y, Koda Y, Byeon SJ, Shimada S, Nishikawaji T, Sakamoto A et al. Reduced expression of SET7/9, a histone mono-methyltransferase is associated with gastric cancer progression. Oncotarget 2016; 7: 3966-3983.
  312. Wang Z, Hu J, Li G, Qu L, He Q, Lou Y et al. PHF23 (plant homeodomain finger protein 23) negatively regulates cell autophagy by promoting ubiquitination and degradation of E3 ligase LRSAM1. Autophagy 2014; 10: 2158-2170. https://doi.org/10.4161/auto.36439
  313. Hussin J, Sinnett D, Casals F, Idaghdour Y, Bruat V, Saillour V et al. Rare allelic forms of PRDM9 associated with childhood leukemogenesis. Genome Res 2013; 23: 419-430. https://doi.org/10.1101/gr.144188.112
  314. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2005; 436: 660-665. https://doi.org/10.1038/nature03841
  315. Song K, Jung Y, Jung D, Lee I. Human Ku70 interacts with heterochromatin protein 1alpha. J Biol Chem 2001; 276: 8321-8327. https://doi.org/10.1074/jbc.M008779200
  316. Uemura M, Yamamoto H, Takemasa I, Mimori K, Hemmi H, Mizushima T et al. Jumonji domain containing 1A is a novel prognostic marker for colorectal cancer: in vivo identification from hypoxic tumor cells. Clin Cancer Res 2010; 16: 4636-4646. https://doi.org/10.1158/1078-0432.CCR-10-0407
  317. Qi J, Nakayama K, Cardiff RD, Borowsky AD, Kaul K, Williams R et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 2010; 18: 23-38. https://doi.org/10.1016/j.ccr.2010.05.024
  318. Guo X, Shi M, Sun L, Wang Y, Gui Y, Cai Z et al. The expression of histone demethylase JMJD1A in renal cell carcinoma. Neoplasma 2011; 58: 153-157. https://doi.org/10.4149/neo_2011_02_153
  319. Kirschmann DA, Seftor EA, Nieva DR, Mariano EA, Hendrix MJ. Differentially expressed genes associated with the metastatic phenotype in breast cancer. Breast Cancer Res Treat 1999; 55: 127-136.
  320. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002; 415: 436-442. https://doi.org/10.1038/415436a
  321. Wasenius VM, Hemmer S, Kettunen E, Knuutila S, Franssila K, Joensuu H. Hepatocyte growth factor receptor, matrix metalloproteinase- 11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin Cancer Res 2003; 9: 68-75.
  322. Kim JY, Kim KB, Eom GH, Choe N, Kee HJ, Son HJ et al. KDM3B is the H3K9 demethylase involved in transcriptional activation of lmo2 in leukemia. Mol Cell Biol 2012; 32: 2917-2933. https://doi.org/10.1128/MCB.00133-12
  323. Willemsen MH, Vulto-van Silfhout AT, Nillesen WM, Wissink-Lindhout WM, van Bokhoven H, Philip N et al. Update on Kleefstra Syndrome. Mol Syndromol 2012; 2: 202-212.
  324. Babacan NA, Egilmez HR, Yucel B, Ilknur P, Seker MM, Kacan T et al. The prognostic value of UHRF-1 and p53 in gastric cancer. Saudi J Gastroenterol 2016; 22: 25-29.
  325. Kauffman EC, Robinson BD, Downes MJ, Powell LG, Lee MM, Scherr DS et al. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer. Mol Carcinogen 2011; 50: 931-944. https://doi.org/10.1002/mc.20758
  326. Patani N, Jiang WG, Newbold RF, Mokbel K. Histone-modifier gene expression profiles are associated with pathological and clinical outcomes in human breast cancer. Anticancer Res 2011; 31: 4115-4125.
  327. Steele-Perkins G, Fang W, Yang XH, Van Gele M, Carling T, Gu J et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev 2001; 15: 2250-2262. https://doi.org/10.1101/gad.870101
  328. Sasaki O, Meguro K, Tohmiya Y, Funato T, Shibahara S, Sasaki T. Altered expression of retinoblastoma protein-interacting zinc finger gene, RIZ, in human leukaemia. Br J Haematol 2002; 119: 940-948. https://doi.org/10.1046/j.1365-2141.2002.03972.x
  329. Xie W, Li X, Chen X, Huang S, Huang S. Decreased expression of PRDM2 (RIZ1) and its correlation with risk stratification in patients with myelodysplastic syndrome. Br J Haematol 2010; 150: 242-244.
  330. Pryor JG, Brown-Kipphut BA, Iqbal A, Scott GA. Microarray comparative genomic hybridization detection of copy number changes in desmoplastic melanoma and malignant peripheral nerve sheath tumor. Am J Dermatopathol 2011; 33: 780-785. https://doi.org/10.1097/DAD.0b013e31820dfcbf
  331. Yang ZQ, Imoto I, Fukuda Y, Pimkhaokham A, Shimada Y, Imamura M et al. Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. Cancer Res 2000; 60: 4735-4739.
  332. Liu G, Bollig-Fischer A, Kreike B, van de Vijver MJ, Abrams J, Ethier SP et al. Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 2009; 28: 4491-4500. https://doi.org/10.1038/onc.2009.297
  333. Ehrbrecht A, Muller U, Wolter M, Hoischen A, Koch A, Radlwimmer B et al. Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 2006; 208: 554-563. https://doi.org/10.1002/path.1925
  334. Laumonnier F, Holbert S, Ronce N, Faravelli F, Lenzner S, Schwartz CE et al. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J Med Genet 2005; 42: 780-786. https://doi.org/10.1136/jmg.2004.029439
  335. Nawaz Z, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V et al. Cbx7 is epigenetically silenced in glioblastoma and inhibits cell migration by targeting YAP/TAZ-dependent transcription. Sci Rep 2016; 6: 27753. https://doi.org/10.1038/srep27753
  336. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycombindependent. Science 2012; 338: 1465-1469. https://doi.org/10.1126/science.1227604
  337. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate-Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science 2016; 352: 1576-1580. https://doi.org/10.1126/science.aad9512
  338. Liu YL, Gao X, Jiang Y, Zhang G, Sun ZC, Cui BB et al. Expression and clinicopathological significance of EED, SUZ12 and EZH2 mRNA in colorectal cancer. J Cancer Res Clin Oncol 2015; 141: 661-669. https://doi.org/10.1007/s00432-014-1854-5
  339. Bierne H, Tham TN, Batsche E, Dumay A, Leguillou M, Kerneis-Golsteyn S et al. Human BAHD1 promotes heterochromatic gene silencing. Proc Natl Acad Sci USA 2009; 106: 13826-13831. https://doi.org/10.1073/pnas.0901259106
  340. Garcia-Carpizo V, Sarmentero J, Han B, Grana O, Ruiz-Llorente S, Pisano DG et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep 2016; 6: 32952. https://doi.org/10.1038/srep32952
  341. Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra RM et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 2010; 70: 4287-4291. https://doi.org/10.1158/0008-5472.CAN-10-0120
  342. Berenstein R, Blau IW, Suckert N, Baldus C, Pezzutto A, Dorken B et al. Quantitative detection of DNMT3A R882H mutation in acute myeloid leukemia. J Exp Clin Cancer Res 2015; 34: 55. https://doi.org/10.1186/s13046-015-0173-2
  343. La Starza R, Gorello P, Rosati R, Riezzo A, Veronese A, Ferrazzi E et al. Cryptic insertion producing two NUP98/NSD1 chimeric transcripts in adult refractory anemia with an excess of blasts. Genes Chromosomes Cancer 2004; 41: 395-399. https://doi.org/10.1002/gcc.20103
  344. Berdasco M, Ropero S, Setien F, Fraga MF, Lapunzina P, Losson R et al. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci USA 2009; 106: 21830-21835. https://doi.org/10.1073/pnas.0906831106
  345. He J, Nguyen AT, Zhang Y. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood 2011; 117: 3869-3880. https://doi.org/10.1182/blood-2010-10-312736
  346. Kottakis F, Polytarchou C, Foltopoulou P, Sanidas I, Kampranis SC, Tsichlis PN. FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell 2011; 43: 285-298. https://doi.org/10.1016/j.molcel.2011.06.020
  347. Chan TS, Hawkins C, Krieger JR, McGlade CJ, Huang A. JPO2/CDCA7L and LEDGF/p75 are novel mediators of PI3K/AKT signaling and aggressive phenotypes in medulloblastoma. Cancer Res 2016; 76: 2802-2812. https://doi.org/10.1158/0008-5472.CAN-15-2194
  348. Basu A, Cajigas-Du Ross CK, Rios-Colon L, Mediavilla-Varela M, Daniels-Wells TR, Leoh LS et al. LEDGF/p75 overexpression attenuates oxidative stress-induced necrosis and upregulates the oxidoreductase ERP57/PDIA3/GRP58 in prostate cancer. PLoS ONE 2016; 11: e0146549. https://doi.org/10.1371/journal.pone.0146549
  349. Altan B, Yokobori T, Ide M, Bai T, Yanoma T, Kimura A et al. High expression of MRE11-RAD50-NBS1 is associated with poor prognosis and chemoresistance in gastric cancer. Anticancer Res 2016; 36: 5237-5247. https://doi.org/10.21873/anticanres.11094
  350. Angrand PO, Apiou F, Stewart AF, Dutrillaux B, Losson R, Chambon P. NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines. Genomics 2001; 74: 79-88. https://doi.org/10.1006/geno.2001.6524
  351. Rosati R, La Starza R, Veronese A, Aventin A, Schwienbacher C, Vallespi T et al. NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15). Blood 2002; 99: 3857-3860. https://doi.org/10.1182/blood.V99.10.3857
  352. Taketani T, Taki T, Nakamura H, Taniwaki M, Masuda J, Hayashi Y. NUP98-NSD3 fusion gene in radiation-associated myelodysplastic syndrome with t(8;11)(p11;p15) and expression pattern of NSD family genes. Cancer Genet Cytogenet 2009; 190: 108-112. https://doi.org/10.1016/j.cancergencyto.2008.12.008
  353. Lu Y, Gao J, Lu Y. Down-expression pattern of Ku70 and p53 coexisted in colorectal cancer. Med Oncol 2015; 32: 98. https://doi.org/10.1007/s12032-015-0519-9
  354. Zhu L, Li Q, Wong SH, Huang M, Klein BJ, Shen J et al. ASH1L links histone H3 lysine 36 dimethylation to MLL leukemia. Cancer Discov 2016; 6: 770-783. https://doi.org/10.1158/2159-8290.CD-16-0058
  355. Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 2014; 508: 263-268. https://doi.org/10.1038/nature13045
  356. Chen Z, Yan CT, Dou Y, Viboolsittiseri SS, Wang JH. The role of a newly identified SET domain-containing protein, SETD3, in oncogenesis. Haematologica 2013; 98: 739-743. https://doi.org/10.3324/haematol.2012.066977
  357. Jeyaratnam DC, Baduin BS, Hansen MC, Hansen M, Jorgensen JM, Aggerholm A et al. Delineation of known and new transcript variants of the SETMAR (Metnase) gene and the expression profile in hematologic neoplasms. Exp Hematol 2014; 42: 448-456. https://doi.org/10.1016/j.exphem.2014.02.005
  358. Jankovic M, Feldhahn N, Oliveira TY, Silva IT, Kieffer-Kwon KR, Yamane A et al. 53BP1 alters the landscape of DNA rearrangements and suppresses AID-induced B cell lymphoma. Mol Cell 2013; 49: 623-631. https://doi.org/10.1016/j.molcel.2012.11.029
  359. Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 2010; 17: 688-695. https://doi.org/10.1038/nsmb.1831
  360. Li X, Xu B, Moran MS, Zhao Y, Su P, Haffty BG et al. 53BP1 functions as a tumor suppressor in breast cancer via the inhibition of $NF-{\kappa}B$ through miR-146a. Carcinogenesis 2012; 33: 2593-2600. https://doi.org/10.1093/carcin/bgs298
  361. Yang F, Sun L, Li Q, Han X, Lei L, Zhang H et al. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J 2012; 31: 110-123. https://doi.org/10.1038/emboj.2011.364
  362. Pogribny IP, Ross SA, Tryndyak VP, Pogribna M, Poirier LA, Karpinets TV. Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 2006; 27: 1180-1186. https://doi.org/10.1093/carcin/bgi364
  363. Bicknell LS, Walker S, Klingseisen A, Stiff T, Leitch A, Kerzendorfer C et al. Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. Nat Genet 2011; 43: 350-355. https://doi.org/10.1038/ng.776
  364. Wang Y, Reddy B, Thompson J, Wang H, Noma K, Yates JR 3rd et al. Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein. Mol Cell 2009; 33: 428-437. https://doi.org/10.1016/j.molcel.2009.02.002

Cited by

  1. Comprehensive Proteomic Analysis of Lysine Acetylation in the Foodborne Pathogen Trichinella spiralis vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.02674
  2. Histone Lysine Methylation and Neurodevelopmental Disorders vol.18, pp.7, 2017, https://doi.org/10.3390/ijms18071404
  3. Mechanistic and structural studies of KDM ‐catalysed demethylation of histone 1 isotype 4 at lysine 26 vol.592, pp.19, 2018, https://doi.org/10.1002/1873-3468.13231
  4. Structure-Activity Relationship Studies on (R)-PFI-2 Analogues as Inhibitors of Histone Lysine Methyltransferase SETD7 vol.13, pp.14, 2017, https://doi.org/10.1002/cmdc.201800242
  5. Selective DOT1L, LSD1, and HDAC Class I Inhibitors Reduce HOXA9 Expression in MLL-AF9 Rearranged Leukemia Cells, But Dysregulate the Expression of Many Histone-Modifying Enzymes vol.17, pp.8, 2017, https://doi.org/10.1021/acs.jproteome.8b00118
  6. Stressing the (Epi)Genome: Dealing with Reactive Oxygen Species in Cancer vol.29, pp.13, 2017, https://doi.org/10.1089/ars.2017.7158
  7. Epigenetics and Trained Immunity vol.29, pp.11, 2017, https://doi.org/10.1089/ars.2017.7310
  8. Crosstalk among Set1 complex subunits involved in H2B ubiquitylation-dependent H3K4 methylation vol.46, pp.21, 2018, https://doi.org/10.1093/nar/gky920
  9. SPION ‐mediated miR‐141 promotes the differentiation of Hu AESC s into dopaminergic neuron‐like cells via suppressing lnc RNA ‐ HOTAIR vol.22, pp.4, 2018, https://doi.org/10.1111/jcmm.13512
  10. Epigenetic Effects Induced by Methamphetamine and Methamphetamine-Dependent Oxidative Stress vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/4982453
  11. 3-Chloro- N ′-(2-hydroxybenzylidene) benzohydrazide: An LSD1-Selective Inhibitor and Iron-Chelating Agent for Anticancer Therapy vol.9, pp.None, 2017, https://doi.org/10.3389/fphar.2018.01006
  12. Histone methylation in DNA repair and clinical practice: new findings during the past 5-years vol.9, pp.12, 2018, https://doi.org/10.7150/jca.23427
  13. The Epigenome in Multiple Myeloma: Impact on Tumor Cell Plasticity and Drug Response vol.8, pp.None, 2017, https://doi.org/10.3389/fonc.2018.00566
  14. Histone Mutations in Cancer vol.2, pp.1, 2017, https://doi.org/10.1146/annurev-cancerbio-030617-050143
  15. Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin vol.7, pp.3, 2018, https://doi.org/10.3390/cells7030017
  16. Histone 3 lysine 4, 9, and 27 demethylases expression profile in fertilized and cloned bovine and porcine embryos† vol.98, pp.6, 2017, https://doi.org/10.1093/biolre/ioy054
  17. Hypoxia and Chromatin: A Focus on Transcriptional Repression Mechanisms vol.6, pp.2, 2017, https://doi.org/10.3390/biomedicines6020047
  18. Epigenetic drug discovery: a success story for cofactor interference vol.373, pp.1748, 2017, https://doi.org/10.1098/rstb.2017.0069
  19. Epigenetic control of gene regulation during development and disease: A view from the retina vol.65, pp.None, 2018, https://doi.org/10.1016/j.preteyeres.2018.03.002
  20. The ribosome: A hot spot for the identification of new types of protein methyltransferases vol.293, pp.27, 2017, https://doi.org/10.1074/jbc.aw118.003235
  21. Editing the Epigenome: Reshaping the Genomic Landscape vol.19, pp.None, 2017, https://doi.org/10.1146/annurev-genom-083117-021632
  22. Histones and heart failure in diabetes vol.75, pp.17, 2018, https://doi.org/10.1007/s00018-018-2857-1
  23. Targeting EZH2 in Multiple Myeloma—Multifaceted Anti-Tumor Activity vol.2, pp.3, 2017, https://doi.org/10.3390/epigenomes2030016
  24. Regulation of Tumor Suppressor Gene CDKN2A and Encoded p16-INK4a Protein by Covalent Modifications vol.83, pp.11, 2017, https://doi.org/10.1134/s0006297918110019
  25. Dependence receptor UNC5A restricts luminal to basal breast cancer plasticity and metastasis vol.20, pp.None, 2018, https://doi.org/10.1186/s13058-018-0963-5
  26. Tackling malignant melanoma epigenetically: histone lysine methylation vol.10, pp.None, 2017, https://doi.org/10.1186/s13148-018-0583-z
  27. Histone modifications and their role in epigenetics of atopy and allergic diseases vol.14, pp.None, 2018, https://doi.org/10.1186/s13223-018-0259-4
  28. Making Sense of the Epigenome Using Data Integration Approaches vol.10, pp.None, 2017, https://doi.org/10.3389/fphar.2019.00126
  29. Evidence of an Epigenetics System in Archaea vol.12, pp.None, 2017, https://doi.org/10.1177/2516865719865280
  30. MRG-1/MRG15 Is a Barrier for Germ Cell to Neuron Reprogramming in Caenorhabditis elegans vol.211, pp.1, 2017, https://doi.org/10.1534/genetics.118.301674
  31. Prenatal Malnutrition-Induced Epigenetic Dysregulation as a Risk Factor for Type 2 Diabetes vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/3821409
  32. Epigenetic Regulations in Neuropsychiatric Disorders vol.10, pp.None, 2017, https://doi.org/10.3389/fgene.2019.00268
  33. Epigenetics of Bladder Cancer: Where Biomarkers and Therapeutic Targets Meet vol.10, pp.None, 2017, https://doi.org/10.3389/fgene.2019.01125
  34. Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development vol.13, pp.None, 2019, https://doi.org/10.3389/fncel.2019.00352
  35. Histone H3K9 Trimethylation Downregulates the Expression of Brain-Derived Neurotrophic Factor in the Dorsal Hippocampus and Impairs Memory Formation During Anaesthesia and Surgery vol.12, pp.None, 2017, https://doi.org/10.3389/fnmol.2019.00246
  36. Structural Basis for Recognition of Ubiquitylated Nucleosome by Dot1L Methyltransferase vol.26, pp.7, 2017, https://doi.org/10.1016/j.celrep.2019.01.058
  37. Different functions of PHF10 isoforms - subunits of the PBAF chromatin remodeling complex vol.23, pp.2, 2017, https://doi.org/10.18699/vj19.480
  38. Different functions of PHF10 isoforms - subunits of the PBAF chromatin remodeling complex vol.23, pp.2, 2017, https://doi.org/10.18699/vj19.480
  39. Histone 4 Lysine 20 Methylation: A Case for Neurodevelopmental Disease vol.8, pp.1, 2017, https://doi.org/10.3390/biology8010011
  40. Pathogenic and Therapeutic Role of H3K4 Family of Methylases and Demethylases in Cancers vol.34, pp.2, 2017, https://doi.org/10.1007/s12291-019-00828-x
  41. KDM5D-mediated H3K4 demethylation is required for sexually dimorphic gene expression in mouse embryonic fibroblasts vol.165, pp.4, 2017, https://doi.org/10.1093/jb/mvy106
  42. Coexpression patterns define epigenetic regulators associated with neurological dysfunction vol.29, pp.4, 2017, https://doi.org/10.1101/gr.239442.118
  43. Epigenetic cues modulating the generation of cell‐type diversity in the cerebral cortex vol.149, pp.1, 2017, https://doi.org/10.1111/jnc.14601
  44. DZNep and UNC0642 enhance in vitro developmental competence of cloned pig embryos vol.157, pp.4, 2019, https://doi.org/10.1530/rep-18-0571
  45. DZNep and UNC0642 enhance in vitro developmental competence of cloned pig embryos vol.157, pp.4, 2019, https://doi.org/10.1530/rep-18-0571
  46. Mapping the Heterogeneity of Histone Modifications on Hepatitis B Virus DNA Using Liver Needle Biopsies Obtained from Chronically Infected Patients vol.93, pp.9, 2017, https://doi.org/10.1128/jvi.02036-18
  47. Characterization of H3 methylation in regulating oocyte development in cyprinid fish vol.62, pp.6, 2019, https://doi.org/10.1007/s11427-018-9346-6
  48. AMPK regulates germline stem cell quiescence and integrity through an endogenous small RNA pathway vol.17, pp.6, 2017, https://doi.org/10.1371/journal.pbio.3000309
  49. Bookmarking by histone methylation ensures chromosomal integrity during mitosis vol.42, pp.6, 2017, https://doi.org/10.1007/s12272-019-01156-7
  50. CBX5/G9a/H3K9me-mediated gene repression is essential to fibroblast activation during lung fibrosis vol.4, pp.12, 2017, https://doi.org/10.1172/jci.insight.127111
  51. Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts vol.14, pp.7, 2017, https://doi.org/10.1371/journal.pone.0217699
  52. JMJD2 promotes acquired cisplatin resistance in non-small cell lung carcinoma cells vol.38, pp.28, 2019, https://doi.org/10.1038/s41388-019-0814-6
  53. The Histone Demethylase Enzymes KDM3A and KDM4B Co-Operatively Regulate Chromatin Transactions of the Estrogen Receptor in Breast Cancer vol.11, pp.8, 2017, https://doi.org/10.3390/cancers11081122
  54. Epigenetic Changes as a Target in Aging Haematopoietic Stem Cells and Age-Related Malignancies vol.8, pp.8, 2017, https://doi.org/10.3390/cells8080868
  55. Polycomb repressive 2 complex-Molecular mechanisms of function vol.28, pp.8, 2017, https://doi.org/10.1002/pro.3647
  56. Epigenetic Regulation of Adipogenic Differentiation by Histone Lysine Demethylation vol.20, pp.16, 2019, https://doi.org/10.3390/ijms20163918
  57. Epigenetic Regulation of p21cip1/waf1 in Human Cancer vol.11, pp.9, 2019, https://doi.org/10.3390/cancers11091343
  58. The Plant NF-Y DNA Matrix In Vitro and In Vivo vol.8, pp.10, 2017, https://doi.org/10.3390/plants8100406
  59. A systematic review of smoking-related epigenetic alterations vol.93, pp.10, 2017, https://doi.org/10.1007/s00204-019-02562-y
  60. How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1α in the Regulation of Metabolism vol.20, pp.21, 2019, https://doi.org/10.3390/ijms20215449
  61. The histone lysine demethylase KDM7A is required for normal development and first cell lineage specification in porcine embryos vol.14, pp.11, 2017, https://doi.org/10.1080/15592294.2019.1633864
  62. Intriguing Origins of Protein Lysine Methylation: Influencing Cell Function Through Dynamic Methylation vol.17, pp.6, 2019, https://doi.org/10.1016/j.gpb.2019.03.005
  63. ANKHD1 is required for SMYD3 to promote tumor metastasis in hepatocellular carcinoma vol.38, pp.1, 2017, https://doi.org/10.1186/s13046-018-1011-0
  64. Histone H3 lysine K4 methylation and its role in learning and memory vol.12, pp.None, 2017, https://doi.org/10.1186/s13072-018-0251-8
  65. Panorama epigenético del mesotelioma pleural maligno vol.78, pp.4, 2017, https://doi.org/10.35366/nt194h
  66. In silico derived small molecules targeting the finger-finger interaction between the histone lysine methyltransferase NSD1 and Nizp1 repressor vol.18, pp.None, 2017, https://doi.org/10.1016/j.csbj.2020.11.044
  67. Causes and Consequences of Variable Tumor Cell Metabolism on Heritable Modifications and Tumor Evolution vol.10, pp.None, 2017, https://doi.org/10.3389/fonc.2020.00373
  68. Dissecting the functional pleiotropism of lysine demethylase 5B in physiology and pathology vol.7, pp.2, 2017, https://doi.org/10.4103/jcrp.jcrp_5_20
  69. The histone H3K4 demethylase JARID1A directly interacts with haematopoietic transcription factor GATA1 in erythroid cells through its second PHD domain vol.7, pp.1, 2017, https://doi.org/10.1098/rsos.191048
  70. Heparanase and Chemotherapy Synergize to Drive Macrophage Activation and Enhance Tumor Growth vol.80, pp.1, 2017, https://doi.org/10.1158/0008-5472.can-19-1676
  71. Genome-wide alterations of uracil distribution patterns in human DNA upon chemotherapeutic treatments vol.9, pp.None, 2020, https://doi.org/10.7554/elife.60498
  72. Loss of chromatin modulator Dpy30 compromises proliferation and differentiation of postnatal neural stem cells vol.12, pp.1, 2017, https://doi.org/10.1093/jmcb/mjz041
  73. Histone Lysine Demethylases KDM5B and KDM5C Modulate Genome Activation and Stability in Porcine Embryos vol.8, pp.None, 2017, https://doi.org/10.3389/fcell.2020.00151
  74. The impact of epigenetics on cardiovascular disease vol.98, pp.1, 2020, https://doi.org/10.1139/bcb-2019-0045
  75. The emerging role of epigenetic therapeutics in immuno-oncology vol.17, pp.2, 2017, https://doi.org/10.1038/s41571-019-0266-5
  76. Targeting epigenetic regulators in the treatment of T-cell lymphoma vol.13, pp.2, 2020, https://doi.org/10.1080/17474086.2020.1711732
  77. Profiling epigenetic changes in human cell line induced by atrazine exposure vol.258, pp.None, 2017, https://doi.org/10.1016/j.envpol.2019.113712
  78. The inflammatory effect of epigenetic factors and modifications in type 2 diabetes vol.28, pp.2, 2017, https://doi.org/10.1007/s10787-019-00663-9
  79. The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link vol.12, pp.4, 2017, https://doi.org/10.3390/cancers12041031
  80. Evolutionarily ancient BAH–PHD protein mediates Polycomb silencing vol.117, pp.21, 2017, https://doi.org/10.1073/pnas.1918776117
  81. Suspended in time: Molecular responses to hibernation also promote longevity vol.134, pp.None, 2017, https://doi.org/10.1016/j.exger.2020.110889
  82. Identification of a C2′-fluorinated SAH analogue vol.98, pp.6, 2017, https://doi.org/10.1139/cjc-2020-0029
  83. Epigenetic Modifiers as Potential Therapeutic Targets in Diabetic Kidney Disease vol.21, pp.11, 2017, https://doi.org/10.3390/ijms21114113
  84. Regulation of metabolism by mitochondrial enzyme acetylation in cardiac ischemia-reperfusion injury vol.1866, pp.6, 2017, https://doi.org/10.1016/j.bbadis.2020.165728
  85. H2B ubiquitylation enhances H3K4 methylation activities of human KMT2 family complexes vol.48, pp.10, 2020, https://doi.org/10.1093/nar/gkaa317
  86. Roles of OCT4 in pathways of embryonic development and cancer progression vol.189, pp.None, 2020, https://doi.org/10.1016/j.mad.2020.111286
  87. Molecular mechanisms of Guadecitabine induced FGFR4 down regulation in alveolar rhabdomyosarcomas vol.22, pp.7, 2017, https://doi.org/10.1016/j.neo.2020.05.001
  88. Regulation of Adult Neurogenesis in Mammalian Brain vol.21, pp.14, 2020, https://doi.org/10.3390/ijms21144869
  89. Radiation-induced H3K9 tri-methylation in E-cadherin promoter during lung EMT: in vitro and in vivo approaches using vanillin vol.54, pp.7, 2017, https://doi.org/10.1080/10715762.2020.1814274
  90. Epigenetics for Clinicians from the Perspective of Pediatric Rheumatic Diseases vol.22, pp.8, 2017, https://doi.org/10.1007/s11926-020-00912-9
  91. Chromatin dynamics and histone modifications in intestinal microbiota-host crosstalk vol.38, pp.None, 2017, https://doi.org/10.1016/j.molmet.2019.12.005
  92. The role of epigenetics and non-coding RNAs in autophagy: A new perspective for thorough understanding vol.190, pp.None, 2017, https://doi.org/10.1016/j.mad.2020.111309
  93. BRAF inhibition in melanoma is associated with the dysregulation of histone methylation and histone methyltransferases vol.22, pp.9, 2017, https://doi.org/10.1016/j.neo.2020.06.006
  94. The nucleosome acidic patch and H2A ubiquitination underlie mSWI/SNF recruitment in synovial sarcoma vol.27, pp.9, 2017, https://doi.org/10.1038/s41594-020-0466-9
  95. The Roles of the Histone Protein Modifier EZH2 in the Uterus and Placenta vol.4, pp.3, 2017, https://doi.org/10.3390/epigenomes4030020
  96. Epigenetic Regulators Involved in Osteoclast Differentiation vol.21, pp.19, 2020, https://doi.org/10.3390/ijms21197080
  97. Multiplexed and Ultralow-Input ChIP-seq Enabled by Tagmentation-Based Indexing and Facile Microfluidics vol.92, pp.20, 2020, https://doi.org/10.1021/acs.analchem.0c02550
  98. Dysfunction of the corticostriatal pathway in autism spectrum disorders vol.98, pp.11, 2020, https://doi.org/10.1002/jnr.24560
  99. DNA CpG methylation in sequential glioblastoma specimens vol.146, pp.11, 2017, https://doi.org/10.1007/s00432-020-03349-w
  100. TIP60 recruits SUV39H1 to chromatin to maintain heterochromatin genome stability and resist hydrogen peroxide-induced cytotoxicity vol.1, pp.6, 2017, https://doi.org/10.1007/s42764-020-00025-8
  101. Arsenic induced epigenetic changes and relevance to treatment of acute promyelocytic leukemia and beyond vol.406, pp.None, 2020, https://doi.org/10.1016/j.taap.2020.115212
  102. Nonclinical safety assessment of epigenetic modulatory drugs: Current status and industry perspective vol.117, pp.None, 2020, https://doi.org/10.1016/j.yrtph.2020.104746
  103. Dedifferentiation and neuronal repression define familial Alzheimer’s disease vol.6, pp.46, 2017, https://doi.org/10.1126/sciadv.aba5933
  104. ASH2L drives proliferation and sensitivity to bleomycin and other genotoxins in Hodgkin’s lymphoma and testicular cancer cells vol.11, pp.11, 2017, https://doi.org/10.1038/s41419-020-03231-0
  105. Targeting the epigenetic addiction of Merkel cell carcinoma vol.12, pp.11, 2017, https://doi.org/10.15252/emmm.202013347
  106. Mining histone methyltransferases and demethylases from whole genome sequence vol.45, pp.1, 2017, https://doi.org/10.1007/s12038-019-9982-3
  107. Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg vol.2, pp.6, 2017, https://doi.org/10.1016/j.jhepr.2020.100167
  108. Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers vol.10, pp.1, 2017, https://doi.org/10.1038/s41598-020-70173-0
  109. Histone H3K9 methylation regulates chronic stress and IL‐6–induced colon epithelial permeability and visceral pain vol.32, pp.12, 2017, https://doi.org/10.1111/nmo.13941
  110. KMT2C/D COMPASS complex-associated diseases [K CD COM-ADs]: an emerging class of congenital regulopathies vol.12, pp.None, 2017, https://doi.org/10.1186/s13148-019-0802-2
  111. A three layered histone epigenetics in breast cancer metastasis vol.10, pp.1, 2017, https://doi.org/10.1186/s13578-020-00415-1
  112. Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure vol.21, pp.24, 2017, https://doi.org/10.3390/ijms21249514
  113. Histone Methyltransferase G9a Regulates Expression of Nuclear Receptors and Cytochrome P450 Enzymes in HepaRG Cells at Basal Level and in Fatty Acid Induced Steatosis vol.48, pp.12, 2017, https://doi.org/10.1124/dmd.120.000195
  114. The evolving metabolic landscape of chromatin biology and epigenetics vol.21, pp.12, 2017, https://doi.org/10.1038/s41576-020-0270-8
  115. High-Throughput Discovery and Characterization of Human Transcriptional Effectors vol.183, pp.7, 2017, https://doi.org/10.1016/j.cell.2020.11.024
  116. Post-translational modification analysis of Saccharomyces cerevisiae histone methylation enzymes reveals phosphorylation sites of regulatory potential vol.296, pp.None, 2017, https://doi.org/10.1074/jbc.ra120.015995
  117. Role for Histone Deacetylation in Traumatic Brain Injury-Induced Deficits in Neuropeptide Y in Arcuate Nucleus: Possible Implications in Feeding Behavior vol.111, pp.12, 2017, https://doi.org/10.1159/000513638
  118. Structural determinants for NF‐Y subunit organization and NF‐Y/DNA association in plants vol.105, pp.1, 2017, https://doi.org/10.1111/tpj.15038
  119. Epigenetic modifications in neuropathic pain vol.17, pp.None, 2021, https://doi.org/10.1177/17448069211056767
  120. The Functions of the Demethylase JMJD3 in Cancer vol.22, pp.2, 2017, https://doi.org/10.3390/ijms22020968
  121. Regulation of histone H3 lysine 9 methylation in inflammation vol.14, pp.1, 2017, https://doi.org/10.1080/26895293.2021.1931477
  122. Methylation Modification, Alternative Splicing, and Noncoding RNA Play a Role in Cancer Metastasis through Epigenetic Regulation vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/4061525
  123. Enhanced H3K4 Trimethylation in TNF-α Promoter Gene Locus with Cell Apoptosis in the Ventral-Medial Striatum following Opioid Withdrawal of Neonatal Rat Offspring from Morphine-Addicted Mothers vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/9828995
  124. Cardiac Regeneration: New Insights Into the Frontier of Ischemic Heart Failure Therapy vol.8, pp.None, 2021, https://doi.org/10.3389/fbioe.2020.637538
  125. 5-Hydroxymethylcytosine-mediated active demethylation is required for mammalian neuronal differentiation and function vol.10, pp.None, 2017, https://doi.org/10.7554/elife.66973
  126. Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis vol.162, pp.1, 2017, https://doi.org/10.1210/endocr/bqaa210
  127. Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.626708
  128. Histone Lysine Methyltransferase SETD2 Regulates Coronary Vascular Development in Embryonic Mouse Hearts vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.651655
  129. Epigenetic Regulation in Hydra: Conserved and Divergent Roles vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.663208
  130. Is There a Histone Code for Cellular Quiescence? vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.739780
  131. Live-cell epigenome manipulation by synthetic histone acetylation catalyst system vol.118, pp.4, 2021, https://doi.org/10.1073/pnas.2019554118
  132. Mechanism and Therapeutic Opportunities of Histone Modifications in Chronic Liver Disease vol.12, pp.None, 2017, https://doi.org/10.3389/fphar.2021.784591
  133. Epigenetic and Genetic Factors Associated With Opioid Use Disorder: Are These Relevant to African American Populations vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.798362
  134. The Role of H3K4 Trimethylation in CpG Islands Hypermethylation in Cancer vol.11, pp.2, 2017, https://doi.org/10.3390/biom11020143
  135. Novel Approaches to Epigenetic Therapies: From Drug Combinations to Epigenetic Editing vol.12, pp.2, 2021, https://doi.org/10.3390/genes12020208
  136. Replication-Coupled Chromatin Remodeling: An Overview of Disassembly and Assembly of Chromatin during Replication vol.22, pp.3, 2017, https://doi.org/10.3390/ijms22031113
  137. Histone Methyltransferase SETDB1: A Common Denominator of Tumorigenesis with Therapeutic Potential vol.81, pp.3, 2017, https://doi.org/10.1158/0008-5472.can-20-2906
  138. The Impact of Epstein-Barr Virus Infection on Epigenetic Regulation of Host Cell Gene Expression in Epithelial and Lymphocytic Malignancies vol.11, pp.None, 2017, https://doi.org/10.3389/fonc.2021.629780
  139. Aberrant Metabolism as Inductor of Epigenetic Changes in Breast Cancer: Therapeutic Opportunities vol.11, pp.None, 2017, https://doi.org/10.3389/fonc.2021.676562
  140. Targeted attenuation of elevated histone marks at SNCA alleviates α‐synuclein in Parkinson's disease vol.13, pp.2, 2017, https://doi.org/10.15252/emmm.202012188
  141. SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies vol.26, pp.4, 2017, https://doi.org/10.3390/molecules26040828
  142. The histone demethylase KDM5 is required for synaptic structure and function at the Drosophila neuromuscular junction vol.34, pp.7, 2021, https://doi.org/10.1016/j.celrep.2021.108753
  143. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer vol.48, pp.3, 2017, https://doi.org/10.1016/j.jgg.2021.02.004
  144. Epigenetic regulation of p62/SQSTM1 overcomes the radioresistance of head and neck cancer cells via autophagy-dependent senescence induction vol.12, pp.3, 2017, https://doi.org/10.1038/s41419-021-03539-5
  145. SETDB1 is required for intestinal epithelial differentiation and the prevention of intestinal inflammation vol.70, pp.3, 2017, https://doi.org/10.1136/gutjnl-2020-321339
  146. Histone demethylases JHDM1D, PHF2 and PHF8 expression pattern in granulosa cells obtained from patients undergoing IVF procedure during short-term IVC vol.9, pp.1, 2017, https://doi.org/10.2478/acb-2021-0001
  147. Chemical Insights into Liquid-Liquid Phase Separation in Molecular Biology vol.94, pp.3, 2017, https://doi.org/10.1246/bcsj.20200397
  148. Androgens regulate ovarian gene expression by balancing Ezh2-Jmjd3 mediated H3K27me3 dynamics vol.17, pp.3, 2017, https://doi.org/10.1371/journal.pgen.1009483
  149. Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer vol.7, pp.15, 2017, https://doi.org/10.1126/sciadv.abe2261
  150. Epigenetic regulation of ACE2, the receptor of the SARS-CoV-2 virus1 vol.64, pp.4, 2021, https://doi.org/10.1139/gen-2020-0124
  151. A Review of Genetic Abnormalities in Unicentric and Multicentric Castleman Disease vol.10, pp.4, 2017, https://doi.org/10.3390/biology10040251
  152. Epigenetics in a Spectrum of Myeloid Diseases and Its Exploitation for Therapy vol.13, pp.7, 2017, https://doi.org/10.3390/cancers13071746
  153. Epigenetic Consequences of in Utero Exposure to Rosuvastatin: Alteration of Histone Methylation Patterns in Newborn Rat Brains vol.22, pp.7, 2017, https://doi.org/10.3390/ijms22073412
  154. Sex and Race-Related DNA Methylation Changes in Hepatocellular Carcinoma vol.22, pp.8, 2017, https://doi.org/10.3390/ijms22083820
  155. The epigenetic basis of cellular heterogeneity vol.22, pp.4, 2017, https://doi.org/10.1038/s41576-020-00300-0
  156. Insights into the Links between MYC and 3D Chromatin Structure and Epigenetics Regulation: Implications for Cancer Therapy vol.81, pp.8, 2017, https://doi.org/10.1158/0008-5472.can-20-3613
  157. Histone Acetyltransferases and Stem Cell Identity vol.13, pp.10, 2021, https://doi.org/10.3390/cancers13102407
  158. Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex vol.12, pp.5, 2021, https://doi.org/10.3390/genes12050622
  159. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting vol.67, pp.None, 2021, https://doi.org/10.1016/j.arr.2021.101312
  160. Unraveling the epigenetic landscape of glomerular cells in kidney disease vol.99, pp.6, 2017, https://doi.org/10.1007/s00109-021-02066-2
  161. The effects of plasticizers on the ovary vol.18, pp.None, 2021, https://doi.org/10.1016/j.coemr.2021.01.004
  162. Pseudogene RPL32P3 regulates the blood-tumor barrier permeability via the YBX2/HNF4G axis vol.7, pp.1, 2017, https://doi.org/10.1038/s41420-021-00758-9
  163. Metabolism as a central regulator of β‐cell chromatin state vol.288, pp.12, 2017, https://doi.org/10.1111/febs.15562
  164. Coping with low moisture stress: Remembering and responding vol.172, pp.2, 2021, https://doi.org/10.1111/ppl.13343
  165. TNF is a homoeostatic regulator of distinct epigenetically primed human osteoclast precursors vol.80, pp.6, 2017, https://doi.org/10.1136/annrheumdis-2020-219262
  166. H3K4 Methylation in Aging and Metabolism vol.5, pp.2, 2017, https://doi.org/10.3390/epigenomes5020014
  167. Nuclear Dishevelled targets gene regulatory regions and promotes tumor growth vol.22, pp.6, 2021, https://doi.org/10.15252/embr.202050600
  168. Influenza Virus RNA-Dependent RNA Polymerase and the Host Transcriptional Apparatus vol.90, pp.1, 2021, https://doi.org/10.1146/annurev-biochem-072820-100645
  169. Contributions of methionine to recognition of trimethyllysine in aromatic cage of PHD domains: implications of polarizability, hydrophobicity, and charge on binding vol.12, pp.25, 2017, https://doi.org/10.1039/d1sc02175c
  170. Contributions of methionine to recognition of trimethyllysine in aromatic cage of PHD domains: implications of polarizability, hydrophobicity, and charge on binding vol.12, pp.25, 2017, https://doi.org/10.1039/d1sc02175c
  171. Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response vol.13, pp.13, 2017, https://doi.org/10.3390/cancers13133325
  172. Methyltransferases in the Pathogenesis of Keratinocyte Cancers vol.13, pp.14, 2021, https://doi.org/10.3390/cancers13143402
  173. Role of Histone Methylation in Maintenance of Genome Integrity vol.12, pp.7, 2017, https://doi.org/10.3390/genes12071000
  174. Functional Interplay between Methyltransferases and Inflammasomes in Inflammatory Responses and Diseases vol.22, pp.14, 2017, https://doi.org/10.3390/ijms22147580
  175. High WHSC1L1 Expression Reduces Survival Rates in Operated Breast Cancer Patients with Decreased CD8+ T Cells: Machine Learning Approach vol.11, pp.7, 2017, https://doi.org/10.3390/jpm11070636
  176. Editorial SI FGB “Chromatin regulation and epigenetics” vol.153, pp.None, 2017, https://doi.org/10.1016/j.fgb.2021.103569
  177. Epigenetic Alterations in Pancreatic Cancer Metastasis vol.11, pp.8, 2017, https://doi.org/10.3390/biom11081082
  178. Bmi1 Augments Proliferation and Survival of Cortical Bone-Derived Stem Cells after Injury through Novel Epigenetic Signaling via Histone 3 Regulation vol.22, pp.15, 2017, https://doi.org/10.3390/ijms22157813
  179. The effects of endocrine disruptors on the male germline: an intergenerational health risk vol.96, pp.4, 2017, https://doi.org/10.1111/brv.12701
  180. Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase vol.162, pp.8, 2017, https://doi.org/10.1210/endocr/bqab088
  181. Hybrid Stomach-Intestinal Chromatin States Underlie Human Barrett’s Metaplasia vol.161, pp.3, 2017, https://doi.org/10.1053/j.gastro.2021.05.057
  182. Epigenetic gene regulation in plasma cells vol.303, pp.1, 2021, https://doi.org/10.1111/imr.12975
  183. Gravitational Force-Induced 3D Chromosomal Conformational Changes Are Associated with Rapid Transcriptional Response in Human T Cells vol.22, pp.17, 2021, https://doi.org/10.3390/ijms22179426
  184. Development of “Imprint-and-Report” Dynamic Combinatorial Libraries for Differential Sensing Applications vol.143, pp.36, 2017, https://doi.org/10.1021/jacs.1c07068
  185. A Peptidomimetic Ligand Targeting the Chromodomain of MPP8 Reveals HRP2’s Association with the HUSH Complex vol.16, pp.9, 2017, https://doi.org/10.1021/acschembio.1c00429
  186. Histone methylation in pancreatic cancer and its clinical implications vol.27, pp.36, 2017, https://doi.org/10.3748/wjg.v27.i36.6004
  187. Genomewide alteration of histone H3K4 methylation underlies genetic vulnerability to psychopathology vol.100, pp.2, 2017, https://doi.org/10.1007/s12041-021-01294-2
  188. Cryptic promoter activation occurs by at least two different mechanisms in the Arabidopsis genome vol.108, pp.1, 2017, https://doi.org/10.1111/tpj.15420
  189. COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis vol.33, pp.10, 2017, https://doi.org/10.1093/plcell/koab187
  190. siRNA screening identifies METTL9 as a histidine Nπ-methyltransferase that targets the proinflammatory protein S100A9 vol.297, pp.5, 2017, https://doi.org/10.1016/j.jbc.2021.101230
  191. Role and Clinical Utility of Cancer/Testis Antigens in Head and Neck Squamous Cell Carcinoma vol.13, pp.22, 2017, https://doi.org/10.3390/cancers13225690
  192. Decoding the Equine Genome: Lessons from ENCODE vol.12, pp.11, 2017, https://doi.org/10.3390/genes12111707
  193. Effect of Cold Atmospheric Plasma on Epigenetic Changes, DNA Damage, and Possibilities for Its Use in Synergistic Cancer Therapy vol.22, pp.22, 2017, https://doi.org/10.3390/ijms222212252
  194. Exploring the Effects of Methylation on the CID of Protonated Lysine: A Combined Experimental and Computational Approach vol.32, pp.11, 2021, https://doi.org/10.1021/jasms.1c00225
  195. Shaping longevity early in life: developmental ROS and H3K4me3 set the clock vol.20, pp.22, 2017, https://doi.org/10.1080/15384101.2021.1986317
  196. End-Binding E3 Ubiquitin Ligases Enable Protease Signaling vol.16, pp.11, 2017, https://doi.org/10.1021/acschembio.9b00621
  197. Nicotinamide N‐methyltransferase is related to MELF pattern invasion in endometrioid carcinoma vol.10, pp.23, 2017, https://doi.org/10.1002/cam4.4359
  198. Neonatal thyroxine activation modifies epigenetic programming of the liver vol.12, pp.1, 2017, https://doi.org/10.1038/s41467-021-24748-8
  199. AKT3-mediated IWS1 phosphorylation promotes the proliferation of EGFR-mutant lung adenocarcinomas through cell cycle-regulated U2AF2 RNA splicing vol.12, pp.1, 2017, https://doi.org/10.1038/s41467-021-24795-1
  200. Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes vol.12, pp.1, 2017, https://doi.org/10.1038/s41467-021-25051-2
  201. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy vol.20, pp.1, 2017, https://doi.org/10.1186/s12943-021-01464-x
  202. Epigenetic regulation of retinal development vol.14, pp.1, 2021, https://doi.org/10.1186/s13072-021-00384-w
  203. Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health vol.10, pp.12, 2021, https://doi.org/10.3390/antiox10121893
  204. Genome Instability in Multiple Myeloma: Facts and Factors vol.13, pp.23, 2021, https://doi.org/10.3390/cancers13235949
  205. UBR7 acts as a histone chaperone for post‐nucleosomal histone H3 vol.40, pp.24, 2017, https://doi.org/10.15252/embj.2021108307
  206. Transcriptional Regulation of the Y-Linked Mammalian Testis-Determining Gene SRY vol.15, pp.5, 2021, https://doi.org/10.1159/000519217
  207. Amide-derived lysine analogues as substrates and inhibitors of histone lysine methyltransferases and acetyltransferases vol.20, pp.1, 2021, https://doi.org/10.1039/d1ob02191e
  208. Lead exposure induces dysregulation of constitutive heterochromatin hallmarks in live cells vol.3, pp.None, 2017, https://doi.org/10.1016/j.crtox.2021.12.001
  209. Epigenetic regulation in the neurogenic niche of the adult dentate gyrus vol.766, pp.None, 2017, https://doi.org/10.1016/j.neulet.2021.136343
  210. Decoding Cinnabarinic Acid–Specific Stanniocalcin 2 Induction by Aryl Hydrocarbon Receptor vol.101, pp.1, 2017, https://doi.org/10.1124/molpharm.121.000376
  211. Hypomethylation-activated cancer-testis gene LIN28B promotes cell proliferation and metastasis in gastric cancer vol.813, pp.None, 2017, https://doi.org/10.1016/j.gene.2021.146115