DOI QR코드

DOI QR Code

Coupling killing to neutralization: combined therapy with ceftriaxone/Pep19-2.5 counteracts sepsis in rabbits

  • Barcena-Varela, Sergio (Department of Microbiology and Parasitology, Universidad de Navarra) ;
  • Martinez-de-Tejada, Guillermo (Department of Microbiology and Parasitology, Universidad de Navarra) ;
  • Martin, Lukas (Department of Intensive Care and Intermediate Care, University Hospital Aachen) ;
  • Schuerholz, Tobias (Department of Anaesthesia and Intensive Care, University of Rostock) ;
  • Gil-Royo, Ana Gloria (Department of Pharmacology and Toxicology, Universidad de Navarra) ;
  • Fukuoka, Satoshi (National Institute of Advanced Industrial Science and Technology AIST) ;
  • Goldmann, Torsten (Department of Pathology, University Hospital of Luebeck) ;
  • Droemann, Daniel (Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL)) ;
  • Correa, Wilmar (Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences) ;
  • Gutsmann, Thomas (Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences) ;
  • Brandenburg, Klaus (Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences) ;
  • Heinbockel, Lena (Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences)
  • Received : 2016.10.29
  • Accepted : 2017.01.23
  • Published : 2017.06.30

Abstract

Sepsis, which is induced by severe bacterial infections, is a major cause of death worldwide, and therapies combating the disease are urgently needed. Because many drugs have failed in clinical trials despite their efficacy in mouse models, the development of reliable animal models of sepsis is in great demand. Several studies have suggested that rabbits reflect sepsis-related symptoms more accurately than mice. In this study, we evaluated a rabbit model of acute sepsis caused by the intravenous inoculation of Salmonella enterica. The model reproduces numerous symptoms characteristic of human sepsis including hyperlactatemia, hyperglycemia, leukopenia, hypothermia and the hyperproduction of several pro-inflammatory cytokines. Hence, it was chosen to investigate the proposed ability of Pep19-2.5-an anti-endotoxic peptide with high affinity to lipopolysaccharide and lipoprotein-to attenuate sepsis-associated pathologies in combination with an antibiotic (ceftriaxone). We demonstrate that a combination of Pep19-2.5 and ceftriaxone administered intravenously to the rabbits (1) kills bacteria and eliminates bacteremia 30 min post challenge; (2) inhibits Toll-like receptor 4 agonists in serum 90 min post challenge; (3) reduces serum levels of pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor ${\alpha}$); and (4) reverts to hypothermia and gives rise to temperature values indistinguishable from basal levels 330 min post challenge. The two components of the combination displayed synergism in some of these activities, and Pep19-2.5 notably counteracted the endotoxin-inducing potential of ceftriaxone. Thus, the combination therapy of Pep19-2.5 and ceftriaxone holds promise as a candidate for human sepsis therapy.

Keywords

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315: 801-810. https://doi.org/10.1001/jama.2016.0287
  2. Kempker JA, Martin GS. The changing epidemiology and definitions of sepsis. Clin Chest Med 2016; 37: 165-179. https://doi.org/10.1016/j.ccm.2016.01.002
  3. Rittirsch D, Hoesel LM, Ward PA. The disconnect between animal models of sepsis and human sepsis. J Leukocyte Biol 2007; 81: 137-143. https://doi.org/10.1189/jlb.0806542
  4. Lakshmikanth CL, Jacob SP, Chaithra VH, de Castro-Faria-Neto HC, Marathe GK. Sepsis: in search of cure. Inflamm Res 2016; 65: 587-602. https://doi.org/10.1007/s00011-016-0937-y
  5. Poli-de-Figueiredo LF, Garrido AG, Nakagawa N, Sannomiya P. Experimental models of sepsis and their clinical relevance. Shock 2008; 30(Suppl 1): 53-59. https://doi.org/10.1097/SHK.0b013e318181a343
  6. Evans ME, Pollack M. Effect of antibiotic class and concentration on the release of lipopolysaccharide from Escherichia coli. J Infect Dis 1993; 167: 1336-1343. https://doi.org/10.1093/infdis/167.6.1336
  7. Silverstein R, Wood JG, Xue Q, Norimatsu M, Horn DL, Morrison DC. Differential host inflammatory responses to viable versus antibiotic-killed bacteria in experimental microbial sepsis. Infect Immun 2000; 68: 2301-2308. https://doi.org/10.1128/IAI.68.4.2301-2308.2000
  8. Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BIDaptomycin 98-01 and 99-01 Investigators, The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 2004; 38: 1673-1681. https://doi.org/10.1086/420818
  9. Martinez de Tejada G, Sanchez-Gomez S, Razquin-Olazaran I, Kowalski I, Kaconis Y, Heinbockel L et al. Bacterial cell wall compounds as promising targets of antimicrobial agents I. Antimicrobial peptides and lipopolyamines. Curr Drug Targets 2012; 13: 1121-1130. https://doi.org/10.2174/138945012802002410
  10. Heinbockel L, Sanchez-Gomez S, Martinez de Tejada G, Domming S, Brandenburg J, Kaconis Y et al. Preclinical investigations reveal the broad-spectrum neutralizing activity of peptide Pep19-2.5 on bacterial pathogenicity factors. Antimicrob Agents Chemother 2013; 57: 1480-1487. https://doi.org/10.1128/AAC.02066-12
  11. Schuerholz T, Doemming S, Hornef M, Martin L, Simon TP, Heinbockel L et al. The anti-inflammatory effect of the synthetic antimicrobial peptide 19-2.5 in a murine sepsis model: a prospective randomized study. Crit Care 2013; 17: R3. https://doi.org/10.1186/cc11920
  12. Nemzek JA, Hugunin KM, Opp MR. Modeling sepsis in the laboratory: merging sound science with animal well-being. Comp Med 2008; 58: 120-128.
  13. Le Roy D, Di Padova F, Adachi Y, Glauser MP, Calandra T, Heumann D. Critical role of lipopolysaccharide-binding protein and CD14 in immune responses against gram-negative bacteria. J Immunol 2001; 167: 2759-2765. https://doi.org/10.4049/jimmunol.167.5.2759
  14. Galanos C, Freudenberg MA. Mechanisms of endotoxin shock and endotoxin hypersensitivity. Immunobiology 1993; 187: 346-356. https://doi.org/10.1016/S0171-2985(11)80349-9
  15. Taveira da Silva AM, Kaulbach HC, Chuidian FS, Lambert DR, Suffredini AF, Danner RL. Brief report: shock and multiple-organ dysfunction after self-administration of Salmonella endotoxin. N Engl J Med 1993; 328: 1457-1460. https://doi.org/10.1056/NEJM199305203282005
  16. Fink MP. Animal models of sepsis. Virulence 2014; 5: 143-153. https://doi.org/10.4161/viru.26083
  17. Gutsmann T, Razquin-Olazaran I, Kowalski I, Kaconis Y, Howe J, Bartels R et al. New antiseptic peptides to protect against endotoxin-mediated shock. Antimicrob Agents Chemother 2010; 54: 3817-3824. https://doi.org/10.1128/AAC.00534-10
  18. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41: 580-637. https://doi.org/10.1097/CCM.0b013e31827e83af
  19. Morrison DC, Bucklin SE. Evidence for antibiotic-mediated endotoxin release as a contributing factor to lethality in experimental gram-negative sepsis. Scand J Infect Dis Suppl 1996; 101: 3-8.
  20. Martinez de Tejada G, Heinbockel L, Ferrer-Espada R, Heine H, Alexander C, Barcena-Varela S et al. Lipoproteins/peptides are sepsis-inducing toxins from bacteria that can be neutralized by synthetic anti-endotoxin peptides. Sci Rep 2015; 5: 14292. https://doi.org/10.1038/srep14292
  21. Parker SJ, Watkins PE. Experimental models of gram-negative sepsis. Br J Surg 2001; 88: 22-30. https://doi.org/10.1046/j.1365-2168.2001.01632.x
  22. Schoergenhofer C, Schwameis M, Hobl EL, Ay C, Key NS, Derhaschnig U et al. Potent irreversible P2Y12 inhibition does not reduce LPS-induced coagulation activation in a randomized, double-blind, placebocontrolled trial. Clin Sci 2016; 130: 433-440. https://doi.org/10.1042/CS20150591
  23. Doorduin J, Leentjens J, Kox M, van Hees HW, van der Hoeven JG, Pickkers P et al. Effects of experimental human endotoxemia on diaphragm function. Shock 2015; 44: 316-322. https://doi.org/10.1097/SHK.0000000000000435
  24. Kiers D, Gerretsen J, Janssen E, John A, Groeneveld R, van der Hoeven JG et al. Short-term hyperoxia does not exert immunologic effects during experimental murine and human endotoxemia. Sci Rep 2015; 5: 17441. https://doi.org/10.1038/srep17441
  25. Krishnamurti C, Carter AJ, Maglasang P, Hess JR, Cutting MA, Alving BM. Cardiovascular toxicity of human cross-linked hemoglobin in a rabbit endotoxemia model. Crit Care Med 1997; 25: 1874-1880. https://doi.org/10.1097/00003246-199711000-00028
  26. Fink MP, Morrissey PE, Stein KL, Clement RE, Fiallo V, Gardiner WM. Systemic and regional hemodynamic effects of cyclo-oxygenase and thromboxane synthetase inhibition in normal and hyperdynamic endotoxemic rabbits. Circ Shock 1988; 26: 41-57.
  27. Wichtermann KA, Bane AE, Chandry IA. Sepsis and septic shock - a review of laboratory models and a proposal. J Surg Res 1980; 29: 189-201. https://doi.org/10.1016/0022-4804(80)90037-2
  28. Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl JMed 2012; 366: 2055-2064. https://doi.org/10.1056/NEJMoa1202290
  29. Jafarzadeh SR, Thomas BS, Marschall J, Fraser VJ, Gill J, Warren DK. Quantifying the improvement in sepsis diagnosis, documentation, and coding: the marginal causal effect of year of hospitalization on sepsis diagnosis. Ann Epidemiol 2016; 26: 66-70. https://doi.org/10.1016/j.annepidem.2015.10.008
  30. Lin Y, Leach WJ, Ammons WS. Synergistic effect of a recombinant N-terminal fragment of bactericidal/permeability-increasing protein and cefamandole in treatment of rabbit gram-negative sepsis. Antimicrob Agents Chemother 1996; 40: 65-69. https://doi.org/10.1128/AAC.40.1.65
  31. Camerota AJ, Creasey AA, Patla V, Larkin VA, Fink MP. Delayed treatment with recombinant human tissue factor pathway inhibitor improves survival in rabbits with gram-negative peritonitis. J Infect Dis 1998; 177: 668-676. https://doi.org/10.1086/514246
  32. Garcia C, Saladino R, Thompson C, Hammer B, Parsonnet J, Wainwright N et al. Effect of a recombinant endotoxin-neutralizing protein on endotoxin shock in rabbits. Crit Care Med 1994; 22: 1211-1218. https://doi.org/10.1097/00003246-199408000-00003
  33. Nau R, Eiffert H. Modulation of release of proinflammatory bacterial compounds by antibacterials: potential impact on course of inflammation and outcome in sepsis and meningitis. Clin Microbiol Rev 2002; 15: 95-110. https://doi.org/10.1128/CMR.15.1.95-110.2002
  34. Cohen J, McConnell JS. Release of endotoxin from bacteria exposed to ciprofloxacin and its prevention with polymyxin B. Eur J Clin Microbiol 1986; 5: 13-17. https://doi.org/10.1007/BF02013454
  35. Sawa T, Kurahashi K, Ohara M, Gropper MA, Doshi V, Larrick JW et al. Evaluation of antimicrobial and lipopolysaccharide-neutralizing effects of a synthetic CAP18 fragment against Pseudomonas aeruginosa in a mouse model. Antimicrob Agents Chemother 1998; 42: 3269-3275. https://doi.org/10.1128/AAC.42.12.3269
  36. Giacometti A, Cirioni O, Ghiselli R, Mocchegiani F, Paggi AM, Orlando F et al. Therapeutic efficacy of intraperitoneal polymyxin B and polymyxinlike peptides alone or combined with levofloxacin in rat models of septic shock. J Antimicrob Chemother 2002; 49: 193-196. https://doi.org/10.1093/jac/49.1.193
  37. Ghiselli R, Giacometti A, Cirioni O, Mocchegiani F, Viticchi C, Scalise G et al. Cationic peptides combined with betalactams reduce mortality from peritonitis in experimental rat model. J Surg Res 2002; 108: 107-111. https://doi.org/10.1006/jsre.2002.6518
  38. Giacometti A, Cirioni O, Ghiselli R, Mocchegiani F, Viticchi C, Orlando F et al. Antiendotoxin activity of protegrin analog IB-367 alone or in combination with piperacillin in different animal models of septic shock. Peptides 2003; 24: 1747-1752. https://doi.org/10.1016/j.peptides.2003.07.027
  39. Fukumoto K, Nagaoka I, Yamataka A, Kobayashi H, Yanai T, Kato Y et al. Effect of antibacterial cathelicidin peptide CAP18/LL-37 on sepsis in neonatal rats. Pediatr Surg Int 2005; 21: 20-24. https://doi.org/10.1007/s00383-004-1256-x
  40. Murakami T, Obata T, Kuwahara-Arai K, Tamura H, Hiramatsu K, Nagaoka I. Antimicrobial cathelicidin polypeptide CAP11 suppresses the production and release of septic mediators in D-galactosamine-sensitized endotoxin shock mice. Int Immunol 2009; 21: 905-912. https://doi.org/10.1093/intimm/dxp057
  41. Corrigan JJ Jr, Bell BM. Comparison between the polymyxins and gentamicin in preventing endotoxin-induced intravascular coagulation and leukopenia. Infect Immun 1971; 4: 563-566.
  42. Corrigan JJ Jr., Kiernat JF. Effect of polymyxin B sulfate on endotoxin activity in a gram-negative septicemia model. Pediatr Res 1979; 13: 48-51. https://doi.org/10.1203/00006450-197901000-00011
  43. Flynn PM, Shenep JL, Stokes DC, Fairclough D, Hildner WK. Polymyxin B moderates acidosis and hypotension in established, experimental gram-negative septicemia. J Infect Dis 1987; 156: 706-712. https://doi.org/10.1093/infdis/156.5.706
  44. Saladino R, Garcia C, Thompson C, Hammer B, Parsonnet J, Novitsky T et al. Efficacy of a recombinant endotoxin neutralizing protein in rabbits with Escherichia coli sepsis. Circ Shock 1994; 42: 104-110.
  45. Saladino RA, Stack AM, Thompson C, Sattler F, Novitsky TJ, Siber GR et al. High-dose recombinant endotoxin neutralizing protein improves survival in rabbits, with Escherichia coli sepsis. Crit Care Med 1996; 24: 1203-1207. https://doi.org/10.1097/00003246-199607000-00023

Cited by

  1. Inhibition of Lipopolysaccharide- and Lipoprotein-Induced Inflammation by Antitoxin Peptide Pep19-2.5 vol.9, pp.None, 2017, https://doi.org/10.3389/fimmu.2018.01704
  2. Anti-Infective and Anti-Inflammatory Mode of Action of Peptide 19-2.5 vol.22, pp.3, 2017, https://doi.org/10.3390/ijms22031465
  3. An update on endotoxin neutralization strategies in Gram-negative bacterial infections vol.19, pp.4, 2017, https://doi.org/10.1080/14787210.2021.1834847
  4. Peptide VSAK maintains tissue glucose uptake and attenuates pro-inflammatory responses caused by LPS in an experimental model of the systemic inflammatory response syndrome: a PET study vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-94224-2