DOI QR코드

DOI QR Code

Study on Material Fracture and Debris Dispersion Behavior via High Velocity Impact

고속충돌에 따른 재료 파괴 및 파편의 분산거동 연구

  • 사공재 (한양대학교 자동차공학과) ;
  • 우성충 (한양대학교 국방 생존성기술 특화연구센터) ;
  • 김진영 (국방과학연구소) ;
  • 김태원 (한양대학교 기계공학부)
  • Received : 2017.05.02
  • Accepted : 2017.07.10
  • Published : 2017.11.01

Abstract

In this study, high velocity impact tests along with modeling of material behavior and numerical analyses were conducted to predict the dispersion behavior of the debris resulting from a high velocity impact fracture. For the impact tests, two different materials were employed for both the projectile and the target plate - the first setup employed aluminum alloy while the second employed steel. The projectile impacts the target plate with a velocity of approximately 1 km/s were enforced to generate the impact damages in the aluminum witness plate through the fracture debris. It was confirmed that, depending on the material employed, the debris dispersion behavior as well as the dispersion radii on the witness plate varied. A numerical analysis was conducted for the same impact test conditions. The smoothed particle hydrodynamics (SPH)-finite element (FE) coupled technique was then applied to model the fracture and damage upon the debris. The experimental and numerical results for the diameters of the perforation holes in the target plate and the debris dispersion radii on the witness plate were in agreement within a 5% error. In addition, the impact test using steel was found to be more threatening as proven by the larger debris dispersion radius.

본 연구는 고속충돌에 따른 파괴로 인하여 발생한 파편들의 분산거동을 예측하기 위해 고속충돌 실험과 함께 재료거동 모델링 및 수치해석을 수행하였다. 알루미늄 합금과 강철로 각각 구성된 2종류의 위협체 및 표적판에 대해 충돌실험을 수행하였으며 위협체는 약 1 km/s의 속력으로 표적판과 충돌하고, 이 충돌로 인하여 발생한 파편은 알루미늄 합금 관측판에 손상을 유발시키게 하였다. 사용된 소재의 차이에 의해 파편의 분산거동이 상이하였으며 이에 따라 관측판에 형성된 파편의 분산 반경 또한 다름을 확인하였다. 수치해석은 실험과 동일한 조건하에서 수행되었으며 파편으로 인한 파괴 및 손상을 모사하기 위하여 입자완화 유체동역학(smoothed particle hydrodynamics, SPH)기법과 유한요소(finite element, FE) 연계 기법을 적용하였다. 실험 측정된 결과와 해석값을 비교분석한 바, 표적판의 관통부 지름과 관측판상의 파편 분산반경은 5 % 이내의 오차로 잘 일치하였다. 아울러 강철 위협체와 강철 표적판이 충돌한 경우 가장 큰 분산반경을 보임에 따라 타 경우에 비해 가장 위협적임을 알 수 있었다.

Keywords

References

  1. Chhabldas, L. C., Boslough, M. B., Reinhart, W. D. and Hall, C. A., 1994, "Debris Cloud Characterization at Impact Velocities of 5 to 11 km/s," AIP Conference Proceedings, Vol. 309, No. 1, p. 1841.
  2. Chi, R. Q., Pang, B. J., Guan, G. S., Yang, Z. Q., Zhu, Y. and He, M. J., 2008, "Analysis of Debris Clouds Produced by Impact of Aluminum Spheres with Aluminum Sheets," International Journal of Impact Engineering, Vol. 35, pp. 1465-1472. https://doi.org/10.1016/j.ijimpeng.2008.07.009
  3. Higashide M., Koura, T., Akahoshi Y. and Harada, S., 2008, "Debris Cloud Distributions at Oblique Impacts," International Journal of Impact Engineering, Vol. 35, pp. 1573-1577. https://doi.org/10.1016/j.ijimpeng.2008.07.072
  4. Zhang, Q., Chen, Y., Huang F. and Long, R., 2008, "Experimental Study on Expansion Characteristics of Debris Clouds Produced by Oblique Hypervelocity Impact of LY12 Aluminum Projectiles with Thin LY12 Aluminum Plates," International Journal of Impact Engineering, Vol. 35, pp. 1884-1891. https://doi.org/10.1016/j.ijimpeng.2008.07.026
  5. Bohl, W. E.., Miller, J. E., Christiansen E. L. and Davis, B. A., 2013, "HVI Ballistic Performance Characterization of Non-Parallel Walls," Procedia Engineering, Vol. 58, pp. 1884-1891.
  6. Piekutowsk, A. J., 2001, "Debris Clouds Produced by the Hypervelocity Impact of Nonspherical Projectile," International Journal of Impact Engineering Vol. 26, pp. 613-624. https://doi.org/10.1016/S0734-743X(01)00122-1
  7. Ke, F. W., Huang, J., Wen, X. Z., Ma, Z. X. and Liu, S., 2016, "Test Study on the Performance of Shielding Configuration with Stuffed Layer under Hypervelocity Impact," Acta Astronautica, Vol. 127, pp. 553-560. https://doi.org/10.1016/j.actaastro.2016.06.037
  8. Hwang, A. S., Kang, W. G. and Lee, H. C., 2013, "Aluminum Alloys for Next Generation Regional Aircraft Structure," Proceedings of the Korean Society for Aeronautical and Space Sciences 2013 Spring Conference, pp. 160-163.
  9. Kim, C. J., 2015, "Vibration Test Method for General S45C Specimen," Proceedings of the Korean Society of Mechanical Engineers 2015 Spring Conference, pp. 9-10.
  10. Backman, M. E. and Goldsmith, W., 1978, "The Mechanics of Penetration of Projectiles into Targets," International Journal of Engineering Science, Vol. 16, pp. 1-99. https://doi.org/10.1016/0020-7225(78)90002-2
  11. Sakong, J., Woo, S. C. and Kim, T. -W., 2016, "A Study on the Kinetic Energy and Dispersion Behavior of High-velocity Impact-induced Debris using SPH Technique," Trans. Korean Soc. Mech. Eng. A, Vol. 40, No. 5, pp. 457-467. https://doi.org/10.3795/KSME-A.2016.40.5.457
  12. Lee, S. S., Seo, S. W. and Min, O. K., 2003, "SPH Parameters for Analysis of Penetration Phenomenon at Hypervelocity Impact of Meteorite," Trans. Korean Soc. Mech. Eng. A, Vol. 27, No.10, pp. 1738-1747. https://doi.org/10.3795/KSME-A.2003.27.10.1738
  13. Park, S. S. and Noh, M. H., 2006, "Numerical Simulation of High-Velocity Impact of Concrete Using a Coupled Lagrangian and SPH (Smoothed Particle Hydrodynamics) Techniques," Proceedings of the Korean Society of Civil Engineers, 2006 Annual Conference, pp. 863-166.
  14. Jo, J. H. and Lee, M. S., 2013, "Quantitative Analysis of Debris Clouds of Aluminum Plates with SPH," Proceedings of the Society of CAD/CAM Conference, pp. 755-760.
  15. Seo, S. W., Lee, J. H. and Min, O. K., 2005, "SPH Algorithm for an Elasto-Plastic Contact Analysis on a Rigid Surface with an Arbitrary Shape," Trans. Korean Soc. Mech. Eng. A, Vol. 29, No. 1, pp. 30-37. https://doi.org/10.3795/KSME-A.2005.29.1.030
  16. Cho, Y. J., 2011, "Study on Two Dimensional SPH Hydrocode for Large Deformation Problems," Master's Thesis, Sejong University, Seoul, Republic of Korea.
  17. Johnson, G. R. and Cook, W. H., 1983, " A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures," Proceedings of the Seventh International Symposium on Ballistics, pp. 541-547.
  18. Zocher, M. A. and Maudlin, P. J., 2000, "An Evaluation of Several Hardening Models Using Taylor Cylinder Impact Data," European Congress on Computational Methods in Applied Sciences and Engineering, pp. 1-20.
  19. Kim, J. T., Cho, C. H., Kim, J. Y. and Kim, T. -W., 2011, "Influence Factor Analysis of Projectile on the Fracture Behavior of Aluminum Alloys Under High Velocity Impact with Latin Square Method," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 9, pp. 1021-1026. https://doi.org/10.3795/KSME-A.2011.35.9.1021
  20. Corbett, B. M., 2006, "Numerical Simulations of Target Hole Diameters for Hypervelocity Impacts into Elevated and Room Temperature Bumpers," International Journal of Impact Engineering, Vol. 33, pp. 1021-1026.
  21. Jaspers, S. P. F. C. and Dautzenberg, J. H., 2002, "Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone," Journal of Materials Processing Technology, Vol. 122, pp. 322-330. https://doi.org/10.1016/S0924-0136(01)01228-6
  22. Olleak, A. A. and EL-Hofy, H. A., 2015, "Prediction of Cutting Forces in High Speed Machining of Ti6Al4V using SPH Method," Proceedings of the 10th ASME 2015 Manufacturing Science and Engineering Conference, pp. 1-7.
  23. Tansel, D., 2010, "Ballistic Penetration Of Hardened Steel Plates," Master's Thesis, Middle East Technical University, Ankara, Turkey.