DOI QR코드

DOI QR Code

Optimization of Fiber Ratio in Laminated Composites for Development of Three-dimensional Preform T-beam Structure

3차원 프리폼 T-빔 구조물의 개발을 위한 적층복합재료 섬유비율의 최적화

  • Lee, Dong-Woo (Department of Mechanical Engineering, Changwon National University) ;
  • Kim, Chang-Uk (Department of Mechanical Engineering, Changwon National University) ;
  • Byun, Joon-Hyung (Composites Research Center, Korea Institute of Materials Science) ;
  • Song, Jung-Il (Department of Mechanical Engineering, Changwon National University)
  • Received : 2017.08.12
  • Accepted : 2017.10.31
  • Published : 2017.10.31

Abstract

Finite element analysis of T-beam laminate structure under bending-torsional loading was conducted to prevent the delamination which is the major failure behavior on laminated composites. Three-dimensional preform, which is that fabric is braided through thickness direction, is suggested from the laminate analysis. The analysis aimed to optimize the fiber ratio in laminated composites. After it is suggested that guideline for design of T-beam structure using commercial software ANSYS Composites PrePost. The results show that strength of T-beam structure is increased 21.6% when the fiber density along with beam length direction is two times bigger than transverse direction. It is expected that development of high strength T-beam structure using designed three-dimensional preform.

본 연구에서는 적층복합재료에 발생하는 주요 손상인 박리를 방지하기 위하여, 굽힘-비틀림 하중이 작용하는 T-빔의 유한요소해석을 수행하였다. 복합재료 T-빔의 제작에 사용할 수 있는 3차원 직조 프리폼을 설계하고자 하였으며, 이는 2차원 구조의 직조섬유가 두께방향으로도 직조가 되어 있는 형태로서, 층간 분리에 의한 박리를 방지할 수 있는 구조이다. 적층복합재료의 해석 및 평가를 위하여 개발된 유한요소해석 소프트웨어인 ANSYS Composites PrePost를 이용하여 구조해석을 수행함으로써 적층복합재료의 섬유비율을 최적화하고, 이를 토대로 3차원 프리폼 T-빔의 제작을 위한 가이드라인을 제시하였다. 해석결과, T-빔의 길이방향 섬유의 비율이 수직방향 섬유의 2배일 때 가장 높은 강도를 보였으며, 하중조건의 변화에도 최적화된 빔 구조의 강도가 유지되는 것을 확인할 수 있었다. 도출된 섬유비율을 이용하여 3차원 프리폼을 개발할 경우, 박리가 일어나지 않는 고강도의 T-빔 구조물을 제작할 수 있을 것으로 기대된다.

Keywords

References

  1. S. Chen, M. Zang, D. wang, S. Yoshimura, T. Yamada, "Numerical Analysis of Impact Failure of Automotive Laminated Glass: A Review," Composites Part B: Engineering, Vol. 122, 2017, pp. 47-60. https://doi.org/10.1016/j.compositesb.2017.04.007
  2. G.S. Pavan, K.S. Nanjunda Rao, "Bending Analysis of Laminated Composite Plates Using Isogeometric Collocation Method," Composite Structures, Vol. 176, 2017, pp. 715-728. https://doi.org/10.1016/j.compstruct.2017.04.073
  3. A. ozutok, E. Madenci, "Static Analysis of Laminated Composite Beams Based on Higher-order Shear Deformation Theory by Using Mixed-type Finite Element Method," Inter. J. of Mech. Sci., Vol. 130, 2017, pp. 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013
  4. B. Ostre, C. Bouvet, C. Minot, J. Aboisslere, "Experimental Analysis of CFRP Laminates Subjected to Compression after Edge Impact," Composite Structures, Vol. 152, 2016, pp. 767-779. https://doi.org/10.1016/j.compstruct.2016.05.068
  5. W. Hu, R. Jones, A.J. Kinloch, "Discussion of the Stress Ratio Effect on the Fatigue Delamination Growth Characterization in FRP Composite Structures," Procedia Structural Integrity, Vol. 2, 2016, pp. 66-71. https://doi.org/10.1016/j.prostr.2016.06.009
  6. N.S. Mohan, S.M. Kulkarni, A. Ramachandra, "Delamination Analysis in Drilling Process of Glass Fiber Reinforced Plastic (GFRP) Composite Materials," J. of Mat. Processing Tech., Vol. 186, 2007, pp. 265-271. https://doi.org/10.1016/j.jmatprotec.2006.12.043
  7. M. Amirul Islam, "3D Woven Preforms for E-textiles and Composites Reinforcements," Advances in 3D Textiles, 2015, pp. 207-263.
  8. D. Li, Q. Yao, N. Jiang, L. Jiang, "Bend Properties and Failure Mechanism of a Carbon/carbon Composite with a 3D Needlepunched Preform at Room and High Temperatures," New Carbon Materials, Vol. 31, 2016, pp. 437-444. https://doi.org/10.1016/S1872-5805(16)60023-9
  9. G. Tang, Y. Yan, et al., "Dynamic Damage and Fracture Mechanism of Three-dimensional Braided Carbon Fiber/epoxy Resin Composites," Materials & Design, Vol. 22, 2001, pp. 21-25. https://doi.org/10.1016/S0261-3069(00)00030-3
  10. Z. Asaee, S. Shadlou, F. Taheri, "Low-velocity Impact Response of Fiberglass/magnesium FMLs with a New 3D Fiberglass Fabric," Composite Structure, Vol. 122, 2015, pp. 155-165. https://doi.org/10.1016/j.compstruct.2014.11.038
  11. J. Brandt, K. Drechsler, and F.J. Arendts, "Mechanical Performance of Composites Based on Various Threedimensional Woven-fibre Preforms," Composites Science and Technology, Vol. 56(3), 1996, pp. 381-386. https://doi.org/10.1016/0266-3538(95)00135-2
  12. B.P. Dash, B.K. Behera, "A Study on Structure Property Relationship of 3D Woven Composites," Materials Today, Vol. 2, 2015, pp. 2991-3007. https://doi.org/10.1016/j.matpr.2015.07.283